The limits of chemical computing Computation with chemical reaction networks

David Doty

23rd International Meeting on DNA and Molecular Programming

September 2017

Acknowledgments

Rachel Cummings

Georgia Tech

Amanda Belleville UC-Davis

Ho-Lin Chen NTU

Gr

Banff International Research Station for Mathematical Innovation and Discovery

Anne Condon

Monir Hajiaghayi UBC

David Soloveichik UT-Austin

co-authors

Chemical reaction networks

Chemical reaction networks reactant(s) $R \rightarrow P_1 + P_2$ product(s)

$\begin{array}{ll} \text{Chemical reaction networks} \\ & & & \\ & & & reactant(s) & R \rightarrow P_1 + P_2 & product(s) \\ & & & \\ & & & \\ & & monomers & M_1 + M_2 \rightarrow D & dimer \end{array}$

Chemical reaction networksreactant(s) $R \rightarrow P_1 + P_2$ product(s)monomers $M_1 + M_2 \rightarrow D$ dimercatalyst $C + X \rightarrow C + Y$

Chemical reaction networksreactant(s) $R \rightarrow P_1 + P_2$ product(s)monomers $M_1 + M_2 \rightarrow D$ dimercatalyst $C + X \rightarrow C + Y$

Traditionally a descriptive modeling language... Let's instead use it as a prescriptive programming language Chemical caucusing

$X+Y \rightarrow U+U$

Chemical caucusing

 $X+Y \rightarrow U+U$

 $\begin{array}{l} X + U \rightarrow X + X \\ Y + U \rightarrow Y + Y \end{array}$

distributed algorithm for *"approximate majority"*: initial majority (*X* or *Y*) quickly overtakes whole population

distributed algorithm for *"approximate majority"*: initial majority (*X* or *Y*) quickly overtakes whole population

Does chemistry compute?

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of epigenetic cell memory by nucleosome modification, *Cell* 2007]

Does chemistry compute?

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of epigenetic cell memory by nucleosome modification, *Cell* 2007]

[Cardelli, Csikász-Nagy. The cell cycle switch computes approximate majority. *Nature Scientific Reports* 2012] [Cardelli, Morphisms of reaction networks that couple structure to function, *BMC Systems Biology* 2014]

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

Response: [Soloveichik, Seelig, Winfree, *PNAS* 2010] showed how to physically implement <u>any</u> chemical reaction network using *DNA strand displacement*

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

Response: [Soloveichik, Seelig, Winfree, *PNAS* 2010] showed how to physically implement <u>any</u> chemical reaction network using *DNA strand displacement*

 $X_1 + X_2 \rightarrow X_3$

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

Response: [Soloveichik, Seelig, Winfree, *PNAS* 2010] showed how to physically implement <u>any</u> chemical reaction network using *DNA strand displacement*

 $X_1 + X_2 \rightarrow X_3$

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically implement any chemical reaction network using DNA strand displacement

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

Response: [Soloveichik, Seelig, Winfree, *PNAS* 2010] showed how to physically implement <u>any</u> chemical reaction network using *DNA strand displacement*

$$X_1 + X_2 \to X_3$$

DNA strand displacement implementing $A+B \rightarrow C$

Experimental implementations of synthetic chemical reaction networks with DNA

Theoretical Computer Science Approach

What computation is possible and what is not? (Computability theory)

Theoretical Computer Science Approach

What computation is possible and what is not? (Computability theory)

What computations necessarily take a long time and what can be done quickly? (Computational complexity theory)

Outline

- Formal definition of chemical reaction networks
- What do we mean by "computation" with chemical reactions?
- What do we mean by "efficient computation" with chemical reactions?
- What is known
- What is not yet known

Chemical Reaction Networks (formal definition)

- finite set of *d* species $\Lambda = \{A, B, C, D, ...\}$
- finite set of reactions: e.g. $A+B \xrightarrow{k_1} A+C$ $C \xrightarrow{k_2} A+A$ $C+B \xrightarrow{k_3} C$
- configuration $\mathbf{x} \in \mathbb{N}^d$: molecular counts of each species

What is **possible**: Example reaction sequence

- $\alpha: \qquad A+B \rightarrow A+C \qquad A \quad B \quad C$
- β: C→A+A x = (2, 2, 0)

What is **possible**: Example reaction sequence

 $\alpha: \qquad A+B \rightarrow A+C \qquad A \quad B \quad C \\ \beta: \qquad C \rightarrow A+A \qquad x = (2, 2, 0)$

What is **possible**: Example reaction sequence

- $\alpha: \qquad A+B \rightarrow A+C$ $\beta: \qquad C \rightarrow A+A$
- A A B

x = (2, 2, 0) $\alpha \downarrow$ (2, 1, 1)

A B C

What is **probable**:

Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction typerate $A \xrightarrow{k} \dots$ $k \cdot \#A$ $A+B \xrightarrow{k} \dots$ $k \cdot \#A \cdot \#B / v$

[McQuarrie 1967, van Kampen, Gillespie 1977]

What is **probable**:

Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction typerate $A \xrightarrow{k} \dots$ $k \cdot \#A$ $A+B \xrightarrow{k} \dots$ $k \cdot \#A \cdot \#B / v$

System evolves via a continuous time Markov process:

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

What is **probable**:

Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction type	rate
$A \xrightarrow{k} \dots$	k∙#A
$A+B \xrightarrow{k} \dots$	k∙#A∙#B / v

System evolves via a continuous time Markov process:

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

expected time until next reaction is 1 / (sum of all reaction rates)

Relationship to distributed computing

population protocol = list of *transitions* such as

 $x, y \rightarrow x, x$ $a, b \rightarrow c, d$ $a, a \rightarrow a, a$ (null transition)

• Repeatedly, two *agents* (molecules) are picked at random to *interact* (react) and change *state* (species).
population protocol = list of *transitions* such as

 $x, y \rightarrow x, x$ $a, b \rightarrow c, d$ $a, a \rightarrow a, a$ (null transition)

• Repeatedly, two *agents* (molecules) are picked at random to *interact* (react) and change *state* (species).

A population protocol is a chemical reaction network with

• two reactants, two products per reaction

population protocol = list of *transitions* such as

 $x, y \rightarrow x, x$ $a, b \rightarrow c, d$ $a, a \rightarrow a, a$ (null transition)

• Repeatedly, two *agents* (molecules) are picked at random to *interact* (react) and change *state* (species).

A population protocol is a chemical reaction network with

- two reactants, two products per reaction
- unit rate constants

population protocol = list of *transitions* such as

 $x, y \rightarrow x, x$ $a, b \rightarrow c, d$ $a, a \rightarrow a, a$ (null transition)

• Repeatedly, two *agents* (molecules) are picked at random to *interact* (react) and change *state* (species).

A population protocol is a chemical reaction network with

- two reactants, two products per reaction
- unit rate constants
- volume = *n* = number of agents (never changes)

population protocol = list of *transitions* such as

 $x, y \rightarrow x, x$ $a, b \rightarrow c, d$ $a, a \rightarrow a, a$ (null transition)

• Repeatedly, two *agents* (molecules) are picked at random to *interact* (react) and change *state* (species).

A population protocol is a chemical reaction network with

- two reactants, two products per reaction
- unit rate constants
- volume = *n* = number of agents (never changes)

population protocols \subsetneq chemical reactions, but "most" ideas that apply to one model also apply to the other

Time complexity in population protocols

- pair of agents picked uniformly at random to interact (possibly null interaction)
- *parallel time* = number of interactions / *n*

i.e., each agent has O(1) interactions per "unit time"

 $X \xleftarrow{1}{1} Y$

start with *n* copies of molecule X

 $X \xleftarrow{1}{1} Y$

start with *n* copies of molecule X

#Y = n/2 expected at equilibrium

 $X \xleftarrow{1}{1} Y$

start with *n* copies of molecule X

#Y = n/2 expected at equilibrium

 $X \xleftarrow{1}{1} Y$

start with *n* copies of molecule X

#Y = n/2 expected at equilibrium

 $\begin{array}{c} X \xrightarrow{1} Y \\ X \xrightarrow{1} \end{array}$

#*Y* <u>stabilizes</u>, with expected value *n*/2

 $X \xleftarrow{1}{\underbrace{1}{\underbrace{1}{\underbrace{1}{2}}} Y$

start with *n* copies of molecule X

n/3#Y = n/2 expected at equilibrium

n/3 #Y <u>stabilizes</u>, with expected value n/2

• integer counts ("stochastic") or real concentrations ("mass-action")?

• **integer** counts ("stochastic") or **real** concentrations ("mass-action")?

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function? *"make Y become half the amount of X"*

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function?

"make Y become half the amount of X"

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function? *"make Y become half the amount of X"*
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function? *"make Y become half the amount of X"*
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function? *"make Y become half the amount of X"*
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present?
 - auxiliary species can be present?

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function? *"make Y become half the amount of X"*
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present
 - auxiliary species can be present?

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function?
- "make Y become half the amount of X"
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present
 - auxiliary species can be present?
- when is the computation finished? when...
 - the output stops changing? (convergence)
 - the output becomes unable to change? (stabilization)
 - a certain species T is first produced? (termination)

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function?
- "make Y become half the amount of X"
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present
 - auxiliary species can be present?
- when is the computation finished? when...
 - the output stops changing? (convergence)
 - the output becomes unable to change? (stabilization)
 - a certain species T is first produced? (termination)

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function?
- "make Y become half the amount of X"
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present
 - auxiliary species can be present?
- when is the computation finished? when...
 - the output stops changing? (convergence)
 - the output becomes unable to change? (stabilization)
 - a certain species T is first produced? (termination)
- require exact numerical answer? or allow an approximation?

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function?
- "make Y become half the amount of X"
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present
 - auxiliary species can be present?
- when is the computation finished? when...
 - the output stops changing? (convergence)
 - the output becomes unable to change? (stabilization)
 - a certain species T is first produced? (termination)
- require exact numerical answer? or allow an approximation?

initial configuration

i

(assuming finite set of reachable configurations) equivalent to: The system <u>will</u> reach a correct stable configuration with probability 1.

Speed of computation

Speed of computation

How to fairly assess speed?

Like any respectable computer scientist...

as a function of input size *n* (how required time grows with *n*)
ignoring constant factors

Speed of computation

How to fairly assess speed?

Like any respectable computer scientist...

as a function of input size *n* (how required time grows with *n*)
ignoring constant factors

n = total molecular count

volume v = O(n)

i.e., <u>require bounded concentration</u> (finite density constraint)

n molecules volume v = O(n)

n molecules volume v = O(n)

 $A + B \rightarrow Y + B$

propensity: $#A \cdot #B / v = O(1/n)$

expected time to produce *Y*:

O(n)

n molecules volume v = O(n)

produce *Y*:

An exponential time difference

n molecules volume *v* = *O*(*n*)

expected time to

• goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a > b$

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a > b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial configurations all molecules are from Σ , e.g., {100 A, 55 B}

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a > b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial configurations all molecules are from Σ , e.g., {100 A, 55 B}
- output specification: partition species Λ into "yes" voters Λ_{Y} and "no" voters Λ_{N}

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a > b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial configurations all molecules are from Σ , e.g., {100 A, 55 B}
- output specification: partition species Λ into "yes" voters Λ_{Y} and "no" voters Λ_{N}
 - $\psi(\mathbf{o}) = Y$ (configuration \mathbf{o} outputs "yes") if vote is unanimously yes: $\mathbf{o}(s) > 0 \Leftrightarrow s \in \Lambda_{Y}$
 - $\psi(\mathbf{o}) = N$ (configuration \mathbf{o} outputs "no") if vote is unanimously no: $\mathbf{o}(s) > 0 \Leftrightarrow s \in \Lambda_N$
 - configuration **o** has undefined output otherwise: $(\exists s \in \Lambda_N, s' \in \Lambda_Y) \mathbf{o}(s) > 0$ and $\mathbf{o}(s') > 0$

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a > b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial configurations all molecules are from Σ , e.g., {100 A, 55 B}
- output specification: partition species Λ into "yes" voters Λ_{Y} and "no" voters Λ_{N}
 - $\psi(\mathbf{o}) = Y$ (configuration \mathbf{o} outputs "yes") if vote is unanimously yes: $\mathbf{o}(s) > 0 \Leftrightarrow s \in \Lambda_{Y}$
 - $\psi(\mathbf{o}) = N$ (configuration \mathbf{o} outputs "no") if vote is unanimously no: $\mathbf{o}(s) > 0 \Leftrightarrow s \in \Lambda_N$
 - configuration **o** has undefined output otherwise: $(\exists s \in \Lambda_N, s' \in \Lambda_Y) \mathbf{o}(s) > 0$ and $\mathbf{o}(s') > 0$
- **o** is stable if $\psi(\mathbf{o}) = \psi(\mathbf{o'})$ for all **o'** reachable from **o**

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

a votes no; b votes yes
E[time] = O(log n)

Counting: $\varphi(a,b) = Y \Leftrightarrow b > 1$

Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $b+a \rightarrow b+b$

a votes no; b votes yes
E[time] = O(log n)

Counting: $\varphi(a,b) = Y \Leftrightarrow b > 1$ $b+b \rightarrow y+y \quad O(n)$ time $y+b \rightarrow y+y \quad O(\log n)$ time $y+a \rightarrow y+y \quad O(\log n)$ time

a,b vote no; y votes yes E[time] = O(n)

Majority: $\varphi(a,b) = Y \Leftrightarrow a > b$

Majority: $\varphi(a,b) = Y \Leftrightarrow a > b$

 $A+B \rightarrow a+b$ (both become "followers" but <u>preserve difference</u> between A's and B's)

[Draief, Vojnovic. Convergence speed of binary interval consensus. *SIAM Journal on Control and Optimization*, 50(3):1087–1109, 2012] [Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and very Small Local Memory, *Distributed Computing* 2015]

Majority: $\varphi(a,b) = Y \Leftrightarrow a > b$

 $A+B \rightarrow a+b$ (both become "followers" but <u>preserve difference</u> between A's and B's)

- $A+b \rightarrow A+a$ (leader changes vote of follower)
- $B+a \rightarrow B+b$ (leader changes vote of follower)

[Draief, Vojnovic. Convergence speed of binary interval consensus. *SIAM Journal on Control and Optimization*, 50(3):1087–1109, 2012] [Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and very Small Local Memory, *Distributed Computing* 2015]

Majority: $\varphi(a,b) = Y \Leftrightarrow a > b$

 $A+B \rightarrow a+b$ (both become "followers" but <u>preserve difference</u> between A's and B's)

 $A+b \rightarrow A+a$ (leader changes vote of follower)

 $B+a \rightarrow B+b$ (leader changes vote of follower)

O(n) time if a - b = O(1)

$O(\log n)$ time if a - b > 0.01n

[Draief, Vojnovic. Convergence speed of binary interval consensus. *SIAM Journal on Control and Optimization*, 50(3):1087–1109, 2012] [Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and very Small Local Memory, *Distributed Computing* 2015]

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

Parity: $\varphi(a)$ =Y \Leftrightarrow a is odd

 $a = A_0$ (subscript o/e means ODD/EVEN, and capital A means it is <u>leader</u>)

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

 $a = A_0$ (subscript o/e means ODD/EVEN, and capital A means it is <u>leader</u>)

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

 $a = A_0$ (subscript o/e means ODD/EVEN, and capital A means it is <u>leader</u>)

 $A_{o}+a_{e} \rightarrow A_{o}+a_{o}$ leader overwrites $A_{e}+a_{o} \rightarrow A_{e}+a_{e}$ bit of follower

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

 $A_{o} + A_{o} \rightarrow A_{e} + a_{e}$

 $A_{e} + A_{e} \rightarrow A_{e} + a_{e}$ $A_{o} + A_{e} \rightarrow A_{o} + a_{o}$

 $a = A_0$ (subscript o/e means ODD/EVEN, and capital A means it is <u>leader</u>)

two leaders XOR their parity, and one becomes follower

 $A_{o}+a_{e} \rightarrow A_{o}+a_{o}$ leader overwrites $A_{e}+a_{o} \rightarrow A_{e}+a_{e}$ bit of follower

$O(n \log n)$ time

O(n) bottleneck transition before leader reaches count 1, then $O(n \log n)$ coupon collector for leader to encounter each follower

possible to optimize to O(n)

[Angluin, Aspnes, Eisenstat, DISC 2006]

• goal: compute function $f: \mathbb{N}^k \to \mathbb{N}$, e.g., f(a,b) = 2a + b/2

- goal: compute function $f: \mathbb{N}^k \to \mathbb{N}$, e.g., f(a,b) = 2a + b/2
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - valid initial configuration: all molecules are from Σ , e.g., {100 *a*, 100 *b*}

- goal: compute function $f: \mathbb{N}^k \to \mathbb{N}$, e.g., f(a,b) = 2a + b/2
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - valid initial configuration: all molecules are from Σ , e.g., {100 *a*, 100 *b*}
- output specification: designate one species $y \in \Lambda$ whose count is the *output*

- goal: compute function $f: \mathbb{N}^k \to \mathbb{N}$, e.g., f(a,b) = 2a + b/2
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - valid initial configuration: all molecules are from Σ , e.g., {100 *a*, 100 *b*}
- output specification: designate one species $y \in \Lambda$ whose count is the *output*
- recall: o is stable if o(y) = o'(y) for all o' reachable from o

division by 2: *f*(*a*) = *a*/2

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

division by 2: *f*(*a*) = *a*/2

 $a + a \rightarrow y$

E[time] = O(n)(last transition is <u>bottleneck</u>: has count ≤ 3 of a)

division by 2: *f*(*a*) = *a*/2

multiplication by 2: f(a) = 2a

 $a + a \rightarrow y$

E[time] = O(n)(last transition is <u>bottleneck</u>: has count ≤ 3 of a)

division by 2: f(a) = a/2

multiplication by 2: f(a) = 2a

 $a + a \rightarrow y$

E[time] = O(n)(last transition is <u>bottleneck</u>: has count ≤ 3 of a) $a \rightarrow y + y$

division by 2: *f*(*a*) = *a*/2

multiplication by 2: f(a) = 2a

 $a + a \rightarrow y$

E[time] = O(n)(last transition is <u>bottleneck</u>: has count ≤ 3 of a) $a \rightarrow y + y$

division by 2: f(a) = a/2

multiplication by 2: f(a) = 2a

 $a + a \rightarrow y$

E[time] = O(n)(last transition is <u>bottleneck</u>: has count ≤ 3 of a)

 $a \rightarrow y + y$

division by 2: *f*(*a*) = *a*/2

multiplication by 2: f(a) = 2a

 $a + a \rightarrow y$

E[time] = O(n)(last transition is <u>bottleneck</u>: has count ≤ 3 of a)

 $a \rightarrow y + y$

addition: f(a,b) = a+b

addition: f(a,b) = a+b

 $a \rightarrow y$ $b \rightarrow y$

 $E[time] = O(\log n)$

addition: f(a,b) = a+b

subtraction: f(a, b) = a - b

 $a \rightarrow y$ $b \rightarrow y$

 $E[time] = O(\log n)$

addition: f(a,b) = a+b

 $a \rightarrow y$ $b \rightarrow y$ subtraction: f(a, b) = a - b

 $a \rightarrow y$ b+y \rightarrow

 $E[time] = O(\log n)$

E[time] = O(n) if a - b = O(1) initially (last transition is bottleneck)

subtract constant: f(a) = a - 1

subtract constant: f(a) = a-1

 $a+a \rightarrow a+y$ E[time] = O(n)

subtract constant: f(a) = a-1 $a+a \rightarrow a+y$ E[time] = O(n)

minimum: *f*(*a*,*b*) = min(*a*,*b*)

subtract constant: f(a) = a-1 $a+a \rightarrow a+y$ E[time] = O(n)

subtract constant: f(a) = a-1 $a+a \rightarrow a+y$ E[time] = O(n) **maximum:** f(a,b) = max(a,b) = a+b-min(a,b)

subtract constant: f(a) = a-1 $a+a \rightarrow a+y$ E[time] = O(n)

maximum:
$$f(a,b) = \max(a,b) = a+b-\min(a,b)$$

 $a \rightarrow y+a_2$
 $b \rightarrow y+b_2$
addition

subtract constant: f(a) = a-1 $a+a \rightarrow a+y$ E[time] = O(n)

maximum:
$$f(a,b) = max(a,b) = a+b-min(a,b)$$

 $\begin{array}{l}
a \rightarrow \mathbf{y} + a_2 \\
b \rightarrow \mathbf{y} + b_2
\end{array}$ addition

$$a_2 + b_2 \rightarrow k$$
 minimum

maximum: f(a,b) = max(a,b) = a+b - min(a,b)subtract constant: f(a) = a-1 $a+a \rightarrow a+y$ $a \rightarrow y + a_2$ $b \rightarrow y + b_2$ addition E[time] = O(n) $a_2 + b_2 \rightarrow k$ minimum **minimum:** f(a,b) = min(a,b)subtraction $k+y \rightarrow$ $a+b \rightarrow y$ E[time] = O(n) if a - b = O(1) initially

E[time] = O(n) (uses minimum and subtraction as "subroutines")

constant: *f*(*a*) = 1

constant: f(a) = 1 $a \rightarrow y$ $y+y \rightarrow y$ E[time] = O(n)

constant: *f*(*a*) = 1

a.k.a. "leader election"

E[time] = O(n)

 $a \rightarrow y$

 $y+y \rightarrow y$

Predicates

• φ is stably computable if and only if φ is *semilinear*.

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, *PODC* 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, *PODC* 2006]

Predicates

- φ is stably computable if and only if φ is semilinear.
- semilinear = Boolean combination of <u>threshold</u> and <u>mod</u> predicates: take weighted sum s = w₁·a₁ + ... w_k·a_k of inputs and ask if s > constant c?

```
s \equiv c \mod m for constants c,m?
```


[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, *PODC* 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, *PODC* 2006]

Predicates

- φ is stably computable if and only if φ is *semilinear*.
- semilinear = Boolean combination of <u>threshold</u> and <u>mod</u> predicates: take weighted sum s = w₁·a₁ + ... w_k·a_k of inputs and ask if s > constant c?

 $s \equiv c \mod m$ for constants c,m?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, *PODC* 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, *PODC* 2006] [Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, *DNA* 2012] [Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, *DNA* 2013]

Functions

 f is stably computable if and only if graph(f) = { (a,y) | f(a)=y } is semilinear.

Predicates

- φ is stably computable if and only if φ is *semilinear*.
- semilinear = Boolean combination of <u>threshold</u> and <u>mod</u> predicates: take weighted sum s = w₁·a₁ + ... w_k·a_k of inputs and ask if s > constant c?

 $s \equiv c \mod m$ for constants c,m?

a>b?	a=b?	<i>a</i> is odd?	a>07	? а	>1?
NOT	a=b²?	<i>a</i> is a power of 2	?	<i>a</i> is pr	ime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, *PODC* 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, *PODC* 2006]

Functions

- f is stably computable if and only if graph(f) = { (a,y) | f(a)=y } is semilinear.
- <u>piecewise linear</u>, with semilinear predicate to determine which piece.

a+b	a–b	2a	a/2	min(<i>a,b</i>)	a+1	<i>a</i> –1
f(a) =	2 <i>a</i> -b/3 i	if <i>a+b</i>	is odd,	else $f(a) = a$	/4+5b	

NOT	a ²	2 ^a	2 <i>a</i> if <i>a</i> is prime, else 3 <i>a</i>
-----	-----------------------	----------------	--

[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, *DNA* 2012] [Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, *DNA* 2013]

Predicates

- φ is stably computable if and only if φ is *semilinear*.
- semilinear = Boolean combination of <u>threshold</u> and <u>mod</u> predicates: take weighted sum s = w₁·a₁ + ... w_k·a_k of inputs and ask if s > constant c?

 $s \equiv c \mod m$ for constants c,m?

a>b?	a=b?	a is odd? a	>0?	a>1?
NOT	a=b²?	<i>a</i> is a power of 2?	а	is prime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, *PODC* 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, *PODC* 2006]

Functions

- f is stably computable if and only if graph(f) = { (a,y) | f(a)=y } is semilinear.
- <u>piecewise linear</u>, with semilinear predicate to determine which piece.

a+b a-b 2a a/2 min(a,b) a+1 a-1 f(a) = 2a-b/3 if a+b is odd, else f(a) = a/4+5b

NOT a^2 2^a 2a if a is prime, else 3a

All semilinear predicates/functions are known to be computable in O(n) time.

[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, *DNA* 2012] [Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, *DNA* 2013]

Predicates

Boolean combination of detection predicates

"detection" means $\varphi(a) = a > 0$?"

Predicates

Boolean combination of detection predicates

"detection" means $\varphi(a) = a > 0$?"

φ(*a*,*b*,*c*) = *a*>0 OR (*b*>0 AND *c*=0)

i.e., constant except when a variable changes from 0 to positive

Predicates

Boolean combination of detection predicates

"detection" means $\varphi(a) = a > 0$?"

φ(*a*,*b*,*c*) = *a*>0 OR (*b*>0 AND *c*=0)

i.e., constant except when a variable changes from 0 to positive

Functions

 \mathbb{N} -linear functions (coefficients are nonnegative integers)

Predicates

Boolean combination of detection predicates

"detection" means $\varphi(a) = a > 0$?"

φ(*a*,*b*,*c*) = *a*>0 OR (*b*>0 AND *c*=0)

i.e., constant except when a variable changes from 0 to positive

Functions

 \mathbb{N} -linear functions (coefficients are nonnegative integers)

e.g., f(a,b) = 2a + 3b $a \rightarrow y+y$ $b \rightarrow y+y+y$

[Angluin, Aspnes, Eisenstat, Fast computation by population protocols with a leader, *DISC* 2006] [Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, *DNA* 2012]

Known time lower bounds: "most" predicates/functions

 <u>Informal</u>: "most" semilinear predicates and functions not known to be computable in o(n) time, actually require at least O(n) time to compute

[Doty, Soloveichik, Stable leader election in population protocols requires linear time, *DISC* 2015]

[Belleville, Doty, Soloveichik, Hardness of computing and approximating predicates and functions with leaderless population protocols, *ICALP* 2017]

Known time lower bounds: "most" predicates/functions

- <u>Informal</u>: "most" semilinear predicates and functions not known to be computable in o(n) time, actually require at least O(n) time to compute
- <u>Definition</u>: φ : $\mathbb{N}^k \to \{Y, N\}$ is eventually constant if there is $m \in \mathbb{N}$ so that $\varphi(a) = \varphi(b)$ for all a, b with all components $\geq m$

[Doty, Soloveichik, Stable leader election in population protocols requires linear time, *DISC* 2015]

[Belleville, Doty, Soloveichik, Hardness of computing and approximating predicates and functions with leaderless population protocols, *ICALP* 2017]

Known time lower bounds: "most" predicates/functions

- <u>Informal</u>: "most" semilinear predicates and functions not known to be computable in o(n) time, actually require at least O(n) time to compute
- <u>Definition</u>: φ : $\mathbb{N}^k \to \{Y, N\}$ is eventually constant if there is $m \in \mathbb{N}$ so that $\varphi(a) = \varphi(b)$ for all a, b with all components $\geq m$
- <u>Definition</u>: $f: \mathbb{N}^k \to \mathbb{N}$ is eventually N-linear if there is $m \in \mathbb{N}$ so that f(a) is N-linear for all a with all components $\geq m$
 - Both definitions allow exceptions "near a face of $\mathbb{N}^{k''}$

[Doty, Soloveichik, Stable leader election in population protocols requires linear time, *DISC* 2015]

[Belleville, Doty, Soloveichik, Hardness of computing and approximating predicates and functions with leaderless population protocols, *ICALP* 2017]
Known time lower bounds: "most" predicates/functions

- <u>Informal</u>: "most" semilinear predicates and functions not known to be computable in o(n) time, actually require at least O(n) time to compute
- <u>Definition</u>: φ : $\mathbb{N}^k \to \{Y, N\}$ is eventually constant if there is $m \in \mathbb{N}$ so that $\varphi(a) = \varphi(b)$ for all a, b with all components $\geq m$
- <u>Definition</u>: $f: \mathbb{N}^k \to \mathbb{N}$ is eventually N-linear if there is $m \in \mathbb{N}$ so that f(a) is N-linear for all a with all components $\geq m$
 - Both definitions allow exceptions "near a face of $\mathbb{N}^{k''}$
- <u>Formal theorem</u>: Every predicate that is not eventually constant, and every function that is not eventually \mathbb{N} -linear, requires at least time O(n) to compute.
 - They're all computable in at most O(n) time, so this settles their time complexity.

[Doty, Soloveichik, Stable leader election in[Belleville, Doty, Soloveichik, Hardness of computing and approximatingpopulation protocols requires linear time, DISC 2015]predicates and functions with leaderless population protocols, ICALP 2017]

	Predicates	Functions
computable in O(log n) time	<u>detection</u> <i>a</i> >0 AND (<i>b</i> >0 OR <i>c</i> =0)	$\frac{\mathbb{N}-\text{linear}}{3a+b+2c}$
not computable in less than O(n) time	non-eventually constant a>b? a=b? a is odd?	$\begin{array}{llllllllllllllllllllllllllllllllllll$
unknown (best known protocol is <i>O</i> (<i>n</i>) time)	eventually constant but not constant on positive values a>1?	eventually N-linear but not N-linear $f(a) = \begin{cases} a \text{ if } a > 1, \\ 0 \text{ otherwise} \end{cases} \begin{cases} f(a) 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{cases}$

	Predicates	Functions
computable in O(log n) time	<u>detection</u> a>0 AND (b>0 OR c=0)	$\frac{\mathbb{N}-\text{linear}}{3a+b+2c}$
not computable in less than O(n) time	non-eventually constant a>b? a=b? a is odd?	$\begin{array}{ll} \underline{non-eventually \mathbb{N}-linear} \\ a/2 & a-b & a+1 & a-1 & 1 \\ \min(a,b) & \max(a,b) \\ \max(a,\min(b+3,2c)) - c - 1 \end{array}$
unknown (best known protocol is <i>O</i> (<i>n</i>) time)	eventually constant but not constant on positive values a>1?	eventually N-linear but not N-linear $f(a) = \begin{cases} a \text{ if } a > 1, \\ 0 \text{ otherwise} \end{cases} \begin{cases} f(a) 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{cases}$

	Predicates	Functions
computable in O(log n) time	<u>detection</u> a>0 AND (b>0 OR c=0)	$\frac{\mathbb{N}-\text{linear}}{3a+b+2c}$
not computable in less than O(n) time	<u>non-eventually constant</u> a>b? a=b? a is odd?	non-eventually \mathbb{N} -linear $a/2$ $a-b$ $a+1$ $a-1$ 1min(a,b)max(a,b)max(a , min(b + 3, 2 c)) - c - 1
unknown (best known protocol is <i>O</i> (<i>n</i>) time)	eventually constant but not constant on positive values a>1?	eventually N-linear but not N-linear $f(a) = \begin{cases} a \text{ if } a > 1, \\ 0 \text{ otherwise} \end{cases} \begin{cases} f(a) 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{cases}$

	Predicates	Functions
computable in O(log n) time	<u>detection</u> <i>a</i> >0 AND (<i>b</i> >0 OR <i>c</i> =0)	$\frac{\mathbb{N}-\text{linear}}{3a+b+2c}$
not computable in less than O(n) time	non-eventually constant a>b? a=b? a is odd?	non-eventually \mathbb{N} -linear $a/2$ $a-b$ $a+1$ $a-1$ 1min(a,b)max(a,b)max(a , min(b + 3, 2 c)) - c - 1
unknown (best known protocol is <i>O</i> (<i>n</i>) time)	eventually constant but not constant on positive values a>1?	eventually N-linear but not N-linear $f(a) = \begin{cases} a \text{ if } a > 1, \\ 0 \text{ otherwise} \end{cases} \begin{cases} f(a) 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{cases}$

Other modeling choices?

Modeling choices in formalizing "Computing with chemistry"

- **integer** counts ("stochastic") or **real** concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function?
- "make Y become double the amount of X"
- first part of talk
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent an input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present
 - auxiliary species can be present?
- when is the computation finished? when...
 - the output stops changing? (convergence)
 - the output becomes unable to change? (stabilization)
 - a certain species T is first produced? (termination)
- require exact numerical answer? or allow an approximation?

Modeling choices in formalizing "Computing with chemistry"

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
 - yes/no decision problem? "number of A's > number of B's?"
 - numerical function? *"make Y become double the amount of X"*
- guaranteed to get correct answer? or allow small probability of error?
 - if Pr[error] = 0, system works *no matter the reaction rates*
- to represent an input $n_1, ..., n_k$, what is the initial configuration?
 - only input species present?
 - auxiliary species can be present
- when is the computation finished? when...
 - the output stops changing? (convergence)
 - the output becomes unable to change? (stabilization)
 - a certain species *T* is first produced? (termination)
- require exact numerical answer? or allow an approximation?

summarized in next few slides

some predicates/functions get "easier" (i.e., it's easy to think of the reactions)

some predicates/functions get "easier" (i.e., it's easy to *think of the reactions*) parity: $\varphi(a) = a$ is odd"

$$\begin{array}{lll} \underline{\text{without}} & A_{0}+A_{0} \rightarrow A_{e}+a_{e} \\ a \text{ leader} & A_{e}+A_{e} \rightarrow A_{e}+a_{e} \\ A_{0}+A_{e} \rightarrow A_{0}+a_{0} \\ A_{0}+a_{e} \rightarrow A_{0}+a_{0} \\ A_{0}+a_{e} \rightarrow A_{0}+a_{0} \\ A_{e}+a_{0} \rightarrow A_{e}+a_{e} \end{array}$$

some predicates/functions get "easier" (i.e., it's easy to *think of the reactions*) <u>parity</u>: $\varphi(a) = a$ is odd"

$$\begin{array}{ll} \underline{\text{without}}\\ \text{a leader} \end{array} & A_{\text{o}} + A_{\text{o}} \rightarrow A_{\text{e}} + a_{\text{e}}\\ A_{\text{e}} + A_{\text{e}} \rightarrow A_{\text{e}} + a_{\text{e}}\\ A_{\text{o}} + A_{\text{e}} \rightarrow A_{\text{o}} + a_{\text{o}}\\ A_{\text{o}} + a_{\text{e}} \rightarrow A_{\text{o}} + a_{\text{o}}\\ A_{\text{o}} + a_{\text{e}} \rightarrow A_{\text{o}} + a_{\text{o}}\\ A_{\text{e}} + a_{\text{o}} \rightarrow A_{\text{e}} + a_{\text{e}} \end{array}$$

$$\frac{\text{with}}{\text{leader } L_{e}} \stackrel{L_{e}}{\to} \stackrel{L_{o}}{\to} \stackrel{L_{o}}{\to}$$

some predicates/functions get "easier" (i.e., it's easy to *think of the reactions*) <u>parity</u>: $\varphi(a) = a$ is odd"

$$\begin{array}{ll} \underline{\text{without}}\\ \text{a leader} \end{array} & A_{\text{o}} + A_{\text{o}} \rightarrow A_{\text{e}} + a_{\text{e}}\\ A_{\text{e}} + A_{\text{e}} \rightarrow A_{\text{e}} + a_{\text{e}}\\ A_{\text{o}} + A_{\text{e}} \rightarrow A_{\text{o}} + a_{\text{o}}\\ A_{\text{o}} + a_{\text{e}} \rightarrow A_{\text{o}} + a_{\text{o}}\\ A_{\text{o}} + a_{\text{e}} \rightarrow A_{\text{o}} + a_{\text{o}}\\ A_{\text{e}} + a_{\text{o}} \rightarrow A_{\text{e}} + a_{\text{e}} \end{array}$$

$$\frac{\text{with}}{\text{leader } L_{e}} \stackrel{L_{e}}{\rightarrow} \stackrel{L_{o}}{\rightarrow} \stackrel{L_{o}}{\rightarrow}$$

But *fundamental computability* doesn't change: exactly the semilinear predicates/functions can be computed (same as without a leader).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, *PODC* 2004] [Angluin, Aspnes, Eisenstat, *PODC* 2006] [Chen, Doty, Soloveichik, *DNA* 2012] [Doty, Hajiaghayi, *DNA* 2013]

<u>Convergence vs stabilization</u> and <u>leader vs anarchy</u>

<u>Convergence vs stabilization</u> and <u>leader vs anarchy</u>

Theorem: Without a leader, all non-eventually constant predicates and non-eventually- \mathbb{N} -linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, *ICALP* 2017]

Theorem: Without a leader, all non-eventually constant predicates and non-eventually- \mathbb{N} -linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

Previous work: With a leader, all semilinear predicates/functions can be computed in at most $O(\log^5 n)$ convergence time. [Angluin, Aspnes, Eisenstat, *DISC* 2006]

Theorem: Without a leader, all non-eventually constant predicates and non-eventually- \mathbb{N} -linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

Previous work: With a leader, all semilinear predicates/functions can be computed in at most $O(\log^5 n)$ convergence time. [Angluin, Aspnes, Eisenstat, *DISC* 2006]

Conjecture: With a leader, all non-detection predicates and non- \mathbb{N} -linear functions require at least O(n) stabilization time.

Conjecture: Without a leader, all non-detection predicates and non- \mathbb{N} -linear functions require at least O(n) convergence time.

Theorem: A function is stably computable by an **integer-valued** chemical reaction network if and only if it is semilinear.

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

Theorem: A function is stably computable by a real-valued chemical reaction network if and only if it is *continuous* and piecewise linear.

[Chen, Doty, Soloveichik, ITCS 2014]

Theorem: A function is computable with probability of error < 1% by an integer-valued chemical reaction network if and only if it is computable by <u>any algorithm whatsoever</u>...

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

Theorem: A function is computable with probability of error < 1% by an integer-valued chemical reaction network if and only if it is computable by <u>any algorithm whatsoever</u>...

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

Theorem: A function is computable with probability of error < 1% by an integer-valued chemical reaction network if and only if it is computable by <u>any algorithm whatsoever</u>...

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

... "efficiently" (polynomial-time slowdown) ...

Theorem: A function is computable with probability of error < 1% by an integer-valued chemical reaction network if and only if it is computable by <u>any algorithm whatsoever</u>...

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

... "efficiently" (polynomial-time slowdown) ...

... if we have an initial leader.

Theorem: A function is computable with probability of error < 1% by an integer-valued chemical reaction network if and only if it is computable by <u>any algorithm whatsoever</u>...

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

... "efficiently" (polynomial-time slowdown) ...

... if we have an initial leader.

Furthermore, computation doesn't merely converge to the correct answer eventually, but can be made *"terminating"*: producing a molecule *T* **signaling when the computation is done**. (provably impossible when Pr[error] = 0)

Theorem: A function is computable with probability of error < 1% by an integer-valued chemical reaction network if and only if it is computable by <u>any algorithm whatsoever</u>...

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

... "efficiently" (polynomial-time slowdown) ...

... if we have an initial leader.

Furthermore, computation doesn't merely converge to the correct answer eventually, but can be made *"terminating"*: producing a molecule *T* **signaling when the computation is done**. (provably impossible when Pr[error] = 0)

Conjecture: *Even without a leader,* any computable function can be efficiently computed with high probability.

What if we use real-valued concentrations... **and** allow reaction rates to influence outcome??

Theorem: A function is computable by a real-valued chemical reaction network using mass-action kinetics if and only if it is computable by <u>any algorithm whatsoever</u>.

[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. *Computational Methods in Systems Biology – CMSB* 2017]

What if we use real-valued concentrations... **and** allow reaction rates to influence outcome??

Theorem: A function is computable by a real-valued chemical reaction network using mass-action kinetics if and only if it is computable by <u>any algorithm whatsoever</u>.

[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. *Computational Methods in Systems Biology – CMSB* 2017]

mass-action kinetics: $\begin{bmatrix} \bullet \\ V \end{bmatrix} = \begin{bmatrix} V \end{bmatrix}$

Y

$$[X] = -k_1[X] + k_2[Y][Z]$$

$$X \xrightarrow{k_1} Y + Y \qquad [\mathring{Y}] = 2k_1[X] - k_2[Y][Z]$$

$$Y + Z \xrightarrow{k_2} X \qquad [\mathring{Z}] = -k_2[Y][Z]$$

What if we use real-valued concentrations... **and** allow reaction rates to influence outcome??

Theorem: A function is computable by a real-valued chemical reaction network using mass-action kinetics if and only if it is computable by <u>any algorithm whatsoever</u>.

[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. *Computational Methods in Systems Biology – CMSB* 2017]

mass-action kinetics:

Y

$$[X] = -k_1[X] + k_2[Y][Z]$$

$$X \xrightarrow{k_1} Y + Y \qquad [\mathring{Y}] = 2k_1[X] - k_2[Y][Z]$$

$$Y + Z \xrightarrow{k_2} X \qquad [\mathring{Z}] = -k_2[Y][Z]$$

... with only a polynomial-time slowdown.

[Bournez, Graça, Pouly. Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length. *Journal of the ACM* 2017]

Fast approximate division by 2

initial configuration:
{ n X, εn A, εn B }

 $\begin{array}{c} X + A \rightarrow B + Y \\ X + B \rightarrow A \end{array}$

<u>guaranteed</u> to get $Y = n/2 \pm \varepsilon n$ E[time] = O(log n) / ε

[Belleville, Doty, Soloveichik, Hardness of computing and approximating predicates and functions with leaderless population protocols, *ICALP* 2017]

Fast approximate division by 2

 $n = 100 \quad \varepsilon = 0.1$

[Belleville, Doty, Soloveichik, Hardness of computing and approximating predicates and functions with leaderless population protocols, *ICALP* 2017]

Thank you!

Questions?

Proofs of conjectures?

Criticism of model?

suggestions: 1) lack of reverse reactions (energy dissipated = ∞), 2) assumption of single initial copy of leader, 3) reactions aren't mass-conserving, 4) what about leak reactions?, 5) no discussion of diffusion rates, 6) this has nothing to do with how biological cells compute