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Abstract—An example of a specific molecular bond is the
affinity of the DNA base A for T, but not for C, G, or another
A. This contrasts nonspecific bonds, such as the affinity of
any positive charge for any negative charge (like-unlike), or of
nonpolar material for itself when in aqueous solution (like-like).

Recent experimental breakthroughs in DNA nanotechnol-
ogy [19], [34] demonstrate that a particular nonspecific like-
like bond (“blunt-end DNA stacking” that occurs between the
ends of any pair of DNA double-helices) can be used to create
specific “macrobonds” by careful geometric arrangement of
many nonspecific blunt ends, motivating the need for sets of
macrobonds that are orthogonal: two macrobonds not intended to
bind have relatively low binding strength, even when misaligned.

To address this need, we introduce geometric orthogonal codes
that abstractly model the engineered DNA macrobonds as two-
dimensional binary codewords. While motivated by completely
different applications, geometric orthogonal codes share similar
features to the optical orthogonal codes studied by Chung, Salehi,
and Wei [10]. The main technical difference is the importance of
2D geometry in defining codeword orthogonality.

I. INTRODUCTION

A. Structural DNA nanotechnology
DNA nanotechnology began in the 1980s when Seeman [29]

showed that artificially synthesized DNA strands could be
designed to automatically self-assemble nanoscale structures,
rationally designed through the choice of DNA sequences. In
the past 20 years, the field has witnessed a dramatic surge in
the development of basic science, in vitro applications, such
as chemical oscillators and molecular walkers, and in vivo
applications, such as drug delivery, cellular RNA sensing, and
genetically encoded structures [9].

A technological pillar of the field is DNA origami, de-
veloped by Rothemund [26], a simple, fast, inexpensive,
and reliable method for creating artificial 2D and 3D DNA
structures, with a control resolution of a few nanometers. DNA
origami requires a single long scaffold strand of DNA; the
most commonly used is the 7249-nucleotide single-stranded
genome of the bacteriophage virus M13mp18, widely and
cheaply available from many biotech companies. The scaffold
is mixed with a few hundred shorter (≈ 32nt) synthesized
DNA strands called staples, each of which is designed to bind
(through Watson-Crick complementarity) to 2-3 regions of the
scaffold. Via thermal annealing, the staples fold the scaffold
strand into a shape dictated by the choice of staple DNA
sequences, hence the term origami. The process is illustrated
in Figure 1(a), with the results shown in Figure 1(b).
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Although the Watson-Crick pairing of bases between two
single strands of DNA is very specific, DNA is known to
undergo other, less specific interactions. One well-studied
interaction is called a stacking bond, formed when any pair of
terminated double helices — known as blunt ends — face each
other, as shown in Figure 1(c). Since two edges of a standard
DNA origami rectangle consist entirely of blunt ends, DNA
origami rectangles are known to bind along their edges to
form long polymers of many origamis, despite the fact that
no hybridization between single strands occurs between them.
One way to avoid stacking between origamis is to leave out
staple strands along the edge, so that rather than blunt ends,
there are single-stranded loops of the scaffold strand [26].

Woo and Rothemund [34] turned the bug of unintended
origami stacking into a feature with the following idea: leave
out some of the staples along the edge, but keep others; see
Figure 1(d). Although individual blunt ends bind nonspecif-
ically to others, the only way for all blunt ends along an
edge to bind is with matching blunt ends on another origami
in the same relative positions. Thus, geometric placement of
blunt ends makes the entire side of an origami into a specific
“macrobond”. Figure 1(d) shows how this approach enforces
that a set of origamis bind to form only intended arrangements.

The idea extends from 2D origami rectangles with 1D edges,
to 3D origami boxes with 2D rectangular faces as demon-
strated by Gerling, Wagenbauer, Neuner, and Dietz [19].1 They
rationally design polymers of many origamis with prescribed
sizes and shapes such as the 4-mer ABCD shown in Fig. 1(e).

The preceding description of macrobonds is idealized: other
mechanisms may permit unintended pairs of macrobonds to
bind spuriously. Figure 1(f) shows two macrobonds aligning
sufficiently many blunt ends to attach stably via two such
mechanisms: flexibility of DNA helices and misalignment of
macrobonds. This paper is an attempt to attack the latter
problem with coding theory.

B. Definitions and main result

Although inspired by work in DNA nanotechnology, the
design of specific macrobonds formed by geometric arrange-
ments of nonspecific bonds is fundamental and likely to
be part of the future of nanotechnology, even if based on
substrates other than DNA. We abstract away several details
of DNA origami in mathematically formulating the problem.
This subsection, I-B, simply states the formal definitions and
main result, while subsection I-C discusses the relationship
between the definitions and the experimental motivation.

1The way stacking bonds are used is slightly different. Rather than helices
orthogonal to the origami face, they are parallel. As seen in Figure 1(e), pairs
of whole helices protrude and a complementary face has a two-helix “gap”
into which these helices fit to form four total stacking bonds.



scaffold DNA strand folded DNA origami

anneal 90C 
to 20C

100 nm

staple DNA strands
(a) (b)

stacking bonds: nonspecific attraction

scale bars:
100nm

origamis 
polymerize due to 
stacking bonds

(d) staple left out 
to “deactivate” 
patch

(f)(e)

3D origamis 
binding by 
2D faces

misalignment leads to 
erroneous binding

atomic force 
microscope 
images

random 
relative 
orientation

same 
orientations

DNA origami 

negative stain TEM

20
nm

(c)

Fig. 1. Illustration of DNA origami and geometrically programmable stacking bonds. (a) DNA origami illustration (source:
http://openwetware.org/wiki/Biomod/2014/Design). (b) Atomic force microscope images of nanoscale shapes assembled by DNA
origami technique (source: [26]). (c) Stacking bonds are nonspecific attraction occurring between the ends of two DNA helices, such as those
that appear on the edges of a DNA origami causing origamis to form long chains (polymerize) in solution. Markers on the origami surface (an
asymmetrical L shape) reveal that the orientation of origamis in a polymer is random; i.e., some are “upside down” relative to others (source:
http://openwetware.org/wiki/Biomod/2014/Kansai/Experiment and [34]). (d) By removing certain stacking bonds at specific locations to
create a binary pattern on the edge of a DNA origami, the whole edge becomes a specific “macrobond” that binds most strongly to another edge with the same
pattern; in this case, the left side of an origami binds favorably to the right side, and less favorably to another left side (source: [34]). (e) The technique also
works to bind 3D origami using 2D patterns of stacking bonds on their faces, using stacking bonds in a slightly different way than in part (d). The placement
of the nonspecific bonds gives the entire face a higher affinity for another face with a complementary pattern. Gray and black triangular arrows indicate
bumps placed on origamis to allow verification in TEM images that the four monomers are in fact A/B/C/D bound as intended. (source: [19], Reprinted
with permission from AAAS). (f) One source of error is the matching of many stacking bonds between two misaligned faces. Note that this image shows a
second source of error: the “bending” of one DNA helix to bind to another (such errors are not modeled in this paper). (source: [34]). openwetware images
licensed under Creative Commons Attribution-ShareAlike 3.0 Unported: http://www.openwetware.org/wiki/OpenWetWare:Copyright
Images from [34], http://www.nature.com/nchem/journal/v3/n8/abs/nchem.1070.html, and [26],
http://www.nature.com/nature/journal/v440/n7082/abs/nature04586.html, Reprinted with permission from NPG)

Let [n] = {0, 1, . . . , n − 1}. We model each 2D face of a
monomer (e.g., a DNA origami) as a discrete n×n square [n]2,
with n representing the placement resolution of nonspecific
bonds, called patches. A macrobond is a subset M ⊆ [n]2.
Given a vector ~v ∈ Z2, M+~v = { ~m+ ~v | ~m ∈M } denotes
M translated by ~v.2 A parameter w ∈ {2, . . . , n2} denotes the
macrobond strength (a.k.a., codeword weight). A parameter
λ ∈ {1, . . . , w − 1} denotes the mismatch strength limit. An
(n,w, λ)-geometric orthogonal code is a set of macrobonds
M = {M1, . . . ,M`}, where each Mi ⊆ [n]2 and |Mi| = w,
so that for all 1 ≤ i < j ≤ `, two conditions hold:

low cross-correlation: ∀~v ∈ Z2, |Mi ∩ (Mj + ~v)| ≤ λ.
low auto-correlation: ∀~v ∈ Z2 \ {~0}, |Mi ∩ (Mi+~v)| ≤ λ.
Figure 2(a) shows an example of two macrobonds with

cross-correlation 2 and a translation that makes them overlap
on 2 points. Figure 2(b) shows two macrobonds with cross-

2The translation operation M + ~v is normal translation in Z2; there is no
“wrapping” of points that are shifted beyond the edge of a macrobond around
to the other edge, as in optical orthogonal codes (discussed in Section I-D).
Thus, although M ⊆ [n]2, potentially (M + ~v) 6⊆ [n]2.

correlation 6. Figure (c) shows an example of a (7, 7, 2)-
geometric orthogonal code. (This is in fact the code produced
by the algorithm of Theorem II.1 with n = w = 7 and λ = 2.)

Informally, an (n,w, λ)-geometric orthogonal code is a set
of macrobonds with n2 available space for potential binding
sites, total binding strength per macrobond of w, and spurious
binding strength (i.e., the strength of mismatched/misaligned
macrobonds) limited to at most λ. Note that a lower value of
λ in the above definition corresponds to “more orthogonality”:
macrobonds with maximum overlap λ are less likely to bind
spuriously than those with overlap > λ. As with any code,
the goal is to maximize the number of codewords |M|.
The main result of this paper, Theorem II.1, is that for all
n, λ ∈ Z+ with n a prime and 2 ≤ λ < n, there exists an
efficiently computable (n, n, λ)-geometric orthogonal codeM
with |M| = nλ−1 − nλ−2. (Open question (2) in Section III
discusses the possibility of (n,w, λ) codes for n 6= w.)

Examine the physical implementation of patches shown
in Figure 1(e), and observe that a “bump” patch on one
macrobond cannot insert into a “hole” patch on another
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Fig. 2. (a) Two macrobonds with cross-correlation = 2: they have translations
overlapping on up to 2 points, but no more. (b) Two macrobonds with cross-
correlation = 6. (c) A (7, 7, 2)-geometric orthogonal code.

macrobond if they are rotated relative to each other, unless
the rotation is by 180◦.3 (Otherwise the blunt ends will not be
flush.) Note that rotating a macrobond by 180◦ is equivalent
to reflecting along each axis once. To model this scenario, we
define an (n,w, λ)-geometric 180-rotating orthogonal code
to be an (n,w, λ)-geometric orthogonal code that, defining
rot180(Mi) = { (n− 1− x, n− 1− y) | (x, y) ∈Mi } ,
also obeys |rot180(Mi)∩ (Mj+~v)| ≤ λ for all 1 ≤ i ≤ j ≤ `
and all ~v ∈ Z2. Theorem II.2 shows codes that obey this extra
constraint as well.

C. Relationship between definitions and experimental reality

The most typical purpose of a code is to enable transmission
of data robustly to error, by ensuring each codeword is a large

3There are physical reasons to dismiss this possibility, since the energy
of a stacking bond appears to weaken if the relative angles of the two DNA
phosphate backbones are rotated 180◦ relative to each other: see the image on
the right of Figure 1(c), where only two of four possible orientations appear.
The other two would put the L pattern underneath the origami; presumably
they are absent due to weaker stacking energy of rotated helices. Nonetheless,
if one imagines a mixture of different angles being used in different patches,
rather than only one angle as in [34], then it may be reasonable to assume a
worst-case scenario in which a 180◦ rotation brings patches into contact such
that they bind with the same strength as they would without rotation.

“distance” from all others. However, the codes we define do
not have the purpose of transmitting information. Rather, the
purpose of our codes is to enforce orthogonality of binding:
ensuring large “distance” between two macrobonds implies
a small amount of binding strength between them, which is
desirable when specificity of binding is the goal.

One may ask, what is the point of designing such specific
macrobonds? One of the unifying goals of structural DNA
nanotechnology, since its inception by Seeman in 1982 [29],
has been to build structures, specifically to build nanoscale
structures out of DNA. The vast majority of experimental work
in this area is bottom-up rather than top-down. Specifically,
one builds parts of a structure (the parts being DNA strands,
created using standard chemical synthesis approaches [2]),
such that by mixing these parts together, they autonomously
self-assemble into a larger structure.

In a top-down approach, there is less need for orthogonal
bonds. For example, a carpenter building a house from wood
boards (monomers) and nails (bonds) can use the same type
of nail to hold together all pairs of boards, by making top-
down choices to co-locate a pair of boards before driving the
nail through. On the other hand, bottom-up self-assembly is
akin to throwing all the boards and nails together into the
construction site and hoping they stick together as intended
to form a house. The nails must be designed to stick only
to their intended boards; orthogonality means that they have
low probability to erroneously hold together other unintended
boards. If more orthogonal bonds are available, then larger and
more complex structures can be made.

The specific Watson-Crick base-pairing of DNA is an ex-
tremely useful tool for engineering orthogonality of bonds.
However, DNA sticky ends as the sole design tool has limits;
see [34] for a more detailed discussion of the relative advan-
tages and disadvantages of DNA sticky end design compared
to geometric bond design of the sort we study here.

A simplifying assumption of our definition of (n,w, λ)
geometric orthogonal codes is that each macrobond has the
same number of patches w. If each patch has the same binding
strength, so that the strength with which a macrobond binds
is proportional to w, this implicitly assumes that one would
want all macrobonds in a system to be the same strength.

This may not be the case in all circumstances. For example,
certain work on algorithmic self-assembly [25], [27], [32] (for
background and surveys of the field, see [13], [24], [33])
requires that some “strong” bonds are twice as strong as
other “weak” bonds in order for the desired growth order
of molecules to be the most kinetically favorable one. It is
possible to set certain experimental conditions (e.g., temper-
ature, salinity, concentrations) to be such that a single weak
bond is unfavorable and detaches relatively quickly, yet two
cooperating weak bonds have the strength of a single strong
bond and suffice to attach a molecule stably to a complex of
other molecules. Open Question (10) in Section III discusses
this idea in more detail.

Finally, we note one important distinction between the im-
plementation of patches in Figure 1(d) versus 1(e). Figure 1(d)
uses “like-like” binding: an active patch on the edge of one
origami resembles the active patch to which it is intended to



bind on the edge of another origami. In contrast, Figure 1(e)
uses “like-unlike” (a.k.a. complementary) binding: a patch
implemented as a “bump” on one face of an origami is
intended to bind to a “dent” on the face of another origami.
(Also, bumps on two faces of the first type could align some
blunt ends, but this is a source of error not modeled in this
paper.) In modeling like-like binding, it would make sense
to consider a macrobond reflecting along the horizontal or
vertical axis and coming into contact with another macrobond
that has not been reflected (including an unreflected copy of
itself). Since we do not consider this scenario, our definition
implicitly assumes like-unlike binding. Open Question (11)
asks for codes that account for the other scenario.

D. Related work

The most directly related theoretical work is the study of
binary optical orthogonal codes defined by Chung, Salehi,
and Wei [10]. These codes contain 1D binary codewords and
attempt to minimize the number of overlapping 1’s (analogous
to our nonspecific patches) between codewords; overlapping
0’s (analogous to neutral non-binding sites) are not penal-
ized. Also, these codes consider all possible translations of
codewords; a codeword requires orthogonality not only to
translations of other codewords (cross-correlation) but also to
nonzero translations of itself (auto-correlation).

The major difference between optical orthogonal codes
and our work is the geometric nature of our codes. Each
codeword represents a 2D face of a 3D molecular structure, so
translations in both x and y coordinates must be considered.
They also use different parameters to bound auto-correlation
and cross-correlation, but for the setting we are modeling,
these both correspond to spurious molecular bonds, so it makes
sense to use the same threshold for each.

Another difference with our setting is that optical orthogonal
codes are more stringent in defining orthogonality under
translation, since they use a different definition of translation
that allows for more potential overlaps. In [10], translations
are assumed to be modulo the codeword size, whereas in our
setting such “wrapping” does not make sense: a molecular
structure α moving off the end of another structure β does not
appear on the opposite side of β, hence could not contribute
to the binding strength. See Figure 3(b).

Despite these differences, one could imagine applying the
optical orthogonal codes of [10] directly to our problem
setting. Indeed, every (n2, w, λ)-optical orthogonal code is in
fact an (n,w, λ)-geometric orthogonal code, by interpreting
each 1D codeword as the concatenation of the n rows of a 2D
codeword. Figure 3 shows how this interpretation works, and
why the two types of codes are not equivalent. Specifically, the
constraints of 1D optical orthogonal codes are stronger than
what is needed for 2D geometric orthogonal codes, partly due
to the “wrapping” in the definition of codeword translation in
1D optical orthogonal codes.

Table I compares the (n, n, λ)-geometric orthogonal code
sizes of our main construction to the (n2, n, λ)-optical orthog-
onal code sizes of the best construction (Theorem 2) of [10],
showing that we achieve larger code sizes in most tested cases.
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Fig. 3. (a) Each 1D codeword of an optical orthogonal codeword of length
n2 can be interpreted as a 2D macrobond (a codeword of a geometric
orthogonal code) in a natural way by interpreting blocks of length n as
rows of the macrobond. (b) Each translation of a 1D codeword by k ∈ Z+

can be interpreted as a translation of the equivalent 2D macrobond by
(x, y) = (k mod n, bk/nc). An example 1D translation by +7 is shown in
blue, which corresponds to translating the 2D codeword by (+3,−1). Each
overlap between the original (orange) and the translated (blue) 2D macrobonds
corresponds to an overlap between the original and translated 1D codewords.
(See overlaps circled in green.) However, the converse does not hold: an
overlap in the 1D codewords is not necessarily an overlap between the 2D
codewords. (See red circles.) Also, in an optical orthogonal code, translations
are “circular”: each patch that moves off the end of the codeword wraps back
to the beginning, resulting in further potential overlaps in the 1D case that are
not counted in the 2D case. (See blue arrow.) Thus, each (n2, w, λ)-optical
orthogonal code, interpreting each codeword as a 2D macrobond as in (a), is
a (n,w, λ)-geometric orthogonal code, but the converse does not hold.

There has been subsequent work on optical orthogonal codes.
However, much of it is for the special case of λ = 1 and/or
w = 4 [6], [16], [18], [35], [12, Section V.9] or other special
cases for single values of parameters [4], [5], [7], [11], [31].
We do note that for the 1D macrobonds studied by Woo and
Rothemund [34], 1D optical orthogonal codes are a more
appropriate model than the 2D codes that we study in this
paper. However, observe that the “circular translation” in the
model of 1D optical orthogonal codes is not applicable to 1D
macrobonds. Thus, there may be better 1D codes that take
advantage of the fact that patches in a macrobond, translated
off the end of a second macrobond, cannot possible overlap
patches in the latter macrobond.

2D optical orthogonal codes have been studied [8], [22],
[30]. The 2D nature of these codes reflects the fact that
two different variables (e.g., time and wavelength) determine
where 1’s and 0’s appear in the codeword. However, these
techniques do not apply directly to our problem, since they
consider only translation in one dimension (time) while we
must consider simultaneous translations along both dimen-
sions. In other words, the distinction of having two identical,
spatial dimensions is important.

Huntley, Murugan, and Brenner [21] have also studied
specific engineered molecular bonds from an information
theory perspective. They study a different model in which
translation is disallowed. They study “color” coding: extending
the patches to allow some specificity, so that only equal-color
patches can bind; see Section III for a discussion of this issue.



They compare color coding with “shape” coding: allowing
the shape of a 1D edge to be nonflat, thus providing steric
hindrance as an additional mechanism to prevent unintended
binds (also discussed as an open question in Section III). They
run simulations to show that randomly selected shape codes
have greater size than randomly selected color codes.

Since the beginning of DNA nanotechnology [29] and
DNA computing [1], there has been work on designing codes
for DNA-based computers [3], [15], [17], [23]. Often these
have similar goals to those of the present paper: designing
DNA sequence pairs to bind to each other, while minimizing
unintended binding among all other pairs. The main difference
with our work is not goals, but analysis and techniques.

The biophysics governing the binding of DNA sequences is
quite specific to nucleic acids. Unlike in our model, there is
a specificity of binding due to Watson-Crick base pairing: A
binds to T and C binds to G. Another major difference is that
nucleic acid sequences are “flexible” 1D sequences embedded
in 3D: they can bend, knot, and otherwise contort to potentially
allow many pairs of nucleotide bonds to form that are not
necessarily the same distance apart on the 1D sequence. On
the other hand, in our more “rigid” model, if two patches on a
macrobond are separated by a vector ~v, then they can bind to
another pair of patches on another macrobond only if the latter
pair are also separated by exactly the vector ~v. In summary,
although the ultimate goal is similar (the design of specific
molecular bonds with minimal crosstalk), the assumptions and
techniques are quite different.

II. RESULTS

A. Lower bounds

Let Fn denote the finite field of order n, where n is
prime, which can be interpreted as normal integer addition
and multiplication modulo n, with field elements Fn = [n].

The following theorem shows how to construct geometric
orthogonal codes without the 180-rotation constraint.

Theorem II.1. For each odd prime n ∈ N and λ ∈
{2, . . . , n−1}, there is an (n, n, λ)-geometric orthogonal code
of size nλ−1 − nλ−2.

Proof. Construction. Each macrobond is defined by a degree-
λ polynomial p(x) = aλx

λ+aλ−1x
λ−1+ · · ·+a1x+a0 over

Fn, where the coefficients ai ∈ Fn for i ∈ {0, . . . , λ} obey
aλ−1 = a0 = 0, and aλ 6= 0. For a polynomial p, define the
corresponding macrobond Mp = { (x, p(x)) | x ∈ Fn }, i.e.,
a patch in column x on row p(x). There are n − 1 choices
for aλ and nλ−2 choices for aλ−2, aλ−3, . . . , a1, so there are
(n− 1)nλ−2 = nλ−1 − nλ−2 such polynomials.
Correctness. We now show that this code has auto-correlation
and cross-correlation at most λ. Translation by a vector
~v = (δx, δy) ∈ Z2 with |δx| or |δy| ≥ n implies correlation
is 0. So assume |δx|, |δy| < n. For mathematical convenience
we equivalently consider translating by (−δx, δy). Suppose
there exist macrobonds Mp and Mq (possibly equal) with
p(x) =

∑λ
i=0 aix

i and q(x) =
∑λ
i=0 bix

i that intersect on
more than λ patches under translation (−δx, δy). We will prove
that ai = bi for all i ∈ {0, . . . , λ} (i.e., the two macrobonds

are the same) and that δx = δy = 0 (i.e., the translation is ~0),
simultaneously establishing that the code has auto-correlation
and cross-correlation at most λ.

Translating the polynomial p by (−δx, δy) results in the
polynomial p(x+δx)+δy . If this intersects with the polynomial
q(x) on more than λ points, then by the fundamental theorem
of algebra, p(x + δx) + δy is identically q(x), i.e., they have
the same coefficients. Using the binomial theorem,

p(x+ δx) + δy = δy +

λ∑
i=0

ai(x+ δx)
i

= δy +

λ∑
i=0

ai

i∑
k=0

(
i

k

)
δi−kx xk = δy +

λ∑
k=0

xk
λ∑
i=k

ai

(
i

k

)
δi−kx

Thus, if p(x+δx)+δy and q(x) have the same coefficients, then
the q(x) coefficient of the term xk is bk =

∑λ
i=k ai

(
i
k

)
δi−kx .

In particular bλ−1 =
∑λ
i=λ−1 ai

(
i

λ−1
)
δ
i−(λ−1)
x =

aλ−1
(
λ−1
λ−1
)
δ
λ−1−(λ−1)
x + aλ

(
λ
λ−1
)
δ
λ−(λ−1)
x = aλ−1 + aλλδx.

Since aλ−1 = bλ−1 = 0, this implies aλλδx = 0. Since
λ, aλ 6= 0, this implies δx = 0.

The constant term of p(x+ δx)+ δy = p(x)+ δy is a0+ δy ,
and the constant term of q(x) is b0. Since the coefficients of
p and q are equal, a0 + δy = b0, but since a0 = b0 = 0, this
implies δy = 0 also.

Note that the macrobonds in the construction of Theo-
rem II.1 are “column-balanced”: there is exactly one patch
per column of the macrobond. This is due to our proof
technique and is not itself a goal of the macrobonds. Such
column-balanced macrobonds are a bit easier to reason about
theoretically, so they come up again in Theorem II.6 when we
prove bounds on the size of random codes. However, we know
of no intrinsic benefit to the column-balanced property.

We now construct a geometric 180-rotating orthogonal
code, using similar techniques to the previous proof.

Theorem II.2. For each odd prime n ∈ N and λ ∈
{2, . . . , n − 1}, there is an (n, n, λ)-geometric 180-rotating
orthogonal code of size (nλ−1 − nλ−2 − ndλ/2e)/2.

Proof. The construction is a modification of Theorem II.1
obtained by taking a subset of the code that avoids high cor-
relation in the new orientation. Assume that there exist poly-
nomials p and q and a translation vector (δx, δy) such that Mq

has correlation > λ with rot180(Mp)+(δx, δy). By definition,
rot180(Mp) = { (n− 1− x, n− 1− p(x)) | x ∈ Fn } =
{ (x, n− 1− p(n− 1− x)) | x ∈ Fn }, so by the funda-
mental theorem of algebra, n−1−p(n−1−x+δx)+δy = q(x)
for all x ∈ Fn.

The xλ−1 term of q(x) is 0 by construction. Expanding the
two leading terms of n− 1− p(n− 1−x+ δx)+ δy with this
constraint implies that aλλ(n−1+δx)(−1)λ = 0. Then since
λ, aλ, (−1)λ 6= 0, it must be that n− 1 + δx = 0. So δx = 1
and n− 1− p(n− 1− x+ δx) + δy = n− 1− p(−x) + δy .

Expanding all terms of n− 1− p(−x) + δy and q(x) leads
to n − 1 + δy = n − 1 + a0 + δy = b0 = 0. So δy = 1
and thus n− 1− p(n− 1− x+ δx) + δy = n− p(n− x) =
−p(−x) = q(x). Expanding these polynomials implies that
for all i, ai(−1)i+1 = bi.



Define a complement of a polynomial p(x) to be∑λ
i=1 ai(−1)i+1xi, i.e. the polynomial q(x) such that

−p(−x) = q(x). As the above shows, the current code allows
two macrobonds to have correlation > λ points if one of them
is rotated by 180 degree, but only if the two corresponding
polynomials are complements. Observe that every polynomial
has a unique complement, and some polynomials are com-
plements of themselves. Self-complement polynomials have
auto-correlation more than λ and complementary pairs have
cross-correlation more than λ. A 180-rotating code can be
obtained by taking any subset of the code that contains no
polynomial and its complement.

A self-complementary polynomial is one in which for all
even i, ai + ai = 0. Since n > λ ≥ 2 is prime, n is odd
and ai + ai = 0 only if ai = 0. Thus, the number of self-
complementary polynomials is at most ndλ/2e.

First remove all such self-complementary polynomials from
the code. The remaining polynomials occur in uniquely com-
plementary pairs; remove one member of each pair arbitrarily,
cutting the number of remaining polynomials in half. So the
180-rotating code has size (nλ−1 − nλ−2 − ndλ/2e)/2.

The proofs of Theorems II.1 and II.2 use finite field
arithmetic only for fields of prime size, even though there
are finite fields of size pm for any prime p and m ∈ Z+.
This is due to our technique of mapping the field elements to
the integers {0, 1, . . . , n − 1} in such a way that translations
in the x and y direction can be interpreted as changes in
the underlying field elements. To make the correspondence
straightforward, the characteristic of the field (the number
of times the multiplicative identity 1 can be added before a
repetition) must be equal to the field size, which is true exactly
when the field size is prime. For prime size fields, translating
x by the integer m is the same as adding 1 to x, m times
in a row. Otherwise, translation from a point (x, y) to a point
(x′, y′), where (for example), x′−x is greater than the field’s
characteristic but less than its size, would not be interpretable
as mapping the element x to x′ by repeated addition, and
would invalidate the parts of the proof that reason about the
effects of translation on the underlying polynomial evaluation.

B. Upper bounds

As observed in Section I-D, any (n2, w, λ)-optical orthog-
onal code is automatically a (n,w, λ)-geometric orthogonal
code (by re-arranging from 1D to 2D as in Figure 3), so lower
bounds on the size of (n2, w, λ)-optical orthogonal codes also
hold for (n,w, λ)-geometric orthogonal codes. However, the
converse does not hold: not every (n,w, λ)-geometric orthog-
onal code is a (n2, w, λ)-optical orthogonal code. Thus upper
bounds on the size of (n2, w, λ)-optical orthogonal codes
(such as the n2(n2 − 1) . . . (n2 − λ)/(w(w − 1) . . . (w − λ))
upper bound proved in [10]) do not automatically apply to
geometric orthogonal codes. In principle, due to the relaxed
constraints of geometric orthogonal codes, their optimal sizes
could potentially be larger than for optical orthogonal codes.

The following theorem shows an upper bound on the size
of any geometric orthogonal code. Intuitively, the proof is a
packing argument that works as follows. Given a set S ⊆ [n]2,

imagine a “canonical” translation Sx of S so that it is “flush”
against the x- and y-axes: the translation has at least one x-
coordinate and at least one y-coordinate equal to 0, but no
negative coordinates. Two sets S, T ⊆ [n]2 obey |S ∩ T | ≤ λ
if and only if, for all subsets Sλ ⊆ S and Tλ ⊆ T such
that |Sλ| = |Tλ| = λ + 1, we have Sλ 6= Tλ. Furthermore,
Sλ and Tλ are equal under some translation if and only if
Sx
λ = T x

λ . Let M be a (n,w, λ)-geometric orthogonal code.
Each macrobond has precisely

(
w
λ+1

)
subsets of size λ + 1,

so across all |M| macrobonds, there are |M| ·
(
w
λ+1

)
total

induced subsets of size exactly λ+ 1. The code has auto- or
cross-correlation more than λ if and only if there exists a pair
of these subsets having equal canonical translations. We count
the number of distinct canonically translated subsets of [n]2

of size λ+ 1, observing that |M| ·
(
w
λ+1

)
must be below this

count to avoid repeating a subset by the pigeonhole principle.

Theorem II.3. Any (n,w, λ)-geometric orthogonal code has
size at most 1

( w
λ+1)
·
[(
n2−1
λ

)
+
∑n−1
x0=1

∑n−1
y0=1

(
n2−x0−y0−1

λ−1
)]

.

Proof. For S ⊆ [n]2, define Sx = S + (−xmin,−ymin), where
xmin = min

(x,y)∈S
(x) and ymin = min

(x,y)∈S
(y), to be the canonical

translation of S. Note that Sx ⊆ [n]2, and Sx has at least one
point on the x-axis and at least one point on the y-axis.

Each macrobond M ⊆ [n]2 with w = |M | has exactly(
w
λ+1

)
subsets of size exactly λ + 1. Denote these subsets as

Mλ,1,Mλ,2, . . . ,Mλ,( w
λ+1)

. Note that macrobond M has auto-
correlation ≤ λ if and only if Mx

λ,i 6=Mx
λ,j for all 1 ≤ i < j ≤(

w
λ+1

)
, and that macrobonds M and N have cross-correlation

≤ λ if and only if Mx
λ,i 6= Nx

λ,j for all 1 ≤ i, j ≤
(
w
λ+1

)
.

To avoid making any two of these translated subsets equal,
an (n,w, λ)-geometric orthogonal codeM obeys |S| = |M| ·(
w
λ+1

)
, where S = {Mx

λ,i | M ∈ M, 1 ≤ i ≤
(
w
λ+1

)
}. Thus

|M| = 1

( w
λ+1)
|S|, and to prove the theorem, it suffices to show

|S| ≤
(
n2−1
λ

)
+
∑n−1
x0=1

∑n−1
y0=1

(
n2−x0−y0−1

λ−1
)
.

To bound |S|, we simply count the number of canonical
translations Sx of subsets S ⊆ [n]2 with |S| = λ + 1. To be
a canonical translation, Sx must have at least one point on
the x-axis and at least one point on the y-axis. We count two
subcases separately. First assume (0, 0) ∈ Sx. Then there are(
n2−1
λ

)
ways to pick the other λ points in Sx besides (0, 0).

Now assume the other case: (0, 0) 6∈ Sx. Let x0 = min
(x,0)∈Sx

x

and y0 = min
(0,y)∈Sx

y. That is, x0 and y0 are, respectively, the

smallest x- and y-coordinates of points in Sx whose other
coordinate is 0. Because (0, 0) 6∈ Sx, we have x0, y0 > 0.
Once the two points defining x0 and y0 are fixed, there are
λ − 1 other points to pick to be in Sx, and they must be
picked from the set A = {(x, y) ∈ [n]2 | (x = 0 =⇒ y >
y0) ∧ (y = 0 =⇒ x > x0)}. Note that |A| = (n − 1)2 +
(n − x0 − 1) + (n − y0 − 1) = n2 − x0 − y0 − 1, where
(n− 1)2 is the number of available points off both axes, and
the terms (n − x0 − 1) and (n − y0 − 1) count the number
of available points on each axis. There are thus

(
n2−x0−y0−1

λ−1
)

ways to pick these (λ−1) points from A. Therefore there are∑n−1
x0=1

∑n−1
y0=1

(
n2−x0−y0−1

λ−1
)

total sets in this subcase.



TABLE I
COMPARISON OF CODE SIZE LOWER BOUND LII.1(n, λ) OF THEOREM II.1

WITH CODE SIZE UPPER BOUND UII.3(n, λ) (WITH w = n) OF
THEOREM II.3 AND LOWER BOUND Looc(n2, λ) GIVEN BY OPTICAL

ORTHOGONAL CODE CONSTRUCTION OF THEOREM 2 OF [10].

n λ LII.1(n, λ) UII.3(n, λ) Looc(n2, n, λ)

5 2 4 58 0
5 3 20 956 20
5 4 100 26,490 2,124
7 2 6 74 0
7 3 42 1,340 3
7 4 294 27,740 94
7 5 2,058 777,148 5,942
7 6 14,406 40,291,608 1,753,072

11 2 10 109 0
11 3 110 2,637 0
11 4 1,210 63,413 9
11 5 13,310 1,626,997 179
11 6 146,410 46,982,678 5,435
13 2 12 127 0
13 3 156 3,491 0
13 4 2,028 93,188 4
13 5 26,364 2,564,783 76
13 6 342,732 75,841,707 1,690
17 2 16 162 0
17 3 272 5,592 0
17 4 4,624 181,316 1
17 5 78,608 5,850,750 24
17 6 1,336,336 194,074,096 389
19 2 18 180 0
19 3 342 6,837 0
19 4 6,498 241,967 0
19 5 123,462 8,434,602 15
19 6 2,345,778 298,556,284 234

Table I compares the code size lower bound
LII.1(n, λ) = nλ−1 − nλ−2 achieved by the algorithm
of Theorem II.1 with the upper bound of Theorem II.3
(for the special case of w = n) UII.3(n, λ) =

1

( n
λ+1)

[(
n2−1
λ

)
+
∑n−1
x0=1

∑n−1
y0=1

(
n2−x0−y0−1

λ−1
)]

. Also shown

is the lower bound Looc(n
2, n, λ) =

(n
2

n )−
n2−1

2 ( n
λ+1)(

n2

n−λ−1)
n2·

∑min(n2−n,n)
i=λ+1 (n

2−n
n−i )(

n
i)

given by the (n2, n, λ)-optical orthogonal code construction
of Theorem 2 of [10].

Theorem II.3 is our strongest upper bound but is unwieldy.
The following corollary gives a weaker but simpler bound.

Corollary II.4. Any (n,w, λ)-geometric orthogonal code has
size at most (λ+1)2eλ+1

wλ+1 n2λ.

Proof. We use the bounds
(
m−1
k

)
<
(
m
k

)
,
(
m−1
k−1

)
= k

m

(
m
k

)
,

and mk

kk
<
(
m
k

)
< ek·mk

kk
, for all m, k ∈ Z+. Then(

n2 − 1

λ

)
+

n−1∑
x0=1

n−1∑
y0=1

(
n2 − x0 − y0 − 1

λ− 1

)

<

(
n2

λ

)
+

n∑
x0=1

n∑
y0=1

(
n2 − 1

λ− 1

)
=

(
n2

λ

)
+ n2

(
n2 − 1

λ− 1

)
=

(
n2

λ

)
+ n2

λ

n2

(
n2

λ

)
= (λ+ 1)

(
n2

λ

)
< (λ+ 1)

eλn2λ

λλ
.

Also,
(
w
λ+1

)
> wλ+1

(λ+1)λ+1 . Combining these bounds with
Theorem II.3, we have that the size of any (n,w, λ)-geometric

orthogonal code is at most

1(
w
λ+1

) ·((n2 − 1

λ

)
+

n−1∑
x0=1

n−1∑
y0=1

(
n2 − x0 − y0 − 1

λ− 1

))

<
1

wλ+1

(λ+1)λ+1

· (λ+ 1)
eλn2λ

λλ
=

(λ+ 1)eλ

wλ+1
· (λ+ 1)λ+1

λλ
· n2λ

=
(λ+ 1)2eλ

wλ+1
·
(
λ+ 1

λ

)λ
· n2λ

<
(λ+ 1)2eλ

wλ+1
· e · n2λ =

(λ+ 1)2eλ+1

wλ+1
· n2λ.

The next corollary applies in the special case where n = w.

Corollary II.5. Any (n, n, λ)-geometric orthogonal code has
size at most (λ+ 1)2eλ+1nλ−1.

Note that the upper bound of Corollary II.5 asymptotically
matches the lower bound of Theorem II.1 when λ is constant
with respect to n.

C. Random codes
Although simple and efficient, it is worth asking if the

technique of Theorem II.1 is overkill, compared to the most
obvious attempt to generate codes: picking macrobonds at
random. The next theorem shows that this approach yields
much smaller codes if required to have one patch per column.

Theorem II.6. Let 0 < ε < 1. LetM be a set of macrobonds
selected uniformly at random with replacement from among
those macrobonds with exactly one patch per column. If
|M| ≥ λ+1

n

(
1 +

√
2n(λ+1) ln 1

ε

)
, then M is a (n, n, λ)-

geometric orthogonal code with probability at most ε.

Proof. The described macrobond distribution can be generated
by iterating over each column and selecting one row uniformly
at random to contain the patch in that column. Each selection
of patches in nonoverlapping blocks of λ + 1 consecutive
columns can be viewed as a symbol in an alphabet of size
nλ+1. Because the blocks are nonoverlapping, each symbol
selection is independent. Then each macrobond is partially
specified by bn/(λ + 1)c symbols defining the patch place-
ments in the first (λ+1)bn/(λ+1)c columns. If any symbol is
repeated (either within a macrobond, or between two different
macrobonds), then the code has auto- or cross-correlation > λ.

The probability that k randomly selected symbols from an
alphabet of size nλ+1 does not repeat a symbol is
k−1∏
i=0

(1− i/nλ+1) <

k−1∏
i=0

e−i/n
λ+1

= e−
∑k−1
i=0 i/n

λ+1

= e−k(k−1)/(2n
λ+1) < e−(k−1)

2/(2nλ+1).

Thus the probability that a symbol does repeat is at least
1 − e−(k−1)

2/(2nλ+1). By algebra, the inequality 1 − ε ≤
1− e−(k−1)2/(2nλ+1) holds provided k ≥ 1 +

√
2nλ+1 ln 1

ε .
Since each macrobond induces bn/(λ + 1)c symbols,

a set of λ+1
n

(
1 +

√
2n(λ+1) ln 1

ε

)
macrobonds induces

λ+1
n

(
1 +

√
2n(λ+1) ln 1

ε

)
·
⌊

n
λ+1

⌋
≥ 1+

√
2n(λ+1) ln 1

ε sym-
bols and thus with probability≥ 1−ε contains a repetition.



TABLE II
EMPIRICAL TEST OF RANDOM CODES FOR w = n.

n λ ave med stddev max LII.1(n, λ) UII.6(n, λ,
1
2
)

5 2 2 2 1.2 6 4 8
5 3 14 13 7.5 41 20 24
5 4 160 151 76.7 378 100 66
7 2 2 1 0.7 4 6 9
7 3 7 6 3.7 17 42 33
7 4 33 30 18.0 96 294 109
7 5 303 282 182.0 972 2,058 347

11 2 1 1 0.3 2 10 11
11 3 3 3 1.5 9 110 52
11 4 12 12 5.7 30 1,210 215
11 5 59 59 28.2 125 13,310 855
11 6 369 333 216.7 1038 146,410 3,308
13 2 1 1 0.1 2 12 12
13 3 2 2 1.2 6 156 61
13 4 9 9 4.9 22 2,028 276
13 5 37 35 20.7 111 26,364 1,194
13 6 213 208 99.6 469 342,732 5,022
17 2 1 1 0.0 1 16 14
17 3 2 1 0.6 4 272 80
17 4 5 4 3.1 14 4,624 412
17 5 22 20 12.8 70 78,608 2,042
17 6 99 91 50.7 219 1,336,336 9,821
19 2 1 1 0.0 1 18 15
19 3 1 1 0.6 4 342 89
19 4 4 4 2.2 11 6,498 487
19 5 17 16 8.5 40 123,462 2,550
19 6 82 79 41.1 175 2,345,778 12,969

Table II shows the result of testing random codes for
n = w and several prime values of n, comparing them
to the proved theoretical bounds of Theorems II.1 and II.6.
In each row of Table II, 100 trials were run. In each trial,
macrobonds were generated by selecting n patches uniformly
at random (without replacement) from the n × n square.
Macrobonds were generated successively and added to the
code until the auto- or cross-correlation of the code exceeded
λ, and the code size recorded for the trial. The average
(“ave”, rounded to nearest integer), median (“med”), stan-
dard deviation (“stddev”), and maximum (“max”) code sizes
among the 100 trials are shown. These are compared to the
lower bound LII.1(n, λ) = nλ−1 − nλ−2 achieved by the
algorithm of Theorem II.1, as well as the randomized upper
bound UII.6(n, λ,

1
2 ) = λ+1

n

(
1 +
√
2n(λ+1) ln 2

)
proven in

Theorem II.6 for random codes restricted to one patch per
column (setting ε = 1

2 ).
Table III shows test results for random codes restricted

to exactly one patch per column. In this case, each random
macrobond is generated by selecting, in each of n columns,
one row uniformly at random in which to place a patch.

The results of Tables II and III suggest that the expected
code size is much smaller than that achievable by our algo-
rithm. There appears to be large variance in the code sizes
achieved by generating codes at random. However, even the
maximum among 100 trials, in nearly all cases, fell far below
the code sizes given by the algorithm of Theorem II.1.

We emphasize that Theorem II.6 applies only to the most
naı̈ve way to generate random codes. It does not rule out
that better performance may be obtained by a more sophisti-
cated strategy. For example, a greedy algorithm that generates
macrobonds at random until a new one appears that has
low auto-correlation, and low cross-correlation with existing

TABLE III
EMPIRICAL TEST OF RANDOM CODES WITH ONE PATCH PER COLUMN.

n λ ave med stddev max LII.1(n, λ) UII.6(n, λ,
1
2
)

5 2 2 2 1.1 6 4 8
5 3 8 8 4.3 19 20 24
5 4 51 48 25.5 119 100 66
7 2 1 1 0.5 3 6 9
7 3 4 4 2.3 11 42 33
7 4 20 17 10.4 64 294 109
7 5 92 86 52.8 248 2,058 347

11 2 1 1 0.1 2 10 11
11 3 2 2 1.2 8 110 52
11 4 8 7 4.1 21 1,210 215
11 5 32 29 16.6 77 13,310 855
11 6 143 131 80.0 497 146,410 3,308
13 2 1 1 0.0 1 12 12
13 3 2 2 0.9 5 156 61
13 4 7 6 3.8 27 2,028 276
13 5 22 19 11.9 62 26,364 1,194
13 6 108 92 55.4 300 342,732 5,022
17 2 1 1 0.0 1 16 14
17 3 1 1 0.6 4 272 80
17 4 4 4 2.4 13 4,624 412
17 5 14 13 6.7 31 78,608 2,041
17 6 57 54 29.2 125 1,336,336 9,821
19 2 1 1 0.0 1 18 15
19 3 1 1 0.4 2 342 89
19 4 3 3 1.7 12 6,498 487
19 5 13 12 6.5 40 123,462 2,550
19 6 51 47 26.7 118 2,345,778 12,969

macrobonds (rather than quitting upon encountering the first
“bad” macrobond), would outperform the strategy above. A
more sophisticated stochastic local search may perform even
better. Our goal in this section is not to find the “best”
randomized method, but merely to demonstrate that the de-
terministic algorithm of Theorem II.1 has better performance
than the simplest imaginable randomized algorithm. It is also
the case that we were able to theoretically analyze the random
codes of Theorem II.6, but do not know how to do this
for more sophisticated randomized algorithms. Often random
codes perform quite well, depending on the task, so it is
curious that in this case, they do not.

III. OPEN QUESTIONS

A number of directions for future work suggest themselves.
1) We chose to define a macrobond as a subset of an n×n

square for convenience, and because it worked well with
our proof technique using polynomials over finite fields.
An obvious generalization is to find geometric orthogonal
codes that work over n × m rectangles for n 6= m. Of
course, one can simply add/remove empty rows/columns
without altering the auto- or cross-correlation, but is there
a technique for generating macrobonds that is “naturally”
defined over a rectangle or other geometry?

2) Our lower bound technique works for w = n, where w
is the desired number of patches per macrobond. Can we
generalize to arbitrary w? The obvious way to generalize
to larger values of w is to assign several polynomials
p1, . . . , pk (where k < n) to each macrobond M , defin-
ing M = { (x, pi(x)) | x ∈ Fn, 1 ≤ i ≤ k } . Overlap
between different polynomials in the same macrobond
(i.e., pi(x) = pj(x) for some x ∈ Fn and 1 ≤ i < j ≤ k)



could result in up to (k − 1)λ total points of overlap, so
rather than having nk patches in the macrobond, some
could end up with as few as nk − (k − 1)λ patches.
By removing arbitrarily chosen points from macrobonds
with more points than this, we could assume all have
exactly w = kn − (k − 1)λ patches. A straightfor-
ward modification of the proof of Theorem II.1 then
shows that choosing degree-λ polynomials results in an
(n, nk−(k−1)λ, λk2)-geometric orthogonal code of size
b(nλ−1 − nλ−2)/kc.4 Is there another way to generalize
to other values of w, including w that are not of the form
kn− (k − 1)λ?

3) Reduce the upper bound of Theorem II.3.
4) Increase the lower bound of Theorems II.1 or II.2.
5) Generalize from primes to arbitrary n ∈ Z+.
6) The upper bound on random codes of Theorem II.6

applies to macrobonds selected uniformly at random from
the set of macrobonds that have one patch per column.
Generalize to macrobonds selected uniformly at random
from the set of all macrobonds of a fixed weight w.

7) Decrease the upper bound on random codes proven in
Theorem II.6. The large difference between the medians
and the Ur(n, λ, 12 ) numbers in rows of Tables II and III
suggest that the Ur(n, λ, 12 ) bound is not tight.

8) In defining orthogonality of two macrobonds, we allow
them to translate relative to each other and to rotate, but
only by 180◦. A 2D macrobond based on generalizing the
scheme of Figure 1(d) in the most obvious way, in which
the blunt ends face orthogonal to the origami face rather
than parallel to it as in Figure 1(e), would not have a patch
shape that automatically disallows non-180◦ rotations.5

Thus, it would be interesting to consider adding a rota-
tional constraint to the definition of geometric orthogonal
code. For such a macrobond, it would make sense to
consider overlaps when a rotation brings points “close” to
each other, even if not exactly overlapping. For example,
perhaps patch pairs separated by distance at least 1 are far
enough apart that they cannot bind (even with distortion
as seen in Fig. 1(f)), but those of distance less than 1
(even if distance > 0) could bind. Then two macrobonds
have correlation > λ if some relative translation and
rotation of them brings > λ patch pairs to strictly less
than distance 1 from each other. In other words, patches
behave as diameter-1 circles moving continuously, rather
than as width-1 squares moving discretely by integer
distances, and correlation corresponds to the number of
overlapping circular patches between two macrobonds.

9) We model patches as completely non-specific bonds.
DNA blunt ends are relatively nonspecific, but even so, a
GC/CG stack, for instance, is significantly stronger than
an AT/TA stack. The macrobonds employed in [34] use

4Essentially the same proof works, but now each of the k2 pairs of
polynomials between two macrobonds could contribute λ overlapping patches,
resulting in up to λk2 total overlapping patches. However, each macrobond
now has k > 1 polynomials associated to it, so with nλ−1 − nλ−2 total
polynomials we get b(nλ−1 − nλ−2)/kc total macrobonds.

5As mentioned in Section I-B, there are physical reasons to conjecture that
such rotations have weaker stacking bonds than the “standard” rotation.

only GC/CG stacks to enforce uniformity, but other stack
types are allowed in [19]. One can imagine ways to add
some specificity to patches by choice of terminating base
pair, or possibly by using DNA sticky ends in place of
stacking bonds. The problem is then more accurately
modeled by defining a macrobond to be a function
M : [n]2 → C ∪ {null}, where C is a finite set of
“colors”, and null represents the absence of a patch. Then,
two aligned patches with colors c1, c2 ∈ C have strength
str(c1, c2) (for C being the set of possible terminating
DNA base pairs, str(c1, c2) is in Table 1 of [28]).

10) Complementary to the previous question, we observed in
Section I-C that some experimental work requires bonds
to have unequal strength. If all patches in a macrobond
have the same strength, this would correspond to using
different numbers of patches in different macrobonds.
There are many interesting variations of this question, but
here is a concrete open question: Suppose that we want
exactly two strengths of macrobonds, w1 and w2 6= w1.
Give an algorithm that, on input n,w1, w2, λ, s1, s2 ∈
Z+, outputs s1 macrobonds (subsets of n× n square) of
weight w and s2 macrobonds of weight w2, such that
all macrobonds have auto-correlation and pairwise cross-
correlation at most λ, or the algorithm reports that no
such macrobonds exist. (Note that in this setting there is
no “largest” code: one may be able to trade off s1 and
s2 in several Pareto-optimal ways.)

11) Our formalization of the concept of macrobonds resem-
bles Figure 1(e) more than 1(d) in the sense that there
are two types of faces (“bump” type faces and “dent”
type faces), and a macrobond is always formed between
opposite-type faces. In contrast, macrobonds formed in
Figure 1(d) are between faces of the same “type”. In this
case, one could imagine a macrobond coming into contact
with a reflected copies of other macrobonds, rather than
rotated copies as captured by our geometric 180-rotating
orthogonal codes. Is a result similar to Theorem II.2
possible for this definition of “flipping” a macrobond?

12) If we think of the 1D edge of an origami as vertical, then
all patches lie at x = 0 (since the edge is vertical), and
a macrobond chooses a subset of y values at which to
place patches. Woo and Rothemund [34] study a related
technique for creating specific macrobonds, in which
patches are placed at all possible y values along the
edge, but modifies the shape of the edge itself so that
some patches lie at different x values; see Fig. 3 of [34].
This sterically prevents all patches from bonding unless
the shapes are complementary and aligned properly. So
for n patch locations, a code is specified by function
c : [n] → {0, 1, . . . , d}, where d ∈ N is the maximum
allowed “depth” (position along the x-axis) of a patch,
relative to the patches that are furthest away from the
center of the origami, which defined to be at depth 0. It
would be interesting to prove upper and lower bounds on
code sizes based on n, d, and threshold λ (see also [21]).

13) Instead of modeling the macrobond as a discrete set of
points, model it as a subset M ⊂ R2 of the plane. A
similar setting was considered by Gopinath, Kirkpatrick,



Rothemund, and Thachuk [20], who studied the following
problem motivated by DNA origami experiments: Design
a shape S (a bounded, connected subset of R2) and a
“target” shape T (possibly T = S but not necessarily),
such that, starting from any initial placement (translation
and rotation) of S having with non-zero overlap with
T , there is a continuous rigid motion taking S to a
unique placement that (globally) maximizes the area of
overlap between S and T , such that the motion has a
monotonically increasing overlap (i.e., there is no local
maximum or plateau of suboptimal overlap in which S
can get “stuck”). An interesting open problem is to find
several (or even two) shape-target pairs that have this
property, but that also have low cross-correlation. (In
this setting auto-correlation is not a concern, since the
lack of local maxima or plateaus implies that misaligned
translations between a shape and its own target will
correct themselves by re-alignment.)
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