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Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language… 
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst
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Does chemistry compute?

5

X U Y

[Dodd, Micheelsen, Sneppen, Thon.   Theoretical analysis of 
epigenetic cell memory by nucleosome modification, Cell 2007]

=

[Cardelli, Csikász-Nagy.   The cell cycle switch computes 
approximate majority. Nature Scientific Reports 2012]

≈

[Cardelli, Morphisms of reaction networks that couple 
structure to function, BMC Systems Biology 2014]

X YU
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DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge


Science and Technology

DNA Join circuit

2014





Experimental implementations of synthetic 
chemical reaction networks with DNA

8

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas, 
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas, 
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator

X+Y→B+B
X+B→X+X
Y+B→Y+Y

A+B→B+B
B+C→C+C
C+A→A+A
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What computations necessarily take a 
long time and what can be done quickly?
(Computational complexity theory) 

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring
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Outline

• Formal definition of chemical reaction networks

• What do we mean by “computation” with chemical reactions?

• What do we mean by “efficient computation” with chemical reactions?

• What is known

• What is not yet known



Chemical Reaction Networks (formal definition)

• finite set of reactions:   e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• configuration x∈ℕd: molecular counts of each species  

11

A+B→A+Ck1

k3C+B→C
C→A+Ak2
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What is possible: 
Example reaction sequence

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

⟹

α
(4, 0, 1)...

x =

12

...
A

A

A

A

C



What is probable: 
Stochastic kinetic model of chemical reaction networks

[McQuarrie 1967, van Kampen, Gillespie 1977]

Solution volume v
reaction type rate

k⋅ #A
k⋅ #A⋅ #B / v

13
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What is probable: 
Stochastic kinetic model of chemical reaction networks

expected time until next reaction is 1 / (sum of all reaction rates) 

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:

Solution volume v
reaction type rate

k⋅ #A
k⋅ #A⋅ #B / v

13

A → …k

A+B → …k



Relationship to distributed computing

population protocol = list of transitions such as 
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
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Relationship to distributed computing

population protocol = list of transitions such as 
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction
• unit rate constants
• volume = n = number of agents (never changes)

population protocols ⊊ chemical reactions, but “most” ideas that 
apply to one model also apply to the other

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]



Time complexity in population protocols

15

• pair of agents picked uniformly at random to interact 
(possibly null interaction)

• parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”
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X Y
1
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#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

2
2

n/3 n/3
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i x o o’reactions reactions reactions

∀ ∃
any reachable
configuration

initial
configuration

“correct”
output

correct 
output

∀
o is stable

(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.
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Speed of computation
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Speed of computation

How to fairly assess speed?

Like any respectable computer scientist… 
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors
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Speed of computation

n = total molecular count
volume v = O(n)
i.e., require bounded concentration (finite density constraint)

How to fairly assess speed?

Like any respectable computer scientist… 
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors
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• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(s)>0 ⇔ s∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(s)>0 ⇔ s∈ΛN

• configuration o has undefined output otherwise:    (∃ s∈ΛN, s’∈ΛY) o(s)>0 and o(s’)>0 

• o is stable if ψ(o) = ψ(o’) for all o’ reachable from o

21

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
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Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

Counting: φ(a,b) = Y ⇔ b > 1

b+b→y+y O(n) time

y+b→y+y O(log n) time

y+a→y+y O(log n) time

22

a votes no; b votes yes
E[time] = O(log n)

a,b vote no; y votes yes
E[time] = O(n)

a

a a

a

a

a ab

b

b

b

b b

b

exponential time difference!
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Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a > b
A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a  (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)

O(n) time if a – b = O(1)
O(log n) time if a – b > 0.01n

23

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization, 
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and 
very Small Local Memory, Distributed Computing 2015]
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Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd
a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity, 
and one becomes follower

leader overwrites 
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao

Ao+ae → Ao+ao
Ae+ao → Ae+ae

O(n log n) time 
O(n) bottleneck transition before leader reaches 
count 1, then O(n log n) coupon collector for 
leader to encounter each follower

possible to optimize to O(n) 
[Angluin, Aspnes, Eisenstat, DISC 2006]
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Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2
• input specification: designate subset Σ ⊆ Λ as “input” species

• valid initial configuration: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species y∈Λ whose count is the output
• recall: o is stable if o(y) = o’(y) for all o’ reachable from o

25
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Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)
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exponential time difference!

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)
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addition: f(a,b) = a+b subtraction: f(a,b) = a–b

27

a→y
b→y

E[time] = O(log n)

a→y

E[time] = O(n) if a – b = O(1) initially
(last transition is bottleneck)

b+y→
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Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b) = a+b–min(a,b)

28

a+b→y
E[time] = O(n) if a – b = O(1) initially

a→y+a2
b→y+b2

E[time] = O(n) (uses minimum and subtraction 
as “subroutines”)

a2+b2→k

k+y→

addition

minimum

subtraction

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)
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Examples of function computation
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constant: f(a) = 1

a→y

E[time] = O(n)

a.k.a. “leader election”
y+y→y
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s > constant c?
s ≡ c mod m for constants c,m?
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networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are 
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Predicates
• φ is stably computable if and only if φ is 

semilinear.
• semilinear = Boolean combination of 

threshold and mod predicates: take weighted 
sum s = w1·a1 + … wk·ak of inputs and ask if

s > constant c?
s ≡ c mod m for constants c,m?

Functions
• f is stably computable if and only if 

graph(f) = { (a,y) | f(a)=y } is semilinear.
• piecewise linear, with semilinear predicate 

to determine which piece.

30

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in 
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are 
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation 
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction 
networks, DNA 2013]

a>b?        a=b?        a is odd?        a>0?        a>1?

a+b a–b 2a a/2       min(a,b)     a+1     a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

All semilinear predicates/functions are 
known to be computable in O(n) time.NOT a=b2?       a is a power of 2?      a is prime?

NOT a2 2a 2a if a is prime, else 3a
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What is known to be computable in less than time O(n)?

Predicates
Boolean combination of detection 
predicates

“detection” means φ(a)  =  “a > 0?”

Functions
ℕ-linear functions (coefficients are 
nonnegative integers)

31

e.g., f(a,b) = 2a + 3b
a→y+y
b→y+y+y

φ(a,b,c) = a>0 OR (b>0 AND c=0)

[Angluin, Aspnes, Eisenstat, Fast computation by population protocols with a leader, DISC 2006]
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]

i.e., constant except when a variable 
changes from 0 to positive
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Known time lower bounds: “most” predicates/functions
• Informal: “most” semilinear predicates and functions not known to be 

computable in o(n) time, actually require at least O(n) time to compute
• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b) 

for all a,b with all components ≥ m
• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear 

for all a with all components ≥ m
• Both definitions allow exceptions “near a face of ℕk”

• Formal theorem: Every predicate that is not eventually constant, and every 
function that is not eventually ℕ-linear, requires at least time O(n) to compute.

• They’re all computable in at most O(n) time, so this settles their time complexity.

33

[Belleville, Doty, Soloveichik, Hardness of computing and approximating 
predicates and functions with leaderless population protocols, ICALP 2017]

[Doty, Soloveichik, Stable leader election in 
population protocols requires linear time, DISC 2015]
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known protocol 
is O(n) time)

eventually constant but not 
constant on positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1, 
0 otherwisef(a) =
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• integer counts  (“stochastic”) or real concentrations  (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem?   “number of A’s > number of B’s?”
• numerical function?             “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present? 
• auxiliary species can be present?

• when is the computation finished?  when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”
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next few slides



Auxiliary species present initially ≈ “initial leader”
Instead of starting with { 100 A } to represent input value 100, start 
with { 1 L, 100 A }
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some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao
Ao+ae → Ao+ao
Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo
Lo+A→Le

with a 
leader Le

But fundamental computability doesn’t change: 
exactly the semilinear predicates/functions can 
be computed (same as without a leader).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, PODC 2004] [Angluin, Aspnes, Eisenstat, PODC 2006] 
[Chen, Doty, Soloveichik, DNA 2012] [Doty, Hajiaghayi, DNA 2013]
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at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]



38

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-
ℕ-linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in 
at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-ℕ-linear functions 
require at least O(n) stabilization time.

Conjecture: Without a leader, all non-detection predicates and non-ℕ-linear functions 
require at least O(n) convergence time.
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What if we use real-valued concentrations?

39

Theorem: A function is stably 
computable by a real-valued chemical 
reaction network if and only if it is 
continuous and piecewise linear.

Theorem: A function is stably computable 
by an integer-valued chemical reaction 
network if and only if it is semilinear.

continuous piecewise linear example

[Chen, Doty, Soloveichik, ITCS 2014]
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What if we allow a small probability of error? 
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued 
chemical reaction network if and only if it is computable by any algorithm whatsoever… 
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]
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Theorem: A function is computable with probability of error < 1% by an integer-valued 
chemical reaction network if and only if it is computable by any algorithm whatsoever… 
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[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely 
converge to the correct answer eventually, but can 
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

Conjecture: Even without a leader, any 
computable function can be efficiently 
computed with high probability.

… “efficiently” (polynomial-time slowdown) …



What if we use real-valued concentrations… and allow 
reaction rates to influence outcome??

41

Theorem: A function is computable by a real-valued chemical reaction network using 
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly.   Strong Turing completeness of continuous chemical reaction networks and compilation of 
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]
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X → Y+Y

Y+Z → X

k1
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[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]
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reaction rates to influence outcome??

41

Theorem: A function is computable by a real-valued chemical reaction network using 
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly.   Strong Turing completeness of continuous chemical reaction networks and compilation of 
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] =             – k2[Y][Z]

… with only a polynomial-time 
slowdown. 

[Bournez, Graça, Pouly.  Polynomial time corresponds to 
solutions of polynomial ordinary differential equations 
of polynomial length. Journal of the ACM 2017]



Fast approximate division by 2

42

X+A→B+Y
X+B→A

initial configuration: 
{ n X, εn A, εn B }

guaranteed to get 
Y = n/2 ± εn
E[time] = O(log n) / ε

[Belleville, Doty, Soloveichik, Hardness of computing and approximating 
predicates and functions with leaderless population protocols, ICALP 2017]



Fast approximate division by 2

42

X+A→B+Y
X+B→A

initial configuration: 
{ n X, εn A, εn B }

guaranteed to get 
Y = n/2 ± εn
E[time] = O(log n) / ε

n = 100      ε = 0.1

[Belleville, Doty, Soloveichik, Hardness of computing and approximating 
predicates and functions with leaderless population protocols, ICALP 2017]



Thank you!
Questions?

Proofs of conjectures?

Criticism of model? 
suggestions: 1) lack of reverse reactions (energy dissipated = ∞), 2) assumption of single 
initial copy of leader, 3) reactions aren’t mass-conserving, 4) what about leak reactions?, 5) 
no discussion of diffusion rates, 6) this has nothing to do with how biological cells compute

43
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