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Abstract—An example of a nonspecific molecular bond is the
affinity of any positive charge for any negative charge (like-
unlike), or of nonpolar material for itself when in aqueous
solution (like-like). This contrasts specific bonds such as the
affinity of the DNA base A for T, but not for C, G, or another A.
Recent experimental breakthroughs in DNA nanotechnology [4],
[11] demonstrate that a particular nonspecific like-like bond
(“blunt-end DNA stacking” that occurs between the ends of any
pair of DNA double-helices) can be used to create specific “mac-
robonds” by careful geometric arrangement of many nonspecific
blunt ends, motivating the need for sets of macrobonds that are
orthogonal: two macrobonds not intended to bind should have
relatively low binding strength, even when misaligned.

To address this need, we introduce geometric orthogonal codes
that abstractly model the engineered DNA macrobonds as two-
dimensional binary codewords. While motivated by completely
different applications, geometric orthogonal codes share similar
features to the optical orthogonal codes studied by Chung, Salehi,
and Wei [3]. The main technical difference is the importance of
2D geometry in defining codeword orthogonality.

I. INTRODUCTION

A. Experimental DNA nanotechnology

DNA nanotechnology began in the 1980s when Seeman [9]
showed that artificially synthesized DNA strands could be
designed to automatically self-assemble nanoscale structures,
rationally designed through the choice of DNA sequences. In
the past 20 years, the field has witnessed a dramatic surge in
the development of basic science, in vitro applications such
as chemical oscillators and molecular walkers, and in vivo
applications such as drug delivery, cellular RNA sensing, and
genetically encoded structures [2].

A technological pillar of the field is DNA origami, devel-
oped by Rothemund [7], a simple, fast, inexpensive, and reli-
able method for creating artificial 2D and 3D DNA structures,
with a control resolution of a few nanometers. DNA origami
requires a single long scaffold strand of DNA; the most
commonly used is the 7249-nucleotide single-stranded genome
of the bacteriophage virus M13mp18, widely and cheaply
available from many biotech companies. The scaffold is mixed
with a few hundred shorter (≈ 32nt) synthesized strands called
staples, each of which is designed to bind (through Watson-
Crick complementarity) to 2-3 regions of the scaffold. Via
thermal annealing, the staples fold the scaffold strand into a
shape dictated by the choice of staple sequences, hence the
term origami. The process is illustrated in Figure 1(a), with
the results shown in Figure 1(b).

Although the Watson-Crick pairing of bases between two
single strands of DNA is very specific, DNA is known to
undergo other, less specific interactions. One well-studied
interaction is called a stacking bond, formed when any pair of
terminated double helices — known as blunt ends — face each
other, as shown in Figure 1(c). Since two edges of a standard
DNA origami rectangle consist entirely of blunt ends, DNA
origami rectangles are known to bind along their edges to
form long polymers of many origamis, despite the fact that
no hybridization between single strands occurs between them.
One way to avoid stacking between origamis is to leave out
staple strands along the edge, so that rather than blunt ends,
there are single-stranded loops of the scaffold strand [7].

Woo and Rothemund [11] turned the lemon of unintended
origami stacking into lemonade with the following idea: leave
out some of the staples along the edge, but keep others;
see Figure 1(d). Although each individual blunt end binds
nonspecifically to any other, the only way for all blunt ends
along an edge to bind is for the other origami to have them
in the same relative positions. Thus, geometric placement of
blunt ends makes the entire side of an origami into a specific
“macrobond”. Figure 1(d) shows how this enforces that the
origami’s left side binds only to a right side.

The idea extends from 2D origami rectangles with 1D
edges, to 3D origami boxes with 2D rectangular faces as
demonstrated by Gerling, Wagenbauer, Neuner, and Dietz [4].1

They rationally design polymers of many origamis with pre-
scribed sizes and shapes such as the 4-mer ABCD shown in
Figure 1(e).

The preceding is an idealized description: nonidealities
cause unintended pairs of macrobonds to bind spuriously.
Figure 1(f) shows two macrobonds aligning enough of their
blunt ends to attach stably, through two mechanisms that
can be seen in the image: flexibility of DNA helices and
misalignment of macrobonds.

This paper is an attempt to attack the latter problem with
coding theory.

1The motif is slightly different. Rather than helices orthogonal to the
origami face, they are parallel. Also, two whole helices protrude (see Fig-
ure 1(e), and the complementary face should have a two-helix “gap” where
the other helices fit, forming four total stacking bonds.)
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Fig. 1. Illustration of DNA origami and geometrically programmable stacking bonds. a) DNA origami illustration. (source:
http://openwetware.org/wiki/Biomod/2014/Design) b) Atomic force microscope images of nanoscale shapes assembled by DNA
origami technique. (source: [7]) c) Stacking bonds are nonspecific attraction occurring between the ends of two DNA helices, such as those that
appear on the edges of a DNA origami. They cause origamis to polymerize (form long chains) in solution. Markers on the origami surface (an
asymmetrical L shape) reveal that the orientation of origamis in a polymer is random; i.e., some are “upside down” relative to others. (source:
http://openwetware.org/wiki/Biomod/2014/Kansai/Experiment and [11]) d) By removing certain stacking bonds at specific locations to
create a binary pattern on the edge of a DNA origami, the whole edge becomes a specific “macrobond” that binds most strongly to another edge with the
same pattern; in this case, the left side of an origami binds favorably to the right side, and less favorably to another left side. (source: [11]) e) The technique
also works to bind 3D origami using 2D patterns of stacking bonds on their faces, using a slightly different motif than in part (d). The placement of the
nonspecific bonds gives the entire face a higher affinity for another face with a complementary pattern. (source: [4]) f) One source of error is the matching
of many stacking bonds between two faces because of misalignment. (source: [11])

B. Statement of model and main result

Although inspired by work in DNA nanotechnology, the
design of specific macrobonds formed by geometric arrange-
ments of nonspecific bonds is fundamental and likely to be part
of the future of nanotechnology, even if based on substrates
other than DNA. We abstract away several details of DNA
origami in mathematically formulating the problem.

We imagine each 2D face of a monomer (e.g., a DNA
origami) is a discrete n × n square, denoted Sn =
{0, 1, . . . , n − 1}2, with n representing the placement res-
olution of nonspecific bonds, called patches. A macrobond
is a subset M ⊆ Sn. Given a vector ~v ∈ Z2, M + ~v =
{ ~m+ ~v | ~m ∈M } denotes M translated by ~v. A parameter
w ∈ {2, . . . , n2} denotes the target strength. A parameter λ ∈
{1, . . . , w − 1} denotes the orthogonality strength threshold.
An (n,w, λ) geometric orthogonal code is a set of macrobonds
M = {M1, . . . ,M`}, where each Mi ⊆ Sn and |Mi| = w, so
that for all 1 ≤ i < j ≤ `, two conditions hold:

low cross-correlation: ∀~v ∈ Z2, |Mi ∩ (Mj + ~v)| ≤ λ.
low autocorrelation: ∀~v ∈ Z2 \ {~0}, |Mi ∩ (Mi + ~v)| ≤ λ.

Informally, an (n,w, λ) geometric orthogonal code is a set
of macrobonds with n2 available space for potential binding
sites, total binding strength w, and spurious binding strength
limited to at most λ. As with any code, the goal is to maximize
the number of codewords |M|. The main result of this paper
is that for all n, λ ∈ Z+ with n a prime power and 2 ≤ λ ≤
n, there exists an efficiently computable (n, n, λ) geometric
orthogonal code M with |M| = 2nλ−1 − 2nλ−2.

Examine the physical implementation of patches shown
in Figure 1(e), and observe that a “bump” patch on one
macrobond cannot insert into a “hole” patch on another
macrobond if they are rotated relative to each other, un-
less the rotation is by 180◦, i.e., flipped along each axis.2

2There are physical reasons to dismiss this possibility, since the energy of a
stacking bond appears to weaken if the relative rotation angle of the two DNA
phosphate backbones are rotated 180◦ relative to each other: see the image on
the right of Figure 1(c), where only two of four possible orientations appear.
The other two would put the L pattern underneath the origami; presumably
they are absent due to weaker stacking energy of rotated helices. Nonetheless,
if one imagines a mixture of different angles being used in different patches,
rather than only one angle as in [11], then it may be reasonable to assume
a worst-case scenario in which a 180◦ rotation could make any of the patch
backbone angles match between two macrobonds.



(Otherwise the blunt ends will not be flush.) To model
this, define an (n,w, λ) geometric flipping orthogonal code
to be an (n,w, λ) geometric orthogonal code that, defining
flip(Mi) = { (n− 1− x, n− 1− y) | (x, y) ∈Mi } , also
obeys |flip(Mi) ∩ (Mj + ~v)| ≤ λ for all 1 ≤ i ≤ j ≤ `
and all ~v ∈ Z2. We demonstrate codes that obey this extra
constraint as well.

C. Related work

The most directly related theoretical work are the binary op-
tical orthogonal codes studied by Chung, Salehi, and Wei [3],
which minimize the number of overlapping 1’s (analogous
to our nonspecific patches) between codewords; overlapping
0’s (analogous to neutral non-binding sites) are not penal-
ized. Also, these codes consider all possible translations of
codewords; a codeword requires orthogonality not only to
translations of other codewords (cross-correlation) but also to
nonzero translations of itself (autocorrelation).

The major difference between optical orthogonal codes
and our work is the geometric nature of our codes.3 Each
codeword represents a 2D face of a 3D molecular structure,
so translations in both x and y coordinates must be considered.

One could imagine applying the optical orthogonal codes
of [3] directly to our problem setting. Indeed, every (n2, n, λ)
optical orthogonal code is in fact an (n, n, λ) geometric
orthogonal code by interpreting each 1D codeword as the
concatenation of the n rows of a 2D codeword. However,
applied to this scenario, the upper bounds on possible code size
proven in [3] are lower than our lower bounds (though within a
factor 2) in Theorems II.1 and II.2.4 In other words, an optical
orthogonal code is more constrained, and these constraints
imply that the codes we construct are provably larger than any
possible optical orthogonal code with the same parameters.

Two-dimensional optical orthogonal codes have been stud-
ied [1], [6], [10]. The 2D nature of these codes reflects the
fact that two different variables (e.g., time and wavelength)
determine where 1’s and 0’s appear in the codeword. How-
ever, these techniques do not apply directly to our problem,
since they consider only translation in one dimension (time)
while we must consider simultaneous translations along both
dimensions.

Huntley, Murugan, and Brenner [5] have also studied spe-
cific engineered molecular bonds from an information theory
perspective. They study a different model in which trans-
lation is disallowed. They study “color” coding: extending

3Another difference with our setting is that optical orthogonal codes are
more stringent in defining orthogonality under translation. In [3], translations
are assumed to be modulo the codeword size, whereas in our setting such
“wrapping” does not make sense: a molecular structure α moving off the end
of another structure β does not appear on the opposite side of β, hence could
not contribute to the binding strength. They also use different parameters
to bound autocorrelation and cross-correlation, but for the setting we are
modeling, these both correspond to spurious molecular bonds, so it makes
sense to use the same threshold for each.

4Applying the Johnson-like bound of Theorem 1 of [3] to our setting gives
(assuming λ is constant with respect to n) the upper bound nλ−1+O(nλ−2),
compared to our lower bound 2nλ−1 − 2nλ−2 (Theorem II.1).

the patches to allow some specificity, so that only equal-
color patches can bind; see Section III for a discussion of
this issue. They compare with “shape” coding: allowing the
shape of a 1D edge to be nonflat, thus providing steric
hindrance as an additional mechanism to prevent unintended
binds; also discussed as an open question in Section III. They
run simulations to show that randomly selected shape codes
perform better (i.e., for a given orthogonality have greater size)
than randomly selected color codes.

II. RESULTS

A. Lower bounds

The following theorem shows how to construct geometric
orthogonal codes without the flipping constraint.

Theorem II.1. For each prime power n ∈ Z+ and λ ∈
{2, . . . , n− 1}, there exists an (n, n, λ) geometric orthogonal
code of size 2nλ−1 − 2nλ−2.

Proof. Translation by a vector ~v = (δx, δy) with |δx| or |δy|
≥ n implies correlation is 0. So assume |δx|, |δy| < n.

Let Fn denote the finite field of order n, where n is a
prime power, and let 0Fn , 1Fn ∈ Fn respectively represent
the additive and multiplicative identity elements of Fn. Each
macrobond is defined by a degree-λ polynomial p(x) =
aλx

λ+aλ−1x
λ−1+· · ·+a1x+a0 over Fn, where each coeffi-

cient ai ∈ Fn, aλ 6= 0Fn , aλ−1 = 0Fn , and a0 ∈ {0Fn ,−1Fn}.
Put the elements of Fn in 1-1 correspondence with the integers
{0, 1, . . . , n−1} by f : Fn → {0, 1, . . . , n−1} defined by the
recurrence f(0Fn) = 0 and f(x+1Fn) = f(x)+1. For x ∈ Fn,
associate x with an index f(x) specifying a row or column of
the macrobond. For ease of notation, f(x) is denoted by x and
context distinguishes whether x ∈ {0, . . . , n− 1} or x ∈ Fn.

For a given polynomial p, the corresponding macrobond
Mp = { (x, p(x)) | x ∈ Fn }, i.e., a patch in column x on
row p(x). There are 2(n− 1)nλ−2 such polynomials, one for
each sequence of n − 1 choices for aλ, nλ−2 choices for
aλ−2, aλ−3, . . . , a1, and 2 choices for a0.

All that remains is to prove that no pair of macrobonds
have correlation more than λ under translation by some vector
(δx, δy). Alternatively, suppose there exist macrobonds Mp

and Mq with p(x) =
∑λ
i=0 aix

i and q(x) =
∑λ
i=0 bix

i and
correlation > λ. By our choice of f , translating the macrobond
Mp to Mp + (δx, δy) results in a macrobond represented by
the polynomial p(x+ f−1(δx))+ f−1(δy). As mentioned, for
ease of notation, interpret (δx, δy) as an element of F2

n.
By the fundamental theorem of algebra, p(x + δx) + δy =

q(x) for all x ∈ Fn. Expanding the two leading terms of
p(x + δx) + δy and q(x) implies δxλaλ = aλ−1 + δxλaλ =
bλ−1 = 0Fn . Then since λ, aλ 6= 0Fn , it must be that δx = 0Fn .

Expanding all terms of p(x) + δy and q(x) implies δy =

δy + a0 +
∑λ
i=1 aiδ

i
x = b0 ∈ {0Fn ,−1Fn}. So δy ∈ {0, n −

1,−(n − 1)}. Again by the fundamental theorem of algebra,
for any c ∈ Fn, p(x) = c for at most λ values of x. So
p(x) = 0 and p(x) = n−1 for at most λ values of x each. So
if δy ∈ {n− 1,−(n− 1)}, then correlation is ≤ λ. So δy = 0
and (δx, δy) = (0, 0).



Thus every macrobond has low auto-correlation. Since δx =
δy = 0Fn , it must be that p = q and thus Mp = Mq , so any
pair of unequal macrobonds have low cross-correlation.

We now show how to obtain a geometric flipping orthogonal
code, using similar techniques to the proof of Theorem II.1.

Theorem II.2. For each prime power n ∈ Z+ and λ ∈
{2, . . . , n − 1}, there exists an (n, n, λ) geometric flipping
orthogonal code of size ((n−1)nλ−2−ndλ/2e)/2 if n is odd,
and ((n− 1)nλ−2 − 2bλ/2c+1ndλ/2e)/2 if n is even.

Proof. The construction is a modification of Theorem II.1
obtained by taking a subset of the code that avoids
high correlation in the new orientation. For the sake of
contradiction, assume that there exist polynomials p and
q and a translation vector (δx, δy) such that Mq has
correlation > λ with flip(Mp) + (δx, δy). By defini-
tion, flip(Mp) = { (n− 1− x, n− 1− p(x) | x ∈ Fn } =
{ (x, n− 1− p(n− 1− x) | x ∈ Fn }, so by the fundamen-
tal theorem of algebra, n− 1− p(n− 1−x+ δx)+ δy = q(x)
for all x ∈ Fn.

The λ − 1 term of q is 0 by construction. Expanding the
two leading terms of n− 1− p(n− 1−x+ δx)+ δy with this
constraint implies that aλλ(n−1+δx)(−1)λ = 0. Then since
λ, aλ, (−1)λ 6= 0, it must be that n− 1 + δx = 0. So δx = 1
and n− 1− p(n− 1− x+ δx) + δy = n− 1− p(−x) + δy .

Restrict the code to only macrobonds with polynomials∑λ
i=0 aix

λ such that a0 = 0Fn , i.e., a0 may no longer be
−1Fn . Expanding all terms of n − 1 − p(−x) + δy and q(x)
leads to n− 1 + δy = n− 1 + a0 + δy = b0 = 0. So δy = 1
and thus n− 1− p(n− 1− x+ δx) + δy = n− p(n− x) =
−p(−x) = q(x). Expanding these polynomials implies that
for all i, ai(−1)i+1 = bi.

Define a complement of a polynomial p(x) to be∑λ
i=1 ai(−1)i+1xi, i.e. the polynomial q(x) such that

−p(−x) = q(x). As the above shows, the current code
allows two macrobonds to have correlation > λ points if
one of them is flipped, but only if the two corresponding
polynomials are complements. Observe that every polynomial
has a unique complement, and some polynomials are com-
plements of themselves. Self-complement polynomials have
auto-correlation more than λ and complementary pairs have
cross-correlation more than λ. A flipping code can be obtained
by taking any subset of the code that contains no polynomial
and its complement.

A self-complementary polynomial is one in which for all
even i, ai + ai = 0. If n is odd, this occurs only if ai = 0,
and if n is even, then it also occurs if ai = n/2 (i.e., the field
element

∑n/2
i=1 1Fn ). Thus, the number of self-complementary

polynomials is at most ndλ/2e when n is odd and, since there
are two choices for each even i coefficient, the number is
2bλ/2c+1ndλ/2e when n is even.

So first remove all such self-complementary polynomials
from the code. Of all the remaining, each has a unique
complementary polynomial; remove one of them arbitrarily,
cutting the number of remaining in half. So the flipping

code has size ((n − 1)nλ−2 − ndλ/2e)/2 for odd n, and
((n− 1)nλ−2 − 2bλ/2c+1ndλ/2e)/2 for even n.

B. Upper bounds

The following theorem shows an upper bound on the size
of a geometric orthogonal code.

Theorem II.3. For constant λ, any (n,w, λ) geometric
orthogonal code has size at most 16λλ−1n2λ/wλ+1 +
O(n2λ−1/wλ+1).

Proof. The approach is as follows. First, obtain an upper
bound on the number of (λ+1)-patch arrangements in an r×c
region that are pairwise distinct under translations. Second,
observe that every macrobond in a (n,w, λ) code induces(
w
λ+1

)
such (λ+1)-patch arrangements. Dividing the former by

the latter yields an upper bound on the number of macrobonds
in any (n,w, λ) code.

Consider the number of (λ+1)-patch patterns with a r× c
bounding box. Every such pattern has a patch incident to each
side of the bounding box in one of 6 configurations, e.g., two
in opposite corners, two in adjacent corners and one along the
opposite edge, etc. The greatest number of patch placements
is possible when just two patches are incident to the bounding
box, placed in opposite corners. The 6 configurations have 16
total symmetries, thus there are at most 16(rc)λ−1 (λ + 1)-
patch patterns with a r × c bounding box.

Then the number of (λ + 1)-patch patterns in a n × n
region that are pairwise distinct up to translation is at most∑λ
r=1

∑λ
c=1 16(rc)

λ−1 = 16n2λ/λ2 + O(n2λ−1), with λ
constant. Now observe that

(
w
λ+1

)
≥ (w − λ − 1)λ+1/(λ +

1)λ+1 = wλ+1/λλ+1 + O(wλ), again where λ is a constant.
Dividing the former by the latter yields the desired bound.

Corollary II.4. For constant λ, any (n, n, λ) geometric or-
thogonal code has size at most 16λλ−1nλ−1 +O(nλ−2).

Note that the upper bound of Corollary II.4 asymptotically
matches the lower bound of Theorem II.1.

Although simple and efficiently computable, it is worth
asking if the technique of Theorem II.1 is overkill, compared
to the most obvious way of attempting to generate codes:
picking codewords at random. The next theorem shows that
this approaches yields much smaller codes.

Theorem II.5. With probability at least 1/2, a randomly
selected set of (λ + 1)(

√
2n(λ+1) ln(2) + 1)/n macrobonds

with one patch per column is not a (n, n, λ) geometric
orthogonal code.

Proof. Consider placements of one patch per column in
nonoverlapping blocks of λ + 1 consecutive columns as se-
lecting letters in an alphabet of size nλ+1. Because the blocks
are nonoverlapping, each letter selection is independent. Then
each macrobond is partially specified by bn/(λ + 1)c letters
defining the patch placements in the first (λ+ 1)bn/(λ+ 1)c
columns, where any pair of bonds containing the same letter,
including a bond and itself, have correlation > λ.



The chance that a sequence of k randomly selected let-
ters from an alphabet of size nλ+1 does not contain a
repeated letter is

∏k−1
i=0 (1 − i/nλ+1) ≤

∏k−1
i=0 e

−i/nλ+1 ≤
e−

∑k−1
i=0 i/n

λ+1 ≤ e−(k−1)
2/(2nλ+1). Thus the probability that

it does contain a repeated letter is at least 1−e−(k−1)2/(2nλ+1).
By algebra, the inequality 1/2 ≤ 1 − e−(k−1)2/(2nλ+1) holds
provided

√
2nλ+1 ln(2) + 1 ≤ k.

Since each macrobond induces bn/(λ + 1)c letters, a set
of (λ+ 1)(

√
2n(λ+1) ln(2) + 1)/n macrobonds induces (λ+

1)(
√
2n(λ+1) ln(2)+1)/n · bn/(λ+1)c ≥

√
2n(λ+1) ln(2)+

1 letters and thus with probability ≥ 1/2 contains two with
correlation > λ.

III. OPEN QUESTIONS

A number of directions for future work suggest themselves.
1) We chose to define a macrobond as a subset of an n×n

square for convenience and because it worked well with
our proof technique using polynomials over finite fields.
An obvious generalization is to find geometric orthogonal
codes that work over n×m rectangles for n 6= m.

2) Our lower bound technique works for w = n, where w
is the desired number of patches per macrobond. Can we
generalize to arbitrary w, possibly matching the upper
bound of Theorem II.3?

3) In defining orthogonality of two macrobonds, we allow
them to translate relative to each other, but not to rotate,
except by 180◦. Imagining a 2D macrobond based on
generalizing the scheme of Figure 1(d) in the most obvi-
ous way — in which the blunt ends face orthogonal to
the origami face rather than parallel to it as in Figure 1(e)
— would imply that the shape of a patch would no
longer automatically disallow non-180◦ rotations.5 Thus,
it would be interesting to consider adding a rotational
constraint to the definition of geometric orthogonal code.

4) We model patches as completely non-specific bonds.
DNA blunt ends are relatively nonspecific, but even
so, a GC/CG stack for instance is significantly stronger
than an AT/TA stack. The macrobonds employed in [11]
actually use only GC/CG stacks to enforce uniformity
(other stack types are allowed in [4]). One can imagine
ways to add some specificity to patches by choice of
terminating base pair, or possibly by using DNA sticky
ends in place of stacking bonds. The problem would
then be better modeled by defining a macrobond to be
a function M : Sn → C ∪ {null}, where C is a finite set
of “colors”, and null represents the absence of a patch.
Then, two aligned patches with colors c1, c2 ∈ C would
have strength str(c1, c2) (for C being the set of possible
terminating base pairs, str(c1, c2) is in Table 1 of [8]).

5) Our formalization of the concept resembles Figure 1(e)
more than 1(d) in the sense that there are two types of
faces (“bump” type faces and “dent” type faces), and

5As mentioned in Section I-B, there are physical reasons to conjecture
that such rotations have weaker stacking bonds than the “standard” rotation,
but it would be interesting to model a worst-case scenario in which rotated
macrobonds could align many patches.

a macrobond is always formed between opposite-type
faces. In contrast, macrobonds formed in Figure 1(d) are
between faces of the same “type.” In this case, one could
imagine a macrobond coming into contact with another
copy of itself through flipping along one axis only.

6) Woo and Rothemund [11] study a related technique for
creating specific macrobonds. It uses shape complemen-
tarity rather than patch placement, in which the shape
of an edge can sterically prevent patches from bonding.
It would be interesting to study codes based on this
technique (see also [5]).
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