
Deterministic Function Computation with Chemical Reaction

Networks∗

Ho-Lin Chen† David Doty‡ David Soloveichik§

Abstract

Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution.
CRNs are widely used to describe information processing occurring in natural cellular regulatory
networks, and with upcoming advances in synthetic biology, CRNs are a promising language for
the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of
CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not
well understood.

CRNs have been shown to be efficiently Turing-universal when allowing for a small proba-
bility of error. CRNs that are guaranteed to converge on a correct answer, on the other hand,
have been shown to decide only the semilinear predicates. We introduce the notion of function,
rather than predicate, computation by representing the output of a function f : Nk → Nl by a
count of some molecular species, i.e., if the CRN starts with x1, . . . , xk molecules of some “in-
put” species X1, . . . , Xk, the CRN is guaranteed to converge to having f(x1, . . . , xk) molecules
of the “output” species Y1, . . . , Yl. We show that a function f : Nk → Nl is deterministically
computed by a CRN if and only if its graph {(x,y) ∈ Nk × Nl | f(x) = y} is a semilinear set.

Finally, we show that each semilinear function f can be computed by a CRN on input x in
expected time O(polylog ‖x‖1).

1 Introduction

The engineering of complex artificial molecular systems will require a sophisticated understanding
of how to program chemistry. A natural language for describing the interactions of molecular species
in a well-mixed solution is that of (finite) chemical reaction networks (CRNs), i.e., finite sets of
chemical reactions such as A+B → A+C. When the behavior of individual molecules is modeled,
CRNs are assigned semantics through stochastic chemical kinetics [11], in which reactions occur
probabilistically with rate proportional to the product of the molecular count of their reactants
and inversely proportional to the volume of the reaction vessel.

Traditionally CRNs have been used as a descriptive language to analyze naturally occurring
chemical reactions (as well as numerous other systems with a large number of interacting compo-
nents such as gene regulatory networks and animal populations). However, recent investigations

∗The first author was supported by the Molecular Programming Project under NSF grant 0832824, the second
and third authors were supported by a Computing Innovation Fellowship under NSF grant 1019343. The second
author was supported by NSF grants CCF-1219274 and CCF-1162589. The third author was supported by NIGMS
Systems Biology Center grant P50 GM081879.
†National Taiwan University, Taipei, Taiwan, holinc@gmail.com
‡California Institute of Technology, Pasadena, CA, USA, ddoty@caltech.edu
§University of California, San Francisco, San Francisco, CA, USA, david.soloveichik@ucsf.edu

1

have viewed CRNs as a programming language for engineering artificial systems. These works have
shown CRNs to have eclectic computational abilities. Researchers have investigated the power of
CRNs to simulate Boolean circuits [15], neural networks [12], and digital signal processing [13].
Other work has shown that bounded-space Turing machines can be simulated with an arbitrarily
small, non-zero probability of error by a CRN with only a polynomial slowdown [2].1 Even Turing
universal computation is possible with an arbitrarily small, non-zero probability of error over all
time [19]. The computational power of CRNs also provides insight on why it can be computation-
ally difficult to simulate them [18], and why certain questions are frustatingly difficult to answer
(e.g. undecidable) [10,21]. The programming approach to CRNs has also, in turn, resulted in novel
insights regarding natural cellular regulatory networks [6].

Recent work proposes concrete chemical implementations of arbitrary CRNs, particularly using
nucleic-acid strand-displacement cascades as the physical reaction primitive [7, 20]. Thus, since
in principle any CRN can be built, hypothetical CRNs with interesting behaviors are becoming
of more than theoretical interest. One day artificial CRNs may underlie embedded controllers
for biochemical, nanotechnological, or medical applications, where environments are inherently
incompatible with traditional electronic controllers.

One of the best-characterized computational abilities of CRNs is the deterministic computation
of predicates as investigated by Angluin, Aspnes and Eisenstat [3]. (They considered an equivalent
distributed computing model known as population protocols.) Some CRNs, when started in an
initial configuration assigning nonnegative integer counts to each of k different input species, are
guaranteed to converge on a single “yes” or “no” answer, in the sense that there are two special
“voting” species L1 and L0 so that eventually either L1 is present and L0 absent to indicate “yes”,
or vice versa to indicate “no.” The set of inputs S ⊆ Nk that cause the system to answer “yes” is
then a representation of the decision problem solved by the CRN. Angluin, Aspnes and Eisenstat
showed that the input sets S decidable by some CRN are precisely the semilinear subsets of Nk
(see below).

We extend these prior investigations of decision problems or predicate computation to study
deterministic function computation. Consider the three examples in Fig. 1(top). These CRNs have
the property that they converge to the right answer no matter the order in which the reactions
happen to occur and are thus insensitive to stochastic effects as well as reaction rate constants.
Formally, we say a function f : Nk → Nl is computed by a CRN C if the following is true. There
are “input” species X1, . . . , Xk and “output” species Y1, . . . , Yl such that, if C is initialized with
x1, . . . , xk copies of X1, . . . , Xk, then it is guaranteed to reach a configuration in which the counts
of Y1, . . . , Yl are described by the vector f(x1, . . . , xk), and these counts never again change. For
example, the CRN C with the single reaction X → 2Y computes the function f(x) = 2x in the
sense that, if C starts in an initial configuration with x copies of X and 0 copies of Y , then C is
guaranteed to stabilize to a configuration with 2x copies of Y (and no copies of X). Similarly, the
function f(x) = bx/2c is computed by the single reaction 2X → Y (Fig. 1(a)), in that the final
configuration is guaranteed to have exactly bx/2c copies of Y (and 0 or 1 copies of X, depending
on whether x is even or odd).

It is illuminating to compare the computation of division by 2 shown in Fig. 1(a) with another
reasonable alternative: reactions X → Y and Y → X (i.e. the reversible reaction X
Y). If the
rate constants of the two reactions are equal, the system equilibrium is at half of the initial amount

1 This is surprising since finite CRNs necessarily must represent binary data strings in a unary encoding, since
they lack positional information to tell the difference between two molecules of the same species.

2

0
0

a) b)

1 2 3 4 5 6 7 8 9 10
X

1
2
3
4
5
Y

c)

5

10

X1

0

0

5

10

X2

5

10

Y

X+X → Y X1+X2 → B
X1+B → X1+Y
B+Y → B+B

X1→Z1+Y
X2→Z2+Y
Z1+Z2→K
K+Y→Ø

f(x1, x2)= f(x1, x2)= max(x1, x2)f(x)= ⌊x/2⌋

{ n1 · (1, 1, 1) + n2 · (1, 0, 1) | n1 , n2 ∈ ℕ}
∪{ n1 · (1, 1, 1) + n2 · (1, 1, 0) | n1 , n2 ∈ ℕ}

{ (1, 0) + n1 · (2, 1) | n1 ∈ ℕ}
∪{ n1 · (2 , 1) | n1 ∈ ℕ}

start with: (input) X1, X2
output: Y

start with: (input) X1, X2
output: Y

start with: (input) X
output: Y

{ if x1>x2
otherwise 0

x2

X1

X2

5

10

0

5

10

0

5

10

Y

{ n1 · (1, 1, 1) + n2 · (1, 0, 0)(1, 0, 0) | n1 , n2 ∈ ℕ}
∪{ n1 · (1, 1, 0) + n2 · (0, 1, 0) | n1 , n2 ∈ ℕ}

+

Figure 1: Examples of deterministically computable functions. (Top) Three functions and examples of CRNs
deterministically computing them. The input is represented in the molecular count of X (for (a)), and moleculer
counts of X1, X2 (for (b) and (c)). The output is represented by the molecular count of Y . Example (a) computes
via the relative stoichiometry of reactants and products of a single reaction. In example (b), the second and third
reactions convert B to Y and vice versa, catalyzed by X1 and B, respectively. Thus, if there are any X1 remaining
after the first reaction finishes (and thus x1 > x2), all of B can get converted to Y permanently (since some B is
required to convert Y back to B). Since in this case the first reaction produces x2 molecules of B, x2 molecules of the
output Y are eventually produced. If the first reaction consumes all of X1 (and thus x1 ≤ x2), eventually any Y that
was produced in the second reaction gets converted to B by the third reaction. To see that the CRN in (c) correctly
computes the maximum, note that the first two reactions eventually produce x1 + x2 molecules of Y , while the third
reaction eventually produces min(x1, x2) molecules of K. Thus the last reaction eventually consumes min(x1, x2)
molecules of Y leaving x1 + x2 −min(x1, x2) = max(x1, x2) Y ’s. (Bottom) Graphs of the three functions. The set
of points belonging to the graph of each of these functions is a semilinear set. Under each plot this semilinear set is
written in the form of a union of linear sets corresponding to Equation 1.1. The defining vectors are shown as colored
arrows in the graph.

of X transformed to Y . There are two stark differences between this implementation and that of
Fig. 1(a). First, this CRN would not have an exact output count of Y , but rather a distribution
around the equilibrium. (However, in the limit of large numbers, the error as a fraction of the
total would converge to zero.) The second difference is that the equilibrium amount of Y for
any initial amount of X depends on the relative rate constants of the two reactions. In contrast,
the deterministic computation discussed in this paper relies on the identity and stoichiometry
of the reactants and products rather than the rate constants. While the rates of reactions are
analog quantities, the identity and stoichiometry of the reactants and products are naturally digital.
Methods for physically implementing CRNs naturally yield systems with digital stoichiometry that
can be set exactly [7,20]. While rate constants can be tuned, being analog quantities, it cannot be
expected that they can be controlled precisely.

A few general properties of this type of deterministic computation can be inferred. The first
property is that a deterministic CRN is able to handle input molecules added at any time, and not
just initially. Otherwise, if the CRN could reach a state after which it no longer “accepts input”,
then there would be a sequence of reactions that would lead to an incorrect output even if all input
is present initially. This reaction sequence is one in which some input molecules remain unreacted
while the CRNs goes to a state in which input is no longer accepted – which is always possible.

The second general property of deterministic computation relates to composition. As any bona

3

fide computation must be composable, it is important to ask: can the output of one deterministic
CRN be the input to another? This is more difficult than in standard computing since there is in
general no way of knowing when a CRN is done computing, or whether it will change its answer
in the future. This is essentially because a CRN cannot deterministically detect the absence of
a species, and thus, for example, cannot discern when all input has been read. Moreover, simply
concatenating two deterministic CRNs (renaming species to avoid conflict) does not always yield a
deterministic CRN. For example, consider computing the function f(x1, x2) = bmax(x1, x2)/2c by
composing the CRNs in Fig. 1(c) and (a). The new CRN is:

X1 → Z1 +W

X2 → Z2 +W

Z1 + Z2 → K

K +W → ∅
W +W → Y

where W is the output species of the max computation, that acts as the input to the division by
2 computation. Note that if W happens to be converted to Y by the last reaction before it reacts
with K, then the system can converge to a final output value of Y that is larger than expected. In
other words, because the first CRN needs to consume its output W , the second CRN can interfere
by consuming W itself (in the process of reading it out).

Unlike in the above example, two deterministic CRNs can be simply concatenated to make
a new deterministic CRN if the first CRN never consumes its output species (i.e. it produces its
output “monotonically”). Since it doesn’t matter when the input to the second CRN is produced
(the first property, above), the overall computation will be correct. Yet deterministically computing
a non-monotonic function without consuming output species is impossible because the CRN must
be able to handle some input molecules reacting only after the output has already been produced
(i.e. the first property, above). In a couple of places in this paper, we convert a non-monotonic
function into a monotonic one over more outputs, to allow the result to be used by a downstream
CRN (see below).

What do the functions in Fig. 1(top) have in common such that the CRNs computing them
can inevitably progress to the right answer no matter what order the reactions occur in? What
other functions can be computed similarly? Answering these questions may seem difficult because
it appears like the three examples, although all deterministic, operate on different principles and
seem to use different ideas.

We show that the functions deterministically computable by CRNs are precisely the semilinear
functions, where we define a function to be semilinear if its graph {(x,y) ∈ Nk ×Nl | f(x) = y} is
a semilinear subset of Nk ×Nl. (See Fig. 1(bottom) for the graphs of the three example functions.)
This means that the graph of the function is a union of a finite number of linear sets – i.e. sets
that can be written in the form

{ b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } (1.1)

for some fixed vectors b,u1, . . . ,up ∈ Nk+l. Fig. 1(bottom) shows the graphs of the three example
functions expressed as a union of sets of this form. Informally, semilinear functions can be thought
of as “piecewise linear functions” with a finite number of pieces, and linear domains of each piece.2

2Semilinear sets have a number of characterizations. They are often thought of as generalizations of arithmetic

4

This characterization implies, for example, that such functions as f(x1, x2) = x1x2, f(x) =
x2, or f(x) = 2x are not deterministically computable. For instance, the graph of the function
f(x1, x2) = x1x2 consists of infinitely many lines of different slopes, and thus, while each line
is a linear set, the graph is not a finite union of linear sets. Our result employs the predicate
computation characterization of Angluin, Aspnes and Eisenstat [3], together with some nontrivial
additional technical machinery.

While the example CRNs in Fig. 1 all seem to use different “tricks”, in Section 4 we de-
velop a systematic construction for any semilinear function. To get the gist of this construc-
tion see the example in Fig. 2. To obtain a CRN computing the example semilinear function
f(x1, x2) = max(2x1−x2, x2), we decompose the function into “linear” pieces: f1(x1, x2) = 2x1−x2

and f2(x1, x2) = x2 (formally partial affine functions, see Section 2). Then semilinear predicate
computation (per Angluin, Aspnes and Eisenstat) is used to decide which linear function should
be applied to a given input. A decomposition compatible with this approach is always possible by
Lemma 4.4. Linear functions such as f1 and f2 are easy for CRNs to deterministically compute by
the relative stoichiometry of the reactants and products (analogously to the example in Fig. 1(a)).
However, note that to correctly compose the computation of f1 with the downstream computa-
tion (Fig. 1(b), right column) we convert f1 from a non-monotonic function with one output, to a
monotonic function with two outputs such that the original output is encoded by their difference.

In the last part of this paper, we turn our attention to the time required for CRNs to converge
to the answer. We show that every semilinear function can be deterministically computed on
input x in expected time polylog(‖x‖). This is done by a similar technique used by Angluin,
Aspnes, and Eisenstat [3] to show the equivalent result for predicate computation. They run
a slow deterministic computation in parallel with a fast randomized computation, allowing the
deterministic computation to compare the two answers and update the randomized answer only if
it is incorrect, which happens with low probability. However, novel techniques are required since it
is not as simple to “nondestructively compare” two integers (so that the counts are only changed
if they are unequal) as to compare two Boolean values.

2 Preliminaries

Given a vector x ∈ Nk, let ‖x‖ = ‖x‖1 =
∑k

i=1 |x(i)|, where x(i) denotes the ith coordinate of x.
A set A ⊆ Nk is linear if there exist vectors b,u1, . . . ,up ∈ Nk such that

A = { b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } .

A is semilinear if it is a finite union of linear sets. If f : Nk → Nl is a function, define the graph of f
to be the set

{
(x,y) ∈ Nk × Nl

∣∣ f(x) = y
}
. A function is semilinear if its graph is a semilinear

set.
We say a partial function f : Nk 99K Nl is affine if there exist kl rational numbers a1,1, . . . , ak,l ∈

Q and l + k nonnegative integers b1, . . . , bl, c1, . . . , ck ∈ N such that, if y = f(x), then for each
j ∈ {1, . . . , l}, y(j) = bj +

∑k
i=1 ai,j(x(i) − ci), and for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. (In

progressions. They are also exactly the sets that are definable in Presburger arithmetic [16]: the first-order theory of
the natural numbers with addition. Equivalently, they are the sets accepted by boolean combinations of “modulo” and
“threshold” predicates [3]. Semilinear functions are less well-studied. The “piecewise linear” intuitive characterization
is formalized in Lemma 4.4.

5

f(x1, x2)= max(2x1-x2, x2)

make 3 copies of inputs for the 3
parallel computations

compute linear function f1(x1, x2)= 2x1-x2

compute linear function f2(x1, x2)= x2

compute semilinear predicate “x1 < x2 ?”

if predicate true (ie L1):

undo the effect of L0

every P1 increases Y and
every C1 decreases Y

if predicate false (ie L0):

every P2 increases Y

 undo the effect of L1

X1

X2

5

10

0

5

10

0

5

10

Y

f1(x1, x2)= 2x1-x2

f2(x1, x2)= x2

Any semilinear function can be piecewise defined in terms of linear functions,
with the decision dictated by semilinear predicates (Lemma 4.4):

f(x1, x2) ={ if x1 < x2

otherwise

start with: (input) X1, X2, (initial context) 1 molecule of L0

output: Y

a)

b)

Figure 2: An example capturing the essential elements of our systematic construction for computing semilinear
functions (Lemma 4.3). To compute the target semilinear function, we recast it as a piecewise function defined in terms
of linear functions, such that semilinear predicates can decide which of the linear functions is applicable for a given
input (this recasting is possible by Lemma 4.4). (a) The graph of the target function visualizing the decomposition
into linear functions. (b) A CRN deterministically computing the target function with intuitive explanations of
the reactions. We use tri-molecular reactions for simplicity of exposition; however, these can be converted into a
sequence of bimolecular reactions. Note that we allow an “initial context”: a fixed set of molecules that are always
present in the initial state in addition to the input. The linear functions f1 and f2 are computed monotonically by
representing the output as the difference of P (“produce”) minus C (“consume”) species. Thus although P 1 − C1

could be changing non-monotonically, P 1 and C1 do not decrease over time, allowing them to be used as inputs for
downstream computation. To compute the semilinear predicate “x1 < x2?”, a single molecule, converted between L0

and L1 forms, goes back and forth consuming X3
1 and X3

2 . Whether it gets stuck in the L0 or L1 forms indicates
the excess of X3

1 or X3
2 . The reactions in the right column use the output of this predicate computation to set the

count of Y (the global output) to either the value computed by f1 or f2. Note that the CRN cannot “know” when
the predicate computation has finished since the absence X3

1 or X3
2 cannot be detected. Thus the reactions in the

right column must be capable of responding to a change in L0/L1. Species P̂ 1, P̂ 2, and Ĉ1 are used to backup the
values of P 1, P 2, and C1, enabling the switch in output.

matrix notation, there exist a k × l rational matrix A and vectors b ∈ Nl and c ∈ Nk such that
f(x) = A(x−c) +b.) In other words, the graph of f , when projected onto the (k+ 1)-dimensional
space defined by the k coordinates corresponding to x and the single coordinate corresponding to
y(j), is a subset of a k-dimensional hyperplane.

6

Four aspects of the definition of affine function invite explanation.
First, we allow partial functions because Lemma 4.4 characterizes the semilinear functions as

finite combinations of affine functions, where the union of the domains of the functions is the entire
input space Nk. The value of an affine function on an input outside of its domain is irrelevant (and
in fact may be non-integer).

Second, we have two separate “constant offsets” bj and ci. Affine functions over the reals are
typically defined with only one of these, bj , where a function f : Rk → Rl is affine if there is a
k × l real matrix A and vector b ∈ Rl such that f(x) = Ax + b. If instead real affine functions
were defined as f(x) = A(x− c) + b, one could re-write this as f(x) = Ax−Ac + b and, letting
b′ = −Ac+b, obtain an affine function according to the former definition. However, if we take this
approach in dealing with integers, it may be that while Ax−Ac + b is integer-valued, the terms
Ax and −Ac + b are non-integer vectors, and when we compute affine functions with chemical
reaction networks, these terms are handled separately by integer-valued counts of molecules.

Third, it may seem overly restrictive to require bj and ci to be nonnegative. In fact, our proof
of Lemma 4.2 is easily modified to show how to construct a CRN to compute an affine function
that allows negative values for bj and ci. However, Lemma 4.4 shows that, when the function is
such that its graph is a nonnegative linear set, then we may freely assume that bj and ci to be
nonnegative. Since this simplifies some of our definitions, we use this convention, although it is
not a strictly necessary assumption to prove computability of affine functions by chemical reaction
networks.

Fourth, the requirement that x(i)−ci ≥ 0 seems artificial. When we prove that every semilinear
function can be written as a finite union of partial affine functions with linear graphs (Lemma 4.4),
however, this will follow from the fact that the “offset vector” in the definition of a linear set is
required to be nonnegative.

Note that by appropriate integer arithmetic, a partial function f : Nk 99K Nl is affine if and only
if there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l+k nonnegative integers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈
N such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) = bj + 1

dj

∑k
i=1 ni,j(x(i) − ci), and for

each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. Each dj may be taken to be the least common multiple of the
denominators of the rational coefficients in the original definition. We employ this latter definition,
since it is more convenient for working with integer-valued molecular counts.

2.1 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the set of functions
f : Λ→ N. Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with
each coordinate “labeled” by an element of Λ. Given X ∈ Λ and c ∈ NΛ, we refer to c(X) as the
count of X in c. We write c ≤ c′ to denote that c(X) ≤ c′(X) for all X ∈ Λ. Given c, c′ ∈ NΛ,
we define the vector component-wise operations of addition c + c′, subtraction c − c′, and scalar
multiplication nc for n ∈ N. If ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by
assuming c(X) = 0 for all X ∈ Λ \∆.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈ NΛ×NΛ×R+,
specifying the stoichiometry of the reactants and products, respectively, and the rate constant k. If
not specified, assume that k = 1 (this is the case for all reactions in this paper), so that the reaction
α = 〈r,p, 1〉 is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C}, the reaction
A + 2B → A + 3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a

7

pair N = (Λ, R), where Λ is a finite set of chemical species, and R is a finite set of reactions over
Λ. A configuration of a CRN N = (Λ, R) is a vector c ∈ NΛ. We also write #cX to denote c(X),
the count of species X in configuration c, or simply #X when c is clear from context.

Given a configuration c and reaction α = 〈r,p〉, we say that α is applicable to c if r ≤ c (i.e.,
c contains enough of each of the reactants for the reaction to occur). If α is applicable to c, then
write α(c) to denote the configuration c + p− r (i.e., the configuration that results from applying
reaction α to c). If c′ = α(c) for some reaction α ∈ R, we write c →N c′, or merely c → c′ when
N is clear from context. An execution (a.k.a., execution sequence) E is a finite or infinite sequence
of one or more configurations E = (c0, c1, c2, . . .) such that, for all i ∈ {1, . . . , |E| − 1}, ci−1 → ci.
If a finite execution sequence starts with c and ends with c′, we write c→∗N c′, or merely c→∗ c′
when the CRN N is clear from context. In this case, we say that c′ is reachable from c.

Let ∆ ⊆ Λ. We say that p ∈ N∆ is a partial configuration (with respect to ∆). We write
p = c � ∆ for any configuration c such that c(X) = p(X) for all X ∈ ∆, and we say that p is
the restriction of c to ∆. Say that a partial configuration p with respect to ∆ is reachable from
configuration c′ if there is a configuration c reachable from c′ and p = c � ∆. In this case, we write
c′ →∗ p.

Turing machines, for example, have different semantic interpretations depending on the com-
putational task under study (deciding a language, computing a function, etc.). Similarly, in this
paper we use CRNs to decide subsets of Nk and to compute functions f : Nk → Nl. In the next two
subsections we define two semantic interpretations of CRNs that correspond to these two tasks.

2.2 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced by Angluin, Aspnes,
and Eisenstat [3].3 Intuitively, some species “vote” for a yes/no answer and the system stabilizes
to an output when a consensus is reached and it can no longer change its mind. The determinism
of the system is captured in that it is impossible to stabilize to an incorrect answer, and the correct
stable output is always reachable.

A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ, φ, σ), where (Λ, R) is a CRN,
Σ ⊆ Λ is the set of input species, Υ ⊆ Λ is the set of voters4, φ : Υ→ {0, 1} is the (Boolean) output
function, and σ ∈ NΛ\Σ is the initial context. An input to D will be a vector i0 ∈ NΣ (equivalently,
i0 ∈ Nk if we write Σ = {X1, . . . , Xk} and assign Xi to represent the i’th coordinate). Thus a CRD
together with an input vector defines an initial configuration i defined by i(X) = i0(X) if X ∈ Σ,
and i(X) = σ(X) otherwise. We say that such a configuration is a valid initial configuration, i.e.,
i � (Λ \ Σ) = σ. If we are discussing a CRN understood from context to have a certain initial
configuration i, we write #0X to denote i(X).

We extend φ to a partial function Φ : NΛ 99K {0, 1} as follows. Φ(c) is undefined if either
c(X) = 0 for all X ∈ Υ, or if there exist X0, X1 ∈ Υ such that c(X0) > 0, c(X1) > 0, φ(X0) = 0
and φ(X1) = 1. Otherwise, there exists b ∈ {0, 1} such that (∀X ∈ Υ)(c(X) > 0 =⇒ φ(X) = b);
in this case, the output Φ(c) of configuration c is b.

3Those authors use the term “stably compute”, but we reserve the term “compute” to apply to the computation
of non-Boolean functions.

4The definitions of [3] assume that Υ = Λ (i.e., every species votes). However, it is not hard to show that we
may assume there are only two voting species, L0 and L1, so that #L0 > 0 and #L1 = 0 means that the CRD is
answering “no”, and #L0 = 0 and #L1 > 0 means that the CRD is answering “yes.” This convention will be more
convenient in this paper.

8

A configuration c is output stable if Φ(c) is defined and, for all c′ such that c→∗ c′, Φ(c′) = Φ(c).
We say a CRD D stably decides the predicate ψ : NΣ → {0, 1} if, for any valid initial configuration
i ∈ NΛ with i � Σ = i0, for all configurations c ∈ NΛ, i →∗ c implies c →∗ c′ such that c′ is
output stable and Φ(c′) = ψ(i0). Note that this condition implies that no incorrect output stable
configuration is reachable from i. We say that D stably decides a set A ∈ Nk if it stably decides its
indicator function.

The following theorem is due to Angluin, Aspenes, and Eisenstat [3]:

Theorem 2.1 ([3]). A set A ⊆ Nk is stably decidable by a CRD if and only if it is semilinear.

The model they use is defined in a slightly different way. They study population protocols, a
distributed computing model in which a fixed-size set of agents, each having a state from a finite
set, undergo successive pairwise interactions, the two agents updating their states upon interacting.
This is equivalent to chemical reaction networks in which all reactions have exactly two reactants
and two products.

In fact, the forward direction of Theorem 2.1 (every stably decidable set is semilinear) holds even
if stable computation is defined with respect to any relation →∗ on Nk that is reflexive, transitive,
and “respects addition”, i.e., [(∀c1, c2,x ∈ Nk) (c1 →∗ c2) =⇒ (c1 + x →∗ c2 + x)]. These
properties can easily be shown to hold for the CRN reachability relation. The third property, in
particular, means that if some molecules c1 can react to form molecules c2, then it is possible for
them to react in the presence of some extra molecules x, such that no molecules from x react at
all.

2.3 Stable computation of functions

We now define a notion of stable computation of functions similar to those above for predicates.5

Intuitively, the inputs to the function are the initial counts of input species X1, . . . , Xk, and the
outputs are the counts of “output” species Y1, . . . , Yl. The system stabilizes to an output when
the counts of the output species can no longer change. Again determinism is captured in that it is
impossible to stabilize to an incorrect answer and the correct stable output is always reachable.

Let k, l ∈ Z+. A chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ,Γ, σ), where
(Λ, R) is a CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of output species, such that
Σ ∩ Γ = ∅, |Σ| = k, |Γ| = l, and σ ∈ NΛ\Σ is the initial context. Write Σ = {X1, X2, . . . , Xk}
and Γ = {Y1, Y2, . . . , Yl}. We say that a configuration c is output count stable if, for every c′ such
that c →∗ c′ and every Yi ∈ Γ, c(Yi) = c′(Yi) (i.e., the counts of species in Γ will never change
if c is reached). As with CRD’s, we require initial configurations i of C with input i0 ∈ NΣ to
obey i(X) = i0(X) if X ∈ Σ and i(X) = σ(X) otherwise, calling them valid initial configura-
tions. We say that C stably computes a function f : Nk → Nl if for any valid initial configura-
tion i ∈ NΛ, i →∗ c implies c →∗ c′ such that c′ is an output count stable configuration with
f(i(X1), i(X2), . . . , i(Xk)) = (c′(Y1), c′(Y2), . . . , c′(Yl)). Note that this condition implies that no
incorrect output stable configuration is reachable from i.

As an example of a formally defined CRC consider the function f(x) = bx/2c shown in Fig. 1(a).
This function is stably computed by the CRC (Λ, R,Σ,Γ, σ) where (Λ, R) is the CRN consisting of
a single reaction 2X → Y , Σ = {X} is the set of input species, Γ = {Y } is the set of output species,

5The extension from Boolean predicates to functions described by Aspnes and Ruppert [4] applies only to finite-
range functions, where one can choose |Λ| ≥ |Y | for output range Y .

9

and the initial context σ is zero for all species in Λ \ Σ. In Fig. 1(b) the initial context σ(N) = 1,
and is zero for all other species in in Λ \Σ. In examples (a) and (b), there is at most one reaction
that can happen in any reachable configuration. In contrast, different reactions may occur next in
(c). However, from any reachable state, we can reach the output count stable configuration with
the correct amount of Y , satisfying our definition of stable computation.

In Sections 3 and 4 we will describe systematic (but much more complex) constructions for
these and all functions with semilinear graphs.

2.4 Fair execution sequences

Note that by defining “deterministic” computation in terms of certain states being reachable and
others not, we cannot guarantee the system will get to the correct output for any possible execution
sequence. For example suppose an adversary controls the execution sequence. Then {X → 2Y,A→
B,B → A} will not reach the intended output state y = 2x if the adversary simply does not let
the first reaction occur, always preferring the second or third.

Intuitively, in a real chemical mixture, the reactions are chosen randomly and not adversar-
ially, and the CRN will get to the correct output. In this section we follow Angluin, Aspnes,
and Eisenstat [3] and define a combinatorial condition called fairness on execution sequences that
captures what is minimally required of the execution sequence to be guaranteed that a stably decid-
ing/computing CRD/CRC will reach the output stable state. In the next section we consider the
kinetic model, which ascribes probabilities to execution sequences. The kinetic model also defines
the time of reactions, allowing us to study the computational complexity of the CRN computation.
Note that in the kinetic model, if the reachable configuration space is bounded for any start con-
figuration (i.e. if from any starting configuration there are finitely many configurations reachable)
then any observed execution sequence will be fair with probability 1. (This will be the case for our
construction in Section 4.)

An infinite execution E = (c0, c1, c2, . . .) is fair if, for all partial configurations p, if p is infinitely
often reachable then it is infinitely often reached.6 In other words, no reachable partial configuration
is “starved”.7 This definition, applied to finite executions, deems all of them fair vacuously. We
wish to distinguish between finite executions that can be extended by applying another reaction
and those that cannot. Say that a configuration is terminal if no reaction is applicable to it. We
say that a finite execution is fair if and only if it ends in a terminal configuration. For any species
A ∈ Λ, we write #∞A to denote the eventual convergent count of A if #A is guaranteed to stabilize
on any fair execution sequence; otherwise, #∞A is undefined.

The next lemma characterizes stable computation of functions by CRCs in terms of fair execu-
tion sequences, showing that the counts of output species will converge to the correct output values
on any fair execution sequence. An analogous lemma holds for CRDs.

Lemma 2.2. A CRC stably computes a function f : Nk → Nl if and only if for every valid

6i.e. (∀∆ ⊆ Λ)(∀p ∈ N∆)[((∃∞i ∈ N) ci →∗ p) =⇒ ((∃∞j ∈ N) p = cj � ∆)].
7This definition of fairness is stricter than that used in [3], which used only full configurations rather than par-

tial configurations. We choose this definition to prevent intuitively unfair executions from vacuously satisfying the
definition of “fair” simply because of some species whose count is monotonically increasing with time (preventing
any configuration from being infinitely often reachable). Such a definition is unnecessary in [3] because population
protocols by definition have a finite state space, since they enforce that every reaction has precisely two reactants
and two products.

10

initial configuration i ∈ NΛ, every fair execution E = (i, c1, c2, . . .) contains an output count stable
configuration c such that f(i(X1), i(X2), . . . , i(Xk)) = (c(Y1), c(Y2), . . . , c(Yl)).

Proof. The “if” direction follows because every finite execution sequence can be extended to be
fair, and thus an output count stable configuration with the correct output is always reachable.
The “only if” direction is shown as follows. We know that from any reachable configuration c,
some correct output stable configuration c′ is reachable (but possibly different c′ for different
c). We’ll argue that in any infinite fair execution sequence there is some partial configuration
that is reachable infinitely often, and that any state with this partial configuration is the correct
stable output state. Consider an infinite fair execution sequence c1, c2, . . . , and the corresponding
reachable correct output stable configurations c′1, c

′
2, As in Lemma 11 of [3], there is some

integer k ≥ 1 such that a configuration is output count stable if and only if it is output count
stable when each coordinate that is larger than k is set to exactly k (k-truncation). The infinite
sequence c′1, c

′
2, . . . must have an infinite subsequence sharing the same k-truncation. Let p be

the partial configuration consisting of the correct output and all the coordinates less than k in the
shared truncation. This partial configuration is reachable infinitely often, and no matter what the
counts of the other species outside of p are, the resulting configuration is output count stable.

2.5 Kinetic model

The following model of stochastic chemical kinetics is widely used in quantitative biology and other
fields dealing with chemical reactions between species present in small counts [11]. It ascribes
probabilities to execution sequences, and also defines the time of reactions, allowing us to study
the computational complexity of the CRN computation in Section 4.

In this paper, the rate constants of all reactions are 1, and we define the kinetic model with
this assumption. A reaction is unimolecular if it has one reactant and bimolecular if it has two
reactants. We use no higher-order reactions in this paper when using the kinetic model.

The kinetics of a CRN is described by a continuous-time Markov process as follows. Given a
fixed volume v and current configuration c, the propensity of a unimolecular reaction α : X → . . .
in configuration c is ρ(c, α) = #cX. The propensity of a bimolecular reaction α : X + Y → . . .,
where X 6= Y , is ρ(c, α) = #cX#cY

v . The propensity of a bimolecular reaction α : X + X → . . .

is ρ(c, α) = 1
2

#cX(#cX−1)
v . The propensity function determines the evolution of the system as

follows. The time until the next reaction occurs is an exponential random variable with rate
ρ(c) =

∑
α∈R ρ(c, α) (note that ρ(c) = 0 if no reactions are applicable to c). The probability that

next reaction will be a particular αnext is ρ(c,αnext)
ρ(c) .

The kinetic model is based on the physical assumption of well-mixedness valid in a dilute so-
lution. Thus, we assume the finite density constraint, which stipulates that a volume required to
execute a CRN must be proportional to the maximum molecular count obtained during execu-
tion [19]. In other words, the total concentration (molecular count per volume) is bounded. This
realistically constrains the speed of the computation achievable by CRNs. Note, however, that it
is problematic to define the kinetic model for CRNs in which the reachable configuration space
is unbounded for some start configurations, because this means that arbitrarily large molecular
counts are reachable.8 We apply the kinetic model only to CRNs with configuration spaces that
are bounded for each start configuration.

8One possibility is to have a “dynamically” growing volume as in [19].

11

3 Exactly the semilinear functions can be deterministically com-
puted

In this section we use Theorem 2.1 to show that only “simple” functions can be stably computed
by CRCs. This is done by showing how to reduce the computation of a function by a CRC to the
decidability of its graph by a CRD, and vice versa. In this section we do not concern ourselves with
kinetics. Thus the volume is left unspecified, and we consider the combinatorial-only condition
of fairness on execution sequences for our positive result (Lemma 3.2) and direct reachability
arguments for the negative result (Lemma 3.1).

The next lemma shows that every function computable by a chemical reaction network is semi-
linear by reducing stably deciding a set that is the graph of a function to stably computing that
function. It turns out that the reduction technique of introducing “production” and “consumption”
indicator species will be a general technique, used repeatedly in this paper.

Lemma 3.1. Every function stably computable by a CRC is semilinear.

Proof. Suppose there is a CRC C stably computing f . We will construct a CRD D that stably
decides the graph of f . By Theorem 2.1, this implies that the graph of f is semilinear. Intuitively,
the difficulty lies in checking whether the amount of the outputs Yi produced by C matches the
value given to the decider D as input. What makes this non-trivial is that D does not know whether
C has finished computing, and thus must compare Yi while Yi is potentially being changed by C.
In particular, D cannot consume Yi or that could interfere with the operation of C.

Let C = (Λ, R,Σ,Γ, σ) be the CRC that stably computes f : Nk → Nl, with input species
Σ = {X1, . . . , Xk} and output species Γ = {Y1, . . . , Yl}. Modify C to obtain the following CRD D =
(Λ′, R′,Σ′,Υ′, φ′, σ′). Let YC = {Y C

1 , . . . , Y C
l } and YP = {Y P

1 , . . . , Y
P
l }, where each Y C

i , Y
P
i 6∈ Λ

are new species. Intuitively, #Y P
i represents the number of Yi’s produced by C and #Y C

i the number
of Yi’s consumed by C. The goal is for D to stably decide the predicate f(#0X1, . . . ,#0Xk) =
(#0Y

C
1 , . . . ,#0Y

C
l). In other words, the initial configuration of D will be the same as that of C

except for some copies of Y C
i , equal to the purported output of f to be tested by D.

Let Λ′ = Λ ∪ YC ∪ YP ∪ {L0, L1}. Let Σ′ = Σ ∪ YC . Let Υ′ = {L0, L1}, with φ(L0) = 0
and φ(L1) = 1. Let σ′(L1) = 1 and σ′(S) = 0 for all S ∈ Λ′\ (Σ′ ∪ {L1}). Modify R to
obtain R′ as follows. For each reaction α that consumes a net number n of Yi molecules, append
n products Y C

i to α. For each reaction α that produces a net number n of Yi molecules, append
n products Y P

i to α. For example, the reaction A + 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 becomes
A+ 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 + 2Y P

1 + Y C
3 .

Then add the following additional reactions to R′, for each i ∈ {1, . . . , l},

Y P
i + Y C

i → L1 (3.1)

Y P
i + L1 → Y P

i + L0 (3.2)

Y C
i + L1 → Y C

i + L0 (3.3)

L0 + L1 → L1 (3.4)

Observe that if f(#0X1, . . . ,#0Xk) = (#0Y
C

1 , . . . ,#0Y
C
l), then from any reachable configura-

tion we can reach a configuration without any Y P
i or Y C

i for all i, and such that no more of either
kind can be produced. (The CRC stabilizes and all of Y P

i and Y C
i is consumed by reaction 3.1.) In

this configuration we must have #L1 > 0 because the last instance of reaction 3.1 produced it (or if

12

no output was ever produced, L1 comes from the initial context σ′), and L1 can no longer be con-
sumed in reactions 3.2–3.3. Thus, since all of L0 can be consumed in reaction 3.4, a configuration
with #L1 > 0 and #L0 = 0 is always reachable, and this configuration is output stable.

Now suppose f(#0X1, . . . ,#0Xk) 6= (#0Y
C

1 , . . . ,#0Y
C
l) for some output coordinate i∗ ∈ {1, . . . , l}.

This means that from any reachable configuration we can reach a configuration with either #Y P
i∗ > 0

or #Y C
i∗ > 0 but not both, and such that for all i, no more of Y P

i and Y C
i can be produced. (This

happens when the CRC stabilizes and reaction 3.1 consumes the smaller of Y P
i∗ or Y C

i∗ .) From this
configuration, we can reach a configuration with #L0 > 0 and #L1 = 0 through reactions 3.2–3.3.
This is an output stable configuration since reactions 3.2–3.4 require L1.

The next lemma shows the converse of Lemma 3.1. Intuitively, it uses a random search of the
output space to look for the correct answer to the function and uses a predicate decider to check
whether the correct solution has been found.

Lemma 3.2. Every semilinear function is stably computable by a CRC.

Proof. Let f : Nk → Nl be a semilinear function, and let

F =
{

(x,y) ∈ Nk × Nl
∣∣∣ f(x) = y

}
denote the graph of f . We then consider the set

F̂ =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ f(x) = yP − yC

}
.

Intuitively, F̂ defines the same function as F , but with each output variable expressed as the
difference between two other variables. Note that F̂ is not the graph of a function since for each
y ∈ Nl there are an infinite number of pairs (yP ,yC) such that yP − yC = y. However, we only
care that F̂ is a semilinear set so long as F is a semilinear set, by Lemma 3.3, proven below.

Then by Theorem 2.1, F̂ is stably decidable by a CRD D = (Λ, R,Σ,Υ, φ, σ), where

Σ = {X1, . . . , Xk, Y
P

1 , . . . , Y
P
l , Y

C
1 , . . . , Y C

l },

and we assume that Υ contains only species L1 and L0 such that for any output-stable configuration
of D, exactly one of #L1 or #L0 is positive to indicate a yes or no answer, respectively.

Define the CRC C = (Λ′, R′,Σ′,Γ′, σ′) as follows. Let Σ′ = {X1, . . . , Xk}. Let Γ′ = {Y1, . . . , Yl}.
Let Λ′ = Λ ∪ Γ′. Let σ′(S) = σ(S) for all S ∈ Λ \ Σ, and let σ′(S) = 0 for all S ∈ Λ′ \ (Λ \ Σ).
Intuitively, we will have L0 change the value of y (by producing either Y P

j or Y C
j molecules), since

L0’s presence indicates that D has not yet decided that the predicate is satisfied. It essentially
searches for new values of y that do satisfy the predicate. This indirect way of representing the
value y is useful because yP and yC can both be increased monotonically to change y in either
direction. If D had Yj as a species directly, and if we wanted to test a lower value of yj , then this
would require consuming a copy of Yj , but this may not be possible if D has already consumed all
of them.

Let R′ be R plus the following reactions for each j ∈ {1, . . . , l}:

L0 → L0 + Y P
j + Yj (3.5)

L0 + Yj → L0 + Y C
j (3.6)

13

It is clear that reactions (3.5) and (3.6) enforce that at any time, #Yj is equal to the total
number of Y P

j ’s produced by reaction (3.5) minus the total number of Y C
j ’s produced by reaction

(3.6) (although some of each of Y P
j or Y C

j may have been produced or consumed by other reactions
in R).

Suppose that f(x) 6= (#Y1, . . . ,#Yl). Then if there are no L0 molecules present, the counts of
Y P
j and Y C

j are not changed by reactions (3.5) and (3.6). Therefore only reactions in R proceed, and

by the correctness of D, eventually an L0 molecule is produced (since eventually D must reach an
output-stable configuration answering “no”, although L0 may appear before D reaches an output-
stable configuration, if some L1 are still present). Once L0 is present, by the fairness condition
(choosing ∆ = {Y1,Yl}), eventually the value of (#Y1, . . . ,#Yl) will change by reaction (3.5)
or (3.6). In fact, every value of (#Y1, . . . ,#Yl) is possible to explore by the fairness condition.

Suppose then that f(x) = (#Y1, . . . ,#Yl). Perhaps L0 is present because the reactions in R have
not yet reached an output-stable “yes” configuration. Then perhaps the value of (#Y1, . . . ,#Yl)
will change so that f(x) 6= (#Y1, . . . ,#Yl). But by the fairness condition, a correct value of
(#Y1, . . . ,#Yl) must be present infinitely many times, so again by the fairness condition, since
from such a configuration it is possible to eliminate all L0 molecules before producing Y P

j or

Y C
j molecules, this must eventually happen. When all L0 molecules are gone while f(x) =

(#Y1, . . . ,#Yl) and D is in an output-stable configuration (thus no L0 can ever again be pro-
duced), then it is no longer possible to change the value of (#Y1, . . . ,#Yl), whence C has reached
a count-stable configuration with the correct answer. Therefore C stably computes f .

Lemma 3.3. Let k, l ∈ Z+, and suppose F ⊆ Nk × Nl is semilinear. Define

F̂ =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ (x,yP − yC) ∈ F

}
.

Then F̂ is semilinear.

Proof. Let F1, . . . , Ft be linear sets such that F =
⋃t
i=1 Fi. For each i ∈ {1, . . . , t}, define

F̂i =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ (x,yP − yC) ∈ Fi

}
.

It suffices to show that each F̂i is linear since F̂ =
⋃t
i=1 F̂i. Let i ∈ {1, . . . , t} and let b,u1, . . . ,ur ∈

Nk × Nl be such that

Fi =

 b +
r∑
j=1

njuj

∣∣∣∣∣∣ nj ∈ N

 .

Define the vectors v1, . . . ,vr ∈ Nk × Nl × Nl as vj = (uj , 0
l). Here, 0l denotes the vector in Nl

consisting of all zeros. In other words, let vj be uj on its first k + l coordinates and 0 on its last l
coordinates. Similarly define b′ = (b, 0l).

Also, for each j ∈ {1, . . . , l} define vr+j = (0k, 0j−110l−j , 0j−110l−j). (i.e., a single 1 in the
position corresponding to the jth output coordinate, one for yP and one for yC). Without the
vectors vr+j , the set of points defined by b′,v1, . . . ,vr would be simply Fi with l 0’s appended to
the end of each vector. By adding the vectors vr+j , for each (x,y) ∈ Fi and each yP ,yC ∈ Nl
such that y = yP − yC , we have that (x,yP ,yC) = b′ +

∑r+1
j=1 njvj for some n1, . . . , nr+l ∈ N;

14

in particular, for n1, . . . , nr chosen such that (x,y) = b +
∑r

j=1 njuj and nr+j = yC(j) for each
j ∈ {1, . . . , l}.

Thus F̂i =
{

b′ +
∑r+l

j=1 njvj

∣∣∣ nj ∈ N
}
, whence F̂i is linear.

Lemmas 3.1 and 3.2 immediately imply the following theorem.

Theorem 3.4. A function f : Nk → Nl is stably computable by a CRC if and only if it is semilinear.

One unsatisfactory aspect of Lemma 3.2 is that we do not reduce the computation of f directly
to a CRD deciding the graph F of f , but rather to D deciding a related set F̂ . It is not clear
how to directly reduce to a CRD deciding F since it is not obvious how to modify such a CRD to
monotonically produce extra species that could be processed by the CRC computing f . Lemma 3.1,
on the other hand, directly uses C as a black-box. Although we know that C, being a chemical
reaction computer, is only capable of computing semilinear functions, if we imagine that some ex-
ternal powerful “oracle” controlled the reactions of C to allow it to stably compute a non-semilinear
function, then D would decide that function’s graph. Thus Lemma 3.1 is more like the black-box
oracle Turing machine reductions employed in computability and complexity theory, which work
no matter what mythical device is hypothesized to be responsible for answering the oracle queries.

4 Semilinear functions can be quickly computed

Lemma 3.2 describes how a CRC can deterministically compute any semilinear function. However,
there are problems with this construction if we attempt to use it to evaluate the speed of semilinear
function computation in the kinetic model. First, the configuration space is unbounded for any
input since the construction searches over outputs without setting bounds. Thus, more care must
be taken to ensure that any infinite execution sequence will be fair with probability 1 in the kinetic
model. What is more, since the maximum molecular count is unbounded, it is not clear how to
set the volume for the time analysis. Even if we attempt to properly define kinetics, it seems like
any reasonable time analysis of the random search process will result in expected time at least
exponential in the size of the output.9

For our asymptotic time analysis, let the input size n = ‖x‖ be the number of input molecules.
In this section, the total molecular count attainable will always be O(n); thus, by finite density
constraint, the volume v = O(n).

We require the following theorem, due to Angluin, Aspnes, Diamadi, Fischer, and René [1],
which states that any semilinear predicate can be decided by a CRD in expected time O(n log n).
(This was subsequently reduced to O(n) by Angluin, Aspnes, and Eisenstat [2], but O(n log n)
suffices for our purpose.)

Theorem 4.1 ([1]). Let φ : Nk → {0, 1} be a semilinear predicate. Then there is a stable CRD D
that decides φ, and the expected time to reach an output-stable state on input is O(n log n).

Throughout this section, we use the technique of “running multiple CRNs in parallel” on the
same input. To accomplish this it is necessary to split the inputs X1, . . . , Xk into separate molecules
using a reaction Xi → X1

i +X2
i + . . .+Xp

i , which will add only O(log n) to the time complexity, so

9The random walk is biased downward because of the increasing propensities of the reactions consuming Yi’s.

15

that each of the p separate parallel CRNs do not interfere with one another. For brevity we omit
stating this formally when the technique is used.

The next lemma shows that affine partial functions can be computed in expected time O(n log n)
by a CRC. For its use in proving Theorem 4.3, we require that the output molecules be produced
monotonically. This is impossible for general affine partial functions. For example, consider the
function f(x1, x2) = x1 − x2 where dom f = { (x1, x2) | x1 ≥ x2 }. By withholding a single copy
of X2 and letting the CRC stabilize to the output value #Y = x1− x2 + 1, then allowing the extra
copy of X2 to interact, the only way to stabilize to the correct output value x1 − x2 is to consume
a copy of the output species Y . Therefore Lemma 4.2 is stated in terms of an encoding of affine
partial functions that allows monotonic production of outputs, encoding the output value y(j) as
the difference between the counts of two monotonically produced species Y P

j and Y C
j , using the

same technique used in the proofs of Lemmas 3.1 and 3.2.
Let f : Nk 99K Nl be an affine partial function, where, letting y = f(x), for all j ∈ {1, . . . , l},

y(j) = bj + 1
dj

∑k
i=1 ni,j(x(i) − ci) for integer ni,j and nonnegative integer bj , ci, and dj . Define

f̂ : Nk 99K Nl×Nl as follows. For each x ∈ dom f , define yC ∈ Nl for each j ∈ {1, . . . , l} as yC(j) =
− 1
dj

∑k
i=1 min{0, ni,j}(x(i)−ci). That is, yC(j) is the negation of the j’th coordinate of the output

if taking the weighted sum of the inputs on only those coordinates with a negative coefficient ni,j .
The value yP (j) is then similarly defined for all the positive coefficients and the bj offset: for each

x ∈ dom f , define yP ∈ Nl for each j ∈ {1, . . . , l} as yP (j) = bj + 1
dj

∑k
i=1 max{0, ni,j}(x(i)− ci).

Because x(i) − ci ≥ 0, yP and yC are always nonnegative. Then if y = f(x), we have that
y = yP − yC . Define f̂ as f̂(x) = (yP ,yC).

Lemma 4.2. Let f : Nk 99K Nl be an affine partial function. Then there is a CRC that computes
f̂ : Nk 99K Nl×Nl in expected time O(n log n), such that the output molecules monotonically increase
with time (i.e. none are ever consumed), and at most O(n) molecules are ever produced.

Proof. If (yP ,yC) = f̂(x), then there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l+k nonnegative inte-
gers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈ N such that, if y = f(x), then for each j ∈ {1, . . . , l}, yC(j) =
−
∑k

i=1
1
dj

min{0, ni,j}(x(i)−ci) and yP (j) = bj+
1
dj

∑k
i=1 max{0, ni,j}(x(i)−ci). Define the CRC as

follows. It has input species Σ = {X1, . . . , Xk} and output species Γ = {Y P
1 , . . . , Y

P
l , Y

C
1 , . . . , Y C

l }.
For each j ∈ {1, . . . , l}, start with bj copies of Y P

j . This accounts for the bj offsets.

For each i ∈ {1, . . . , k}, start with a single molecule C0
i , and for each m ∈ {0, . . . , ci − 1}, add

the reactions

Cmi +Xi → Cm+1
i (4.1)

Ccii +Xi → Ccii +X ′i (4.2)

This accounts for the ci offsets by eventually producing x(i)− ci copies of X ′i. Reaction (4.1) takes
time O(n) to complete because each reaction takes time at most O(n) and a constant number, ci,
of such reactions must take place. Once Ccii is produced (hence there are now x(i) − ci copies of
Xi), reaction (4.2) takes time O(n log n) to complete by a coupon collector argument.

For each i ∈ {1, . . . , k}, add the reaction

X ′i → Xi,1 +Xi,2 + . . .+Xi,l (4.3)

This allows each output to be associated with its own copy of the input. Reaction (4.3) takes time
O(log n) to complete.

16

For each i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, if ni,j > 0, add the reaction

Xi,j → ni,jZ
P
j (4.4)

and if ni,j < 0, add the reaction

Xi,j → (−ni,j)ZCj (4.5)

Reaction (4.4) produces dj(yP (j)− bj) copies of ZPj , and reaction (4.5) produces djyC(j) copies of

ZCj . Each takes time O(log n) to complete.

Finally, to produce the correct number of Y P
j and Y C

j output molecules, we must divide the

count of each ZPj and ZCj by dj . For each j ∈ {1, . . . , l}, start with a single copy of a molecule

D0,P
j and another D0,C

j . For each j ∈ {1, . . . , l} and each m ∈ {0, . . . , dj − 1}, add the reactions

Dm,P
j + ZPj →

{
Dm+1,P
j , if m < dj − 1;

D0,P
j + Y P

j , if m = dj − 1.

Dm,C
j + ZCj →

{
Dm+1,C
j , if m < dj − 1;

D0,C
j + Y C

j , if m = dj − 1.

These reactions implement this division. By a coupon collector argument, they each require time
O(n log n) to complete.

The next lemma shows that every semilinear function f can be computed by a CRC in O(n log n)
time. It uses a systematic construction based on breaking down f into a finite number of partial
affine functions f1, . . . , fm, in which deciding which fi to apply is itself a semilinear predicate.
Intuitively, the construction proceeds by running many CRCs and CRDs in parallel on input x,
computing all fi’s and all predicates of the form φi = “x ∈ dom fi?” The φi predicate computation
is used to activate (in the case of a “yes” answer) or deactivate (in case of “no”) the outputs of fi.
Since eventually one CRD stabilizes to “yes” and the remainder to “no”, eventually the outputs of
one fi are activated and the remainder deactivated, so that the value f(x) is properly computed.

Lemma 4.3. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably computes f , and
the expected time for C to reach a count-stable configuration on input x is O(n log n) (where the
O() constant depends on f).

Proof. By Lemma 3.2, there is a CRC Cs that stably computes f . However, that CRC is too slow to
use in this proof. We provide an alternative proof that every semilinear function can be computed
by a CRC in expected time O(n log n). Rather than relying on a random search of the output
space as in Lemma 3.2, it computes the function more directly. Our CRC will have input species
Σ = {X1, . . . , Xk} and output species Γ = {Y1, . . . , Yl}.

By Lemma 4.4, there is a finite set F = {f1 : Nk 99K Nl, . . . , fm : Nk 99K Nl} of affine partial
functions, where each dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x). We compute f on input x as follows. Since each dom fi is a linear (and therefore
semilinear) set, we compute each predicate φi = “x ∈ dom fi and (∀i′ ∈ {1, . . . , i−1}) x 6∈ dom fi′?”
by separate parallel CRD’s. (The latter condition ensures that for each x, precisely one of the
predicates is true, in case the domains of the partial functions have nonempty intersection.)

17

By Lemma 4.2, we can compute each f̂i by parallel CRC’s. Assume that for each i ∈ {1, . . . ,m}
and each j ∈ {1, . . . , l}, the jth pair of outputs yP (j) and yC(j) of the ith function is represented
by species Ŷ P

i,j and Ŷ C
i,j . We interpret each Ŷ P

i,j and Ŷ C
i,j as an “inactive” version of “active” output

species Y P
i,j and Y C

i,j .
For each i ∈ {1, . . . ,m}, we assume that the CRD computing the predicate φi represents its

output by voting species L1
i to represent “yes” and L0

i to represent “no”. Then add the following
reactions for each i ∈ {1, . . . ,m} and each j ∈ {1, . . . , l}:

L1
i + Ŷ P

i,j → L1
i + Y P

i,j + Yj

L0
i + Y P

i,j → L0
i +Mi,j

Mi,j + Yj → Ŷ P
i,j

(The latter two reactions implement the reverse direction of the first reaction using only bimolecular
reactions.) Also add the reactions

L1
i + Ŷ C

i,j → L1
i + Y C

i,j

L0
i + Y C

i,j → L0
i + Ŷ C

i,j

and

Y P
i,j + Y C

i,j → Kj

Kj + Yj → ∅

That is, a “yes” answer for function i activates the ith output and a “no” answer deactivates the
ith output. Eventually each CRD stabilizes so that precisely one i has L1

i present, and for all i′ 6= i,
L0
i′ is present. At this point, all outputs for the correct function f̂i are activated and all other outputs

are deactivated. The reactions enforce that at any time, #Yj =
∑m

i=1 #Y P
i,j + #Kj + #Mi,j . In

particular, #Yj ≥ #Kj and #Yj ≥ #Mi,j at all times, so there will never be a Kj or Mi,j molecule
that cannot participate in the reaction of which it is a reactant. Eventually #Y P

i,j and #Y C
i,j stabilize

to 0 to for all but one value of i (by the fifth reaction), and for this value of i, #Y P
i,j stabilizes to

y(j) and #Y C
i,j stabilizes to 0 (by the second-to-last reaction). Eventually #Kj stabilizes to 0 by

the last reaction. Eventually #Mi,j stabilizes to 0 since L0
i is absent for the correct function f̂i.

This ensures that #Yj stabilizes to y(j).
It remains to analyze the expected time to stabilization. Let n = ‖x‖. By Lemma 4.2, the

expected time for each affine function computation to complete is O(n log n). Since the Ŷ P
i,j are

produced monotonically, the most Y P
i,j molecules that are ever produced is #∞Ŷ

P
i,j . Since we have m

computations in parallel, the expected time for all of them to complete is at most O((n log n)m) =
O(n log n) (since m depends on f but not n). We must also wait for each predicate computation
to complete. By Theorem 2.1, each of these predicates takes expected time at most O(n log n) to
complete, so all of them complete in expected time at most O(mn log n) = O(n log n).

At this point, the Li1 leaders must convert inactive output species to active, and Li
′

0 (for i′ 6= i)
must convert active output species to inactive. A similar analysis to the proof of Lemma 4.3 shows
that each of these requires at most O(n log n) expected time, therefore they all complete in expected
time at most O((n log n)m) = O(n log n). Finally, a similar argument shows that it requires at most
expected time O(n log n) for the final two reactions to consume all Y C

i,j and Kj molecules, at which
point the system has stabilized.

18

Lemma 4.4. Let f : Nk → Nl be a semilinear function. Then there is a finite set {f1 : Nk 99K
Nl, . . . , fm : Nk 99K Nl} of affine partial functions, where each dom fi is a linear set, such that, for
each x ∈ Nk, if fi(x) is defined, then f(x) = fi(x), and

⋃m
i=1 dom fi = Nk.

We split the semilinear function into partial functions, each with a graph that is a linear set.
The non-trivial aspect of our argument is showing that (straightforward) linear algebra can be used
to solve our problem about integer arithmetic. For example, consider a partial function defined by
the following linear graph: b = 0, u1 = (1, 1, 1), u2 = (2, 0, 1), u3 = (0, 2, 1) (where the first two
coordinates are inputs and the last coordinate is the output). Note that the set of points where
this function is defined is where x1 + x2 is even. Given an input point x, the natural approach to
evaluating the function is to solve for the coefficients n1, n2, n3 such that x can be expressed as a
linear combination of u1,u2,u3 restricted to the first two coordinates. Then the linear combination
of the last coordinate of u1,u2,u3 with coefficients n1, n2, n3 would give the output. However, the
vectors u1,u2,u3 are not linearly independent (yet this linear set cannot be expressed with less than
three basis vectors — illustrating the difference between real spaces and integer-valued linear sets),
so there are infinitely many real-valued solutions for the coefficients. We show that ui must span
a real subspace with at most one output value for any input coordinates. Then we can throw out
a vector (say u1) to obtain a set of linearly independent vectors (u2,u3) and solve for n2, n3 ∈ R,
and let n1 = 0. In this example, the resulting partial affine function is f(x1, x2) = (x1 + x2)/2.

Proof. Let F =
{

(x,y) ∈ Nk × Nl
∣∣ f(x) = y

}
be the graph of f . Since F is semilinear, it is

a finite union of linear sets {L1, . . . , Ln}. It suffices to show that each of these linear sets Lm is
the graph of an affine partial function. Since Lm is linear, its projection onto any subset of its
coordinates is linear. Therefore dom fm (the projection of Lm onto its first k coordinates) is linear.

We consider each output coordinate separately, since if we can show that each y(j) is an
affine function of x, then it follows that y is an affine function of x. Fix j ∈ {1, . . . , l}. Let L′m
be the (k + 1)-dimensional projection of Lm onto the coordinates defined by x and y(j), which
is linear because Lm is. Since L′m is linear, there exist vectors b,u1, . . . ,up ∈ Nk+1 such that
L′m = { b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } .

Consider the real-vector subspace spanned by u1, . . . ,up. It cannot contain the vector j =
(0, . . . , 0, 1)T . Suppose it does. Take a subset of linearly independent vectors spanning this subspace
from the above list (we possibly remove some linearly dependent vectors); say u1, . . . ,up′ . The
unique solution to the coefficients ξ1, . . . , ξp′ ∈ R such that j = ξ1u1 + . . .+ ξp′up′ can be obtained
by using the left-inverse of the matrix with columns u1, . . . ,up′ (the left inverse exists because
the matrix is full-rank). Since the elements of the left-inverse matrix are rational functions of the
matrix elements, and vectors u1, . . . ,up′ consist of numbers in N, the coefficients ξ1, . . . , ξp′ are
rational. We can multiply all the coefficients by the least common multiple of their denominators
c yielding cj = m1u1 + . . . + mp′up′ where m1, . . . ,mp′ ∈ Z. Now consider a point a in L′m
defined as b + n1u1 + . . .+ np′up′ , where ni ∈ N. We choose a such that ni are large enough that
n′i , ni + mi ≥ 0. Since n′i ∈ N, we have that both a and a + cj = b + n′1u1 + . . . + n′p′up′ are in
L′m. This is a contradiction because L′m is the graph of a partial function and cannot contain two
different points that agree on their first k coordinates. Therefore j is not contained in the span of
u1, . . . ,up.

Consider again the real-vector subspace spanned by u1, . . . ,up. Again, let u1, . . . ,up′ be a subset
of linearly independent vectors spanning this subspace. Since j is not in it, the subspace must be at
most k dimensional. If it is strictly less than k dimensional, add enough vectors in Nk+1 to the basis

19

set for the spanned subspace to be exactly k-dimensional but not include j. Call this new set of k
linearly independent vectors w1, . . . ,wk, where wi = ui for i ∈ {1, . . . , p′}. Let v1, . . . ,vk ∈ Nk be
w1, . . . ,wk restricted to the first k coordinates. The fact that w1, . . . ,wk are linearly independent,
but j is not in the subspace spanned by them, implies that v1, . . . ,vk are linearly independent as
well. This can be seen as follows. If v1, . . . ,vk were not linearly independent, then we could write
vk = ξ1v1 + . . .+ ξk−1vk−1 for some ξi ∈ R. However, wk 6= w′k , ξ1w1 + . . .+ ξk−1wk−1. Since j is
proportional to w′k−wk, we obtain a contradiction. Therefore v1, . . . ,vk are linearly independent.

We now describe how to construct an affine function y(j) = f(x) for L′m from w1, . . . ,wk. Let
matrix V be the square matrix with v1, . . . ,vk as columns. Let b′ be b restricted to its first k
coordinates. We claim that y(j) = b(k+1)+(w1(k+1), . . . ,wk(k+1)) ·V−1 ·(x− b′). Below we’ll
show that this expression computes the correct value y(j). But first we show that it defines a partial
affine function f(x). Because v1, . . . ,vk are linearly independent, the inverse V−1 is well-defined.
We need to show f(x) = bj + 1

dj

∑k
i=1 ni,j(x(i)− ci) for integer ni,j and nonnegative integer bj , ci,

and dj , and that on the domain of f , x(i)−ci ≥ 0. The offset bj = b(k+1), which is a non-negative
integer because b is a vector of non-negative integers. Since the offset vector b′ is the same for each
output dimension, and it is likewise non-negative, we obtain the offset ci = b′(i). Further, since
V−1 consists of rational elements (because V consists of elements in N), we can define dj and ni,j
as needed. Finally, note that the least value of x(i) that could be in L′m is b′(i) = ci, and thus on
the domain of f , x(i)− ci ≥ 0.

Finally, we show that this expression computes the correct value y(j). Let (ξ1, . . . , ξk)
T ,

V−1 · (x − b′), which implies that x = b′ +
∑k

i=1 ξivi. If our value of y(j) is incorrect, then

∃n1, . . . , np ∈ N such that b+
∑p

i=1 niui and b+
∑k

i=1 ξiwi agree on the first k coordinates but not
on the k + 1st. Recall that the real-vector subspace spanned by w1, . . . ,wk includes the subspace
spanned by u1, . . . ,up but does not include j. But

∑p
i=1 niui −

∑k
i=1 ξiwi is proportional to j and

lies in the subspace spanned by w1, . . . ,wk. Therefore we obtain a contradiction, implying that
our value of y(j) is computed correctly.

Angluin, Aspnes, and Eisenstat combined the slow, deterministic predicate-deciding results of [3]
with a fast, error-prone simulation of a bounded-space Turing machine to show that semilinear
predicates can be computed without error in expected polylogarithmic time [2]. We show that
a similar technique implies that semilinear functions can be computed by CRNs without error in
expected polylogarithmic time in the kinetic model, combining the same Turing machine simulation
with our O(n log n) construction described in Lemma 4.3.

We in fact use the same construction of Angluin, Aspnes, and Eisenstat [2] in order to conduct
the fast, error-prone computation in our proof of Theorem 4.6. The next theorem formalizes the
properties of their construction that we require.

Theorem 4.5 ([2]). Let f : Nk → Nl be a function by a t(m)-time-bounded, s(m)-space-bounded
Turing machine, where m ≈ log n is the input length in binary, and let c ∈ N. Then there is a
CRC C that computes f correctly with probability at least 1 − n−c, and the expected time for C
to reach a count-stable configuration is O(t(m)5). Furthermore, the total molecular count never
exceeds O(2s(m)).

Semilinear functions on an m-bit input can be computed in time O(m) and space O(m) on
a Turing machine. Therefore the bounds on CRC expected time and molecular count stated in

20

Theorem 4.5 are O(log5 n) and O(n), respectively, when expressed in terms of the number of input
molecules n.

Although Angluin, Aspnes, and Eisenstat [2] exclusively use two-reactant, two-product reac-
tions, and not all of the properties stated in Theorem 4.5 are explicitly stated in [2], their construc-
tion can be easily modified to have the stated properties. Since that construction preserves the total
molecular count, they require some non-uniformity to supply enough “fuel” molecules F , based on
the space usage s(m) (which varies with the input size), so that the tape of the Turing machine can
be accurately represented throughout the computation. However, in our model, molecules may be
produced. We compute semilinear functions, where as observed above has total molecular count
bounded by O(n), so these fuels may be supplied by letting the first reaction of the input Xi be
Xi → X ′i + cF , where X ′i is the input interacting with the rest of the CRC, and c ∈ N is chosen
sufficiently large.

The following theorem is the main theorem of this section.

Theorem 4.6. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably computes f , and
the expected time for C to reach a count-stable configuration is O(log5 n).

Proof. Our CRC will use the counts of Yj for each output dimension y(j) as the global output, and
begins by running in parallel:

1. A fast, error-prone CRC F for y,b, c = f(x), as in Theorem 4.5. For any constant c > 0,
we may design F so that it is correct and finishes in time O(log5 n) with probability at least
1− n−c, while reaching total molecular count never higher than O(n). We modify F so that
upon halting, it copies an “internal” output species Ŷj to Yj (the global output), Bj , and Cj
through reactions H + Ŷj → Yj + Bj + Cj (in asymptotically negligible time). Here, H is
some molecule that is guaranteed with high probability not to be present until F has halted,
and to be present in large (Ω(n)) count so that the conversion is fast. In this way we are
guaranteed that the amount of Yj produced by C is the same as the amounts of Bj and Cj
no matter whether its computation is correct or not.

2. A slow, deterministic CRC S for y′ = f(x). It is constructed as in Lemma 4.3, running in
expected O(n log n) time.

3. A slow, deterministic CRD D for the semilinear predicate “b = f(x)?”. It is constructed as
in Theorem 2.1 and runs in expected O(n) time.

Following Angluin, Aspnes, and Eisenstat [2], we construct a “timed trigger” as follows, using a
leader molecule, a marker molecule, and n = ‖x‖ interfering molecules. These interfering molecules
can simply be the input species and some of their “descendants” such that their count is held
constant. This can be done for input species Xi by a reaction such as Xi → I + X ′i, where Xi

is (one of) the original input species, I is the interfering molecule, and X ′i is the input species
interacting with the remainder of the CRC. The leader will then interact with both Xi and I as
interfering molecules.

The leader fires the trigger if it encounters the marker molecule d times without any intervening
reactions with the interfering molecules. This happens rarely enough that with high probability
the trigger fires after F and D finishes (time analysis is presented below). When the trigger fires,
it checks if D is outputting a “no” (e.g. has a molecule of L0), and if so, produces a molecule of

21

Pfix. This indicates that the output of the fast CRC F is not to be trusted, and the system should
switch from the possible erroneous result of F to the sure-to-be correct result of S.

Once a Pfix is produced, the system converts the output molecules Y ′j of the slow, deterministic
CRC S to the global output Yj , and kills enough of the global output molecules to remove the ones
produced by the fast, error-prone CRC:

Pfix + Y ′j → Pfix + Yj (4.6)

Pfix + Cj → Pfix + Y j (4.7)

Yj + Y j → ∅. (4.8)

Finally, Pfix triggers a process consuming all species of F other than Yj , Bj , and Cj in expected
O(log n) time so that afterward, F cannot produce any output molecules. More formally, let QF
be the set of all species used by F . For all X ∈ QF \

⋃l
j=1{Yj , Bj , Cj}, add the reactions

Pfix +X → Pfix +K (4.9)

K +X → K +K, (4.10)

where K 6∈ QF is a unique species.
First, observe that the output will always eventually converge to the right answer, no matter

what happens: If Pfix is eventually produced, then the output will eventually be exactly that given
by S which is guaranteed to converge correctly. If Pfix is never produced, then the fast, error-prone
CRC must produce the correct amount of Yj — otherwise, D will detect a problem.

For the expected time analysis, let us first analyze the trigger. The probability that the trigger
leader will fire on any particular reaction number is at most n−d. In time n2, the expected number
of leader reactions is O(n2). Thus, the expected number of firings of the trigger in n2 time is
n−d+2. This implies that the probability that the trigger fires before n2 time is at most n−d+2. The
expected time for the trigger to fire is O(nd).

We now consider the contribution to the total expected time from 3 cases:

1. F is correct, and the trigger fires after time n2. There are two subcases: (a) F finishes before
the trigger fires. Conditional on this, the whole system converges to the correct answer, never
to change it again, in expected time O(log5 n). This subcase contributes at most O(log5 n)
to the total expected time. (b) F finishes after the trigger fires. In this case, we may produce
a Pfix molecule and have to rely on the slow CRC S. The probability of this case happening
is at most n−c. Conditional on this case, the expected time for the trigger to fire is still
O(nd). The whole system converges to the correct answer in expected time O(nd), because
everything else is asymptotically negligible. Thus the contribution of this subcase to the total
expectation is at most O(n−c · nd) = O(n−c+d).

2. F is correct, but the trigger fires before n2 time. In this case, we may produce a Pfix molecule
and have to rely on the slow CRC S for the output. The probability of this case occurring is
at most n−d+2. Conditional on this case occurring, the expected time for the whole system
to converge to the correct answer can be bounded by O(n2). Thus the contribution of this
subcase to the total expectation is at most O(n−d+2 · n2) = O(n−d+4).

22

3. F fails. In this case we’ll have to rely on the slow CRC S for the output again. Since this
occurs with probability at most n−c, and the conditional expected time for the whole system
to converge to the correct answer can be bounded by O(nd) again, the contribution of this
subcase to the total expectation is at most O(n−c · nd) = O(n−c+d).

So the total expected time is bounded by O(log5 n) + O(n−c+d) + O(n−d+4) + O(n−c+d) =
O(log5 n) for d > 4, c > d.

5 Conclusion

We defined deterministic computation of CRNs corresponding to the intuitive notion that certain
systems are guaranteed to converge to the correct answer no matter what order the reactions
happen to occur in. We showed that this kind of computation corresponds exactly to the class
of functions with semilinear graphs. We further showed that all functions in this class can be
computed efficiently.

A work on chemical computation can stumble by attempting to shoehorn an ill-fitting compu-
tational paradigm into chemistry. While our systematic construction may seem complex, we are
inspired by examples like those shown in Fig. 1 that appear to be good fits to the computational
substrate. While delineation of computation that is “natural” for a chemical system is necessarily
imprecise and speculative, it is examples such as these that makes us satisfied that we are studying
a form of natural chemical computation.

Our systematic construction (unlike the examples in Fig. 1) relies on a carefully chosen initial
context — the “extra” molecules that are necessary for the computation to proceed. Some of these
species need to be present in a single copy (“leader”). We left unanswered whether it may be
possible to dispense with this level of control of the chemical environment. We suspect this gener-
alization would be non-trivial because the problem of generating a prescribed molecular count of a
species from an uncontrolled context is computationally challenging (see e.g. the “leader election”
problem [4]).

In contrast to the CRN model discussed in this paper, which is appropriate for small chemical
systems in which every single molecule matters, classical “Avogadro-scale” chemistry is modeled
using real-valued concentrations that evolve according to mass-action ODEs. Moreover, despite
relatively small molecular counts, many biological chemical systems are well-modeled by mass-
action ODEs. While the scaling of stochastic CRNs to mass-action systems is understood from
a dynamical systems perspective [14], little work has been done comparing their computational
abilities. There are hints that single/few-molecule CRNs perform a fundamentally different kind
of computation. For example, recent theoretical work has investigated whether CRNs can tolerate
multiple copies of the network running in parallel finding that they can lose their computational
abilities [8, 9].

Does our notion of deterministic computation have an equivalent in mass-action systems? Con-
sider what happens when the CRN shown in Fig. 1(c) is considered as a mass-action reaction
network, with (non-negative) real-valued inputs [X1]0, [X2]0 and output [Y]∞ (where we use the
standard mass-action convention: [·]0 for the initial concentration, and [·]∞ for the equilibrium con-
centration). In the limit t→∞, the mass-action system will converge to the correct output amount
of [Y]∞ = max([X1]0, [X2]0), and moreover, output amount is independent of what (non-zero) rate
constants are assigned to the reactions. Thus one is tempted to connect the notion of deterministic

23

computation studied here and the property of robustness to parameters of a mass-action system.
Parameter robustness is a recurring motif in biologically relevant reaction networks due to much
evidence that biological systems tend to be robust to parameters [5].

However, the connection is not simple. Consider the CRN shown in Fig. 1(a). In the mass-
action limit it loses the ability of computing the floor function, but still computes [Y]∞ = [X]0/2
for real valued [X]0, [Y]∞, independent of reaction rates. More interestingly, the CRN shown in
Fig. 1(b), when considered as mass-action reaction network, could converge to a different amount
of Y as t →∞, depending on the rate constants of the last two reactions and the input amounts.
Specifically, let k1, k2, and k3 be the rate constants of the three reactions, respectively. If [X1]0 >
[X2]0 and k2 ≤ k3[X2]0/([X1]0 − [X2]0), then Y will go to k2/k3([X1]0 − [X2]0) rather than [X2]0
as in Fig. 1(b). In all other cases, the output will correctly match the function in the figure.
(This can be verified by determining the steady states of the system and then determining the
stability of each one as a function of the initial concentrations and rate constants.) The cause of
the disagreement between stochastic and mass-action instances of this CRN can be identified with
the “type I” deviant effect demarcated by Samoilov and Arkin [17].

Acknowledgements. We thank Damien Woods and Niranjan Srinivas for many useful discus-
sions, Monir Hajiaghayi for pointing out a problem in an earlier version of this paper, and anony-
mous reviewers for helpful suggestions.

References

[1] Dana Angluin, James Aspnes, Zo e Diamadi, Michael Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18:235–253, 2006.
10.1007/s00446-005-0138-3.

[2] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, pages 61–75, 2006.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semi-
linear. In PODC, pages 292–299, 2006.

[4] James Aspnes and Eric Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98–117, 2007.

[5] N. Barkal and S. Leibler. Robustness in simple biochemical networks. Nature, 387(6636):913–
917, 1997.

[6] L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes approximate majority. Sci-
entific Reports, 2, 2012.

[7] Luca Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–428, 2011.

[8] A. Condon, B. Kirkpatrick, and J. Maňuch. Reachability bounds for chemical reaction networks
and strand displacement systems. 7433:43–57, 2012.

24

[9] Anne Condon, Alan Hu, Ján Manuch, and Chris Thachuk. Less haste, less waste: On recycling
and its limits in strand displacement systems. Journal of the Royal Society Interface, 2:512–
521, 2012.

[10] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and
Erik Winfree, editors, Algorithmic Bioprocesses, pages 543–584. Springer Berlin Heidelberg,
2009.

[11] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[12] A. Hjelmfelt, E.D. Weinberger, and J. Ross. Chemical implementation of neural networks and
turing machines. Proceedings of the National Academy of Sciences, 88(24):10983–10987, 1991.

[13] Hua Jiang, Marc Riedel, and Keshab Parhi. Digital signal processing with molecular reactions.
IEEE Design and Test of Computers, 2012. to appear.

[14] T.G. Kurtz. The relationship between stochastic and deterministic models for chemical reac-
tions. The Journal of Chemical Physics, 57(7):2976–2978, 1972.

[15] Marcelo O. Magnasco. Chemical kinetics is Turing universal. Physical Review Letters,
78(6):1190–1193, 1997.

[16] Mojżesz Presburger. Ub̈er die vollständigkeit eines gewissen systems der arithmetik ganzer
zahlen. In welchem die Addition als einzige Operation hervortritt. Compte Rendus du I. Con-
grks des Mathematiciens des pays Slavs, Warsaw, pages 92–101, 1930.

[17] M.S. Samoilov and A.P. Arkin. Deviant effects in molecular reaction pathways. Nature biotech-
nology, 24(10):1235–1240, 2006.

[18] D. Soloveichik. Robust stochastic chemical reaction networks and bounded tau-leaping. Journal
of Computational Biology, 16(3):501–522, 2009.

[19] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615–633, 2008.

[20] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393, 2010.

[21] Gianluigi Zavattaro and Luca Cardelli. Termination problems in chemical kinetics. CONCUR
2008-Concurrency Theory, pages 477–491, 2008.

25

	Introduction
	Preliminaries
	Chemical reaction networks
	Stable decidability of predicates
	Stable computation of functions
	Fair execution sequences
	Kinetic model

	Exactly the semilinear functions can be deterministically computed
	Semilinear functions can be quickly computed
	Conclusion

