
The limits of chemical computing
Computation with chemical reaction networks

David Doty
23rd International Meeting on DNA and Molecular Programming

September 2017

Acknowledgments

2

co-authors

David Soloveichik
UT-Austin

Ho-Lin Chen
NTU

Amanda Belleville
UC-Davis

Rachel Cummings
Georgia Tech

Anne Condon

Monir Hajiaghayi
UBC

Chemical reaction networks

3

Chemical reaction networks

3

R→P1+P2reactant(s) product(s)

Chemical reaction networks

3

R→P1+P2

M1+M2→D

reactant(s) product(s)

dimermonomers

Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

reactant(s) product(s)

dimermonomers

catalyst

Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language…
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst

Chemical caucusing

4

X+Y→U+U

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

Chemical caucusing

4

X+Y→U+U

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X
Y+U→Y+Y

Chemical caucusing

4

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X
Y+U→Y+Y

Chemical caucusing

4

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population

X U Y

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X
Y+U→Y+Y

Does chemistry compute?

5

X U Y

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

=X YU

X Y

Does chemistry compute?

5

X U Y

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

=

[Cardelli, Csikász-Nagy. The cell cycle switch computes
approximate majority. Nature Scientific Reports 2012]

≈

[Cardelli, Morphisms of reaction networks that couple
structure to function, BMC Systems Biology 2014]

X YU

Can we compute with chemistry?

6

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Can we compute with chemistry?

6

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

Can we compute with chemistry?

6

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

Can we compute with chemistry?

6

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

Can we compute with chemistry?

6

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

Can we compute with chemistry?

6

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

+

+

+

+

+

+

↔

→

→

7

DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge

Science and Technology

DNA Join circuit

2014

Experimental implementations of synthetic
chemical reaction networks with DNA

8

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas,
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator

X+Y→B+B
X+B→X+X
Y+B→Y+Y

A+B→B+B
B+C→C+C
C+A→A+A

time (hours)

re
la

tiv
e

am
ou

nt
 (%

)

co
nc

. d
er

iv.
 (n

M
/h

r)

1

2

15 30 45 60
time (hours)

Theoretical Computer Science Approach

9

What computation is possible and what is not?
(Computability theory)

Theoretical Computer Science Approach

9

What computations necessarily take a
long time and what can be done quickly?
(Computational complexity theory)

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring

10

Outline

• Formal definition of chemical reaction networks

• What do we mean by “computation” with chemical reactions?

• What do we mean by “efficient computation” with chemical reactions?

• What is known

• What is not yet known

Chemical Reaction Networks (formal definition)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• configuration x∈ℕd: molecular counts of each species

11

A+B→A+Ck1

k3C+B→C
C→A+Ak2

A+B→A+C
C→A+A

B

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C
x =

12

A

B

A

A+B→A+C
C→A+A

B

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C
x =

12

A

B

A

A+B→A+C
C→A+A

B

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)

x =

12

A
A

C

A+B→A+C
C→A+A

B

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)

x =

12

A
A

C

A+B→A+C
C→A+A

B

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

x =

12

...
A

A

A

A

A+B→A+C
C→A+A

B

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

x =

12

...
A

A

A

A

A+B→A+C
C→A+A

What is possible:
Example reaction sequence

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

⟹

α
(4, 0, 1)...

x =

12

...
A

A

A

A

C

What is probable:
Stochastic kinetic model of chemical reaction networks

[McQuarrie 1967, van Kampen, Gillespie 1977]

Solution volume v
reaction type rate

k⋅ #A
k⋅ #A⋅ #B / v

13

A → …k

A+B → …k

What is probable:
Stochastic kinetic model of chemical reaction networks

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:

Solution volume v
reaction type rate

k⋅ #A
k⋅ #A⋅ #B / v

13

A → …k

A+B → …k

What is probable:
Stochastic kinetic model of chemical reaction networks

expected time until next reaction is 1 / (sum of all reaction rates)

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:

Solution volume v
reaction type rate

k⋅ #A
k⋅ #A⋅ #B / v

13

A → …k

A+B → …k

Relationship to distributed computing

population protocol = list of transitions such as
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Relationship to distributed computing

population protocol = list of transitions such as
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Relationship to distributed computing

population protocol = list of transitions such as
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction
• unit rate constants

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Relationship to distributed computing

population protocol = list of transitions such as
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction
• unit rate constants
• volume = n = number of agents (never changes)

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Relationship to distributed computing

population protocol = list of transitions such as
x,y→x,x a,b→c,d a,a→a,a (null transition)
• Repeatedly, two agents (molecules) are picked at random to interact

(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction
• unit rate constants
• volume = n = number of agents (never changes)

population protocols ⊊ chemical reactions, but “most” ideas that
apply to one model also apply to the other

14
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Time complexity in population protocols

15

• pair of agents picked uniformly at random to interact
(possibly null interaction)

• parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”

Some simple reactions

16

X Y
1

1

start with n copies of molecule X

Some simple reactions

16

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

Some simple reactions

16

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

Some simple reactions

16

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

Some simple reactions

16

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

2
2

n/3 n/3

Modeling choices in formalizing “Computing with chemistry”

17

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?

17

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?
17

first part of talk

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become half the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?
17

first part of talk

Defining stable computation

18

Defining stable computation

18

i
initial

configuration

Defining stable computation

18

i xreactions

∀
any reachable
configuration

initial
configuration

Defining stable computation

18

i x oreactions reactions

∀ ∃
any reachable
configuration

initial
configuration

“correct”
output

Defining stable computation

18

i x o o’reactions reactions reactions

∀ ∃
any reachable
configuration

initial
configuration

“correct”
output

correct
output

∀
o is stable

Defining stable computation

18

i x o o’reactions reactions reactions

∀ ∃
any reachable
configuration

initial
configuration

“correct”
output

correct
output

∀
o is stable

(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.

19

Speed of computation

19

Speed of computation

How to fairly assess speed?

Like any respectable computer scientist…
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

19

Speed of computation

n = total molecular count
volume v = O(n)
i.e., require bounded concentration (finite density constraint)

How to fairly assess speed?

Like any respectable computer scientist…
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

n molecules
volume v = O(n)

20

An exponential time difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X
X X X

X

X

X

n molecules
volume v = O(n)

20

An exponential time difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X
X X X

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

n molecules
volume v = O(n)

20

An exponential time difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X
X X X

O(log n)

B+X→B+B
A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

n molecules
volume v = O(n)

20

An exponential time difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X
X X X

O(log n)

B+X→B+B
A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

one of these is always
count ≥ n/2

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

n molecules
volume v = O(n)

20

An exponential time difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X
X X X

O(log n)

B+X→B+B
A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

B

B

B

B

B B

B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

Y
one of these is always
count ≥ n/2

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

21

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b
• input specification: designate subset Σ ⊆ Λ as “input” species

• in valid initial configurations all molecules are from Σ, e.g., {100 A, 55 B}

21

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b
• input specification: designate subset Σ ⊆ Λ as “input” species

• in valid initial configurations all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

21

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b
• input specification: designate subset Σ ⊆ Λ as “input” species

• in valid initial configurations all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN
• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(s)>0 ⇔ s∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(s)>0 ⇔ s∈ΛN

• configuration o has undefined output otherwise: (∃ s∈ΛN, s’∈ΛY) o(s)>0 and o(s’)>0

21

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b
• input specification: designate subset Σ ⊆ Λ as “input” species

• in valid initial configurations all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN
• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(s)>0 ⇔ s∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(s)>0 ⇔ s∈ΛN

• configuration o has undefined output otherwise: (∃ s∈ΛN, s’∈ΛY) o(s)>0 and o(s’)>0

• o is stable if ψ(o) = ψ(o’) for all o’ reachable from o

21

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

22

a

a a

a

a

a a

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a a

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a ab

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a ab

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a ab

b

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a ab

b

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a ab

b

b

b

b b

b

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

Counting: φ(a,b) = Y ⇔ b > 1

22

a votes no; b votes yes
E[time] = O(log n)

a

a a

a

a

a ab

b

b

b

b b

b

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

Counting: φ(a,b) = Y ⇔ b > 1

b+b→y+y O(n) time

y+b→y+y O(log n) time

y+a→y+y O(log n) time

22

a votes no; b votes yes
E[time] = O(log n)

a,b vote no; y votes yes
E[time] = O(n)

a

a a

a

a

a ab

b

b

b

b b

b

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

b+a → b+b

Counting: φ(a,b) = Y ⇔ b > 1

b+b→y+y O(n) time

y+b→y+y O(log n) time

y+a→y+y O(log n) time

22

a votes no; b votes yes
E[time] = O(log n)

a,b vote no; y votes yes
E[time] = O(n)

a

a a

a

a

a ab

b

b

b

b b

b

exponential time difference!

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a > b

23

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a > b
A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

23

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a > b
A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)

23

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a > b
A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)

O(n) time if a – b = O(1)
O(log n) time if a – b > 0.01n

23

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

24

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd
a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd
a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd
a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao

Ao+ae → Ao+ao
Ae+ao → Ae+ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd
a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao

Ao+ae → Ao+ao
Ae+ao → Ae+ae

O(n log n) time
O(n) bottleneck transition before leader reaches
count 1, then O(n log n) coupon collector for
leader to encounter each follower

possible to optimize to O(n)
[Angluin, Aspnes, Eisenstat, DISC 2006]

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

25

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2
• input specification: designate subset Σ ⊆ Λ as “input” species

• valid initial configuration: all molecules are from Σ, e.g., {100 a, 100 b}

25

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2
• input specification: designate subset Σ ⊆ Λ as “input” species

• valid initial configuration: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species y∈Λ whose count is the output

25

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2
• input specification: designate subset Σ ⊆ Λ as “input” species

• valid initial configuration: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species y∈Λ whose count is the output
• recall: o is stable if o(y) = o’(y) for all o’ reachable from o

25

Examples of function computation

division by 2: f(a) = a/2

26

a

a

a

a

a

a

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a

a

a

a

a

a

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a

a

a

a

a

a

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a
a

a

a

a

y

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a
a

a

a

a

y

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a
a a

a

y y

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a
a a

a

y y

Examples of function computation

division by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a
a ay yy

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a

a

aa
a ay yy

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a

a

aa
a ay yy

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a

a
y

ya
a ay yy

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

a

yy
y

ya
a ay yy

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

y

y

yy
y

ya
a ay yy

exponential time difference!

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

26

a→y+y

E[time] = O(log n)

a+a→y
E[time] = O(n)
(last transition is bottleneck: has count ≤ 3 of a)

y

y

yy
y

ya
a ay yy

Examples of function computation

addition: f(a,b) = a+b

27

Examples of function computation

addition: f(a,b) = a+b

27

a→y
b→y

E[time] = O(log n)

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

27

a→y
b→y

E[time] = O(log n)

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

27

a→y
b→y

E[time] = O(log n)

a→y

E[time] = O(n) if a – b = O(1) initially
(last transition is bottleneck)

b+y→

Examples of function computation

28

subtract constant: f(a) = a–1

Examples of function computation

28

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

minimum: f(a,b) = min(a,b)

28

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

minimum: f(a,b) = min(a,b)

28

a+b→y
E[time] = O(n) if a – b = O(1) initially

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b) = a+b–min(a,b)

28

a+b→y
E[time] = O(n) if a – b = O(1) initially

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b) = a+b–min(a,b)

28

a+b→y
E[time] = O(n) if a – b = O(1) initially

a→y+a2
b→y+b2

addition

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b) = a+b–min(a,b)

28

a+b→y
E[time] = O(n) if a – b = O(1) initially

a→y+a2
b→y+b2

a2+b2→k

addition

minimum

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b) = a+b–min(a,b)

28

a+b→y
E[time] = O(n) if a – b = O(1) initially

a→y+a2
b→y+b2

E[time] = O(n) (uses minimum and subtraction
as “subroutines”)

a2+b2→k

k+y→

addition

minimum

subtraction

subtract constant: f(a) = a–1

a+a→ a+y
E[time] = O(n)

Examples of function computation

29

constant: f(a) = 1

Examples of function computation

29

constant: f(a) = 1

a→y

E[time] = O(n)

y+y→y

Examples of function computation

29

constant: f(a) = 1

a→y

E[time] = O(n)

a.k.a. “leader election”
y+y→y

Limits of stable computation (unbounded time)

30

Limits of stable computation (unbounded time)

Predicates
• φ is stably computable if and only if φ is

semilinear.

30

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

Limits of stable computation (unbounded time)

Predicates
• φ is stably computable if and only if φ is

semilinear.
• semilinear = Boolean combination of

threshold and mod predicates: take weighted
sum s = w1·a1 + … wk·ak of inputs and ask if

s > constant c?
s ≡ c mod m for constants c,m?

30

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

a>b? a=b? a is odd? a>0? a>1?

NOT a=b2? a is a power of 2? a is prime?

Limits of stable computation (unbounded time)

Predicates
• φ is stably computable if and only if φ is

semilinear.
• semilinear = Boolean combination of

threshold and mod predicates: take weighted
sum s = w1·a1 + … wk·ak of inputs and ask if

s > constant c?
s ≡ c mod m for constants c,m?

Functions
• f is stably computable if and only if

graph(f) = { (a,y) | f(a)=y } is semilinear.

30

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

NOT a=b2? a is a power of 2? a is prime?

Limits of stable computation (unbounded time)

Predicates
• φ is stably computable if and only if φ is

semilinear.
• semilinear = Boolean combination of

threshold and mod predicates: take weighted
sum s = w1·a1 + … wk·ak of inputs and ask if

s > constant c?
s ≡ c mod m for constants c,m?

Functions
• f is stably computable if and only if

graph(f) = { (a,y) | f(a)=y } is semilinear.
• piecewise linear, with semilinear predicate

to determine which piece.

30

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

a+b a–b 2a a/2 min(a,b) a+1 a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

NOT a=b2? a is a power of 2? a is prime?

NOT a2 2a 2a if a is prime, else 3a

Limits of stable computation (unbounded time)

Predicates
• φ is stably computable if and only if φ is

semilinear.
• semilinear = Boolean combination of

threshold and mod predicates: take weighted
sum s = w1·a1 + … wk·ak of inputs and ask if

s > constant c?
s ≡ c mod m for constants c,m?

Functions
• f is stably computable if and only if

graph(f) = { (a,y) | f(a)=y } is semilinear.
• piecewise linear, with semilinear predicate

to determine which piece.

30

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

a+b a–b 2a a/2 min(a,b) a+1 a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

All semilinear predicates/functions are
known to be computable in O(n) time.NOT a=b2? a is a power of 2? a is prime?

NOT a2 2a 2a if a is prime, else 3a

What is known to be computable in less than time O(n)?

31

What is known to be computable in less than time O(n)?

Predicates
Boolean combination of detection
predicates

“detection” means φ(a) = “a > 0?”

31

What is known to be computable in less than time O(n)?

Predicates
Boolean combination of detection
predicates

“detection” means φ(a) = “a > 0?”

31

φ(a,b,c) = a>0 OR (b>0 AND c=0)

i.e., constant except when a variable
changes from 0 to positive

What is known to be computable in less than time O(n)?

Predicates
Boolean combination of detection
predicates

“detection” means φ(a) = “a > 0?”

Functions
ℕ-linear functions (coefficients are
nonnegative integers)

31

φ(a,b,c) = a>0 OR (b>0 AND c=0)

i.e., constant except when a variable
changes from 0 to positive

What is known to be computable in less than time O(n)?

Predicates
Boolean combination of detection
predicates

“detection” means φ(a) = “a > 0?”

Functions
ℕ-linear functions (coefficients are
nonnegative integers)

31

e.g., f(a,b) = 2a + 3b
a→y+y
b→y+y+y

φ(a,b,c) = a>0 OR (b>0 AND c=0)

[Angluin, Aspnes, Eisenstat, Fast computation by population protocols with a leader, DISC 2006]
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]

i.e., constant except when a variable
changes from 0 to positive

Known time lower bounds: “most” predicates/functions
• Informal: “most” semilinear predicates and functions not known to be

computable in o(n) time, actually require at least O(n) time to compute

33

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

[Doty, Soloveichik, Stable leader election in
population protocols requires linear time, DISC 2015]

Known time lower bounds: “most” predicates/functions
• Informal: “most” semilinear predicates and functions not known to be

computable in o(n) time, actually require at least O(n) time to compute
• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b)

for all a,b with all components ≥ m

33

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

[Doty, Soloveichik, Stable leader election in
population protocols requires linear time, DISC 2015]

Known time lower bounds: “most” predicates/functions
• Informal: “most” semilinear predicates and functions not known to be

computable in o(n) time, actually require at least O(n) time to compute
• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b)

for all a,b with all components ≥ m
• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear

for all a with all components ≥ m
• Both definitions allow exceptions “near a face of ℕk”

33

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

[Doty, Soloveichik, Stable leader election in
population protocols requires linear time, DISC 2015]

Known time lower bounds: “most” predicates/functions
• Informal: “most” semilinear predicates and functions not known to be

computable in o(n) time, actually require at least O(n) time to compute
• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b)

for all a,b with all components ≥ m
• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear

for all a with all components ≥ m
• Both definitions allow exceptions “near a face of ℕk”

• Formal theorem: Every predicate that is not eventually constant, and every
function that is not eventually ℕ-linear, requires at least time O(n) to compute.

• They’re all computable in at most O(n) time, so this settles their time complexity.

33

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

[Doty, Soloveichik, Stable leader election in
population protocols requires linear time, DISC 2015]

What is currently known/unknown

34

Predicates Functions

computable in
O(log n) time

detection
a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable
in less than O(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol
is O(n) time)

eventually constant but not
constant on positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwisef(a) =

What is currently known/unknown

34

Predicates Functions

computable in
O(log n) time

detection
a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable
in less than O(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol
is O(n) time)

eventually constant but not
constant on positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwisef(a) =

What is currently known/unknown

34

Predicates Functions

computable in
O(log n) time

detection
a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable
in less than O(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol
is O(n) time)

eventually constant but not
constant on positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwisef(a) =

What is currently known/unknown

34

Predicates Functions

computable in
O(log n) time

detection
a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable
in less than O(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol
is O(n) time)

eventually constant but not
constant on positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwisef(a) =

Other modeling choices?

35

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”

36

first part of talk

• integer counts (“stochastic”) or real concentrations (“mass-action”)?
• what is the object being “computed”?

• yes/no decision problem? “number of A’s > number of B’s?”
• numerical function? “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present?
• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)
• the output becomes unable to change? (stabilization)
• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”

36

summarized in
next few slides

Auxiliary species present initially ≈ “initial leader”
Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

37

Auxiliary species present initially ≈ “initial leader”
Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

37

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Auxiliary species present initially ≈ “initial leader”
Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

37

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao
Ao+ae → Ao+ao
Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Auxiliary species present initially ≈ “initial leader”
Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

37

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao
Ao+ae → Ao+ao
Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo
Lo+A→Le

with a
leader Le

Auxiliary species present initially ≈ “initial leader”
Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

37

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae
Ao+Ae → Ao+ao
Ao+ae → Ao+ao
Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo
Lo+A→Le

with a
leader Le

But fundamental computability doesn’t change:
exactly the semilinear predicates/functions can
be computed (same as without a leader).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, PODC 2004] [Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012] [Doty, Hajiaghayi, DNA 2013]

38

Convergence vs stabilization and leader vs anarchy

38

Convergence vs stabilization and leader vs anarchy

initial

38

Convergence vs stabilization and leader vs anarchy

initial convergence

...
Y# =3 Y# =2

38

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-
ℕ-linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

38

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-
ℕ-linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in
at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

38

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-
ℕ-linear functions require at least O(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in
at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-ℕ-linear functions
require at least O(n) stabilization time.

Conjecture: Without a leader, all non-detection predicates and non-ℕ-linear functions
require at least O(n) convergence time.

What if we use real-valued concentrations?

39

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

What if we use real-valued concentrations?

39

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we use real-valued concentrations?

39

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we use real-valued concentrations?

39

Theorem: A function is stably
computable by a real-valued chemical
reaction network if and only if it is
continuous and piecewise linear.

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

continuous piecewise linear example

[Chen, Doty, Soloveichik, ITCS 2014]

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12
n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12
n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008] … “efficiently” (polynomial-time slowdown) …

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12
n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

… “efficiently” (polynomial-time slowdown) …

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12
n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely
converge to the correct answer eventually, but can
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

… “efficiently” (polynomial-time slowdown) …

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

40

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12
n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely
converge to the correct answer eventually, but can
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

Conjecture: Even without a leader, any
computable function can be efficiently
computed with high probability.

… “efficiently” (polynomial-time slowdown) …

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

41

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

41

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] = – k2[Y][Z]

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

41

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] = – k2[Y][Z]

… with only a polynomial-time
slowdown.

[Bournez, Graça, Pouly. Polynomial time corresponds to
solutions of polynomial ordinary differential equations
of polynomial length. Journal of the ACM 2017]

Fast approximate division by 2

42

X+A→B+Y
X+B→A

initial configuration:
{ n X, εn A, εn B }

guaranteed to get
Y = n/2 ± εn
E[time] = O(log n) / ε

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

Fast approximate division by 2

42

X+A→B+Y
X+B→A

initial configuration:
{ n X, εn A, εn B }

guaranteed to get
Y = n/2 ± εn
E[time] = O(log n) / ε

n = 100 ε = 0.1

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

Thank you!
Questions?

Proofs of conjectures?

Criticism of model?
suggestions: 1) lack of reverse reactions (energy dissipated = ∞), 2) assumption of single
initial copy of leader, 3) reactions aren’t mass-conserving, 4) what about leak reactions?, 5)
no discussion of diffusion rates, 6) this has nothing to do with how biological cells compute

43

	The limits of chemical computing�Computation with chemical reaction networks
	Acknowledgments
	Chemical reaction networks
	Chemical reaction networks
	Chemical reaction networks
	Chemical reaction networks
	Chemical reaction networks
	Chemical caucusing
	Chemical caucusing
	Chemical caucusing
	Chemical caucusing
	Does chemistry compute?
	Does chemistry compute?
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Experimental implementations of synthetic chemical reaction networks with DNA
	Theoretical Computer Science Approach
	Theoretical Computer Science Approach
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Relationship to distributed computing
	Relationship to distributed computing
	Relationship to distributed computing
	Relationship to distributed computing
	Relationship to distributed computing
	Slide Number 41
	Some simple reactions
	Some simple reactions
	Some simple reactions
	Some simple reactions
	Some simple reactions
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Defining stable computation
	Defining stable computation
	Defining stable computation
	Defining stable computation
	Defining stable computation
	Defining stable computation
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Definition of predicate (decision problem) computation
	Definition of predicate (decision problem) computation
	Definition of predicate (decision problem) computation
	Definition of predicate (decision problem) computation
	Definition of predicate (decision problem) computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Examples of predicate computation
	Definition of function computation
	Definition of function computation
	Definition of function computation
	Definition of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Examples of function computation
	Limits of stable computation (unbounded time)
	Limits of stable computation (unbounded time)
	Limits of stable computation (unbounded time)
	Limits of stable computation (unbounded time)
	Limits of stable computation (unbounded time)
	Limits of stable computation (unbounded time)
	What is known to be computable in less than time O(n)?
	What is known to be computable in less than time O(n)?
	What is known to be computable in less than time O(n)?
	What is known to be computable in less than time O(n)?
	What is known to be computable in less than time O(n)?
	Known time lower bounds: “most” predicates/functions
	Known time lower bounds: “most” predicates/functions
	Known time lower bounds: “most” predicates/functions
	Known time lower bounds: “most” predicates/functions
	What is currently known/unknown
	What is currently known/unknown
	What is currently known/unknown
	What is currently known/unknown
	Other modeling choices?
	Modeling choices in formalizing “Computing with chemistry”
	Modeling choices in formalizing “Computing with chemistry”
	Auxiliary species present initially ≈ “initial leader”
	Auxiliary species present initially ≈ “initial leader”
	Auxiliary species present initially ≈ “initial leader”
	Auxiliary species present initially ≈ “initial leader”
	Auxiliary species present initially ≈ “initial leader”
	Convergence vs stabilization and leader vs anarchy
	Convergence vs stabilization and leader vs anarchy
	Convergence vs stabilization and leader vs anarchy
	Convergence vs stabilization and leader vs anarchy
	Convergence vs stabilization and leader vs anarchy
	Convergence vs stabilization and leader vs anarchy
	What if we use real-valued concentrations?
	What if we use real-valued concentrations?
	What if we use real-valued concentrations?
	What if we use real-valued concentrations?
	What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	Fast approximate division by 2
	Fast approximate division by 2
	Thank you!

