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DNA tile self-assembly
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DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

2
Source: Programmable disorder in random DNA tilings. Tikhomirov, 

Petersen, Qian, Nature Nanotechnology 2017

tile lattice



Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of 
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at 
en.wikipedia; Permission: PDB; Released 
under the GNU Free Documentation License.
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Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011
4

Practice of DNA tile self-assembly

(not the same tile motif in this image)



Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly



Practice of DNA tile self-assembly

single crossover



Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009



Practice of DNA tile self-assembly
other tile motifs

triple-crossover
tile (LaBean, Yan, 

Kopatsch, Liu, 
Winfree, Reif, 
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein, Reif, LaBean, 

Science 2003)

DNA origami tile (Liu, Zhong, Wang, 

Seeman, Angewandte Chemie 2011)
Tikhomirov, Petersen, Qian, 
Nature Nanotechnology 2017

single-stranded tile (Yin, 

Hariadi, Sahu, Choi, Park, LaBean, 
Reif, Science 2008)

150 nm



Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree
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Abstract Tile Assembly Model
Erik Winfree, 
Ph.D. thesis, 
Caltech 1998
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• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)
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strength 2 (strong)
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Abstract Tile Assembly Model

• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies 
of each type

• assembly starts as a single 
copy of a special seed tile

• tile can bind to the assembly 
if total binding strength ≥ 2 
(two weak glues or              
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, 
Ph.D. thesis, 
Caltech 1998

9



W
N

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative 
binding”

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative 
binding”

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative 
binding”

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative 
binding”

10



W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10



W
N

seed

1

1

1

0

1

1

0

1

N

N
1 W W

1

0

0

0

0

0

0

1

1

11



W
N

W
N

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

N

N
1 W W

0

seed

change function to half-adder

12



W
N

W
N

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

N

N
1 W W

0

seed

change function to half-adder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12



Algorithmic self-assembly 
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image



Algorithmic self-assembly 
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

Track B talk by Damien Woods at 11:30am tomorrow!

w

parity

sorting

simulation

AFM image

cellular 
automaton
rule 110

100 nm

[Iterated Boolean circuit computation via a programmable DNA tile array. 
Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation]



How computationally powerful 
are self-assembling tiles?
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Putting the algorithm in algorithmic self-assembly

• set of tile types is like a program

• shape it creates, or pattern it paints, is like the output of the program
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Calculating parity of 6-bit string: 
1 algorithm, 26 inputs
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Calculating parity of 6-bit string: 
1 algorithm, 26 inputs

19

[Iterated Boolean circuit computation via a programmable DNA tile 
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation, 
work presented in DNA 23 talk tomrrow by Damien Woods]

single set of tiles 
computing parity

seed encoding 100101

seed encoding 110101

26 seeds:



So tiles can compute… what’s that good for?

20



So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite 
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]
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So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite 
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.



Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else
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Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else

• active self-assembly: monomers with a “state”:
• state can change after binding

• monomer can communicate with neighbors

• possibly, monomer can move

21



Active self-assembly at DNA 23

• Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana 
Randall, and Andréa W. Richa. A Stochastic Approach to Shortcut 
Bridging in Programmable Matter

• Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement 
for Self-Assembly of Lines in Polylogarithmic Time

22
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A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide 
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model:  Particles move on the triangular lattice.
- Asynchronous,
- Each has constant-size memory,
- Each can communicate only with neighboring particles,
- There is no common orientation, only common chirality,
- Often desirable that the system stays connected.
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hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).
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A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Stochastic algorithms exist for: 

- Compression: gathering a particle system together as tightly as possible.
• Often found in natural systems.
• Approach is decentralized, self-stabilizing, and oblivious (no leader necessary).
• Uses a Markov chain to derive a local algorithm.

- Shortcut bridging (DNA23): Generalizes the stochastic approach.

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide 
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model:  Particles move on the triangular lattice.
- Asynchronous,
- Each has constant-size memory,
- Each can communicate only with neighboring particles,
- There is no common orientation, only common chirality,
- Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle, 
hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

https://sops.engineering.asu.edu/
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Markov chain algorithm:

Starting at any configuration, repeat:

1. Pick a random particle.

2. Choose a random direction.

3. If certain properties hold, move in that 
direction with probability […..] .

4. Otherwise, do nothing.

Distributed algorithm:

Each particle continuously executes:

1. Particle proceeds at its own processing 
speed (possibly variable).

2. Choose a random direction.

3. If certain properties hold, move in that 
direction with probability […..] .

4. Otherwise, do nothing.

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Depends on 
application Depends on 

application

Poisson clock with 
individual rate

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa
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Markov chain algorithm:

Starting at any configuration, repeat:

1. Pick a random particle.

2. Choose a random direction.

3. If certain properties hold, move in that 
direction with probability […..] .

4. Otherwise, do nothing.

Distributed algorithm:

Each particle continuously executes:

1. Particle proceeds at its own processing 
speed (possibly variable).

2. Choose a random direction.

3. If certain properties hold, move in that 
direction with probability […..] .

4. Otherwise, do nothing.

Shortcut Bridging: Bridge across a V-shaped gap in a way that balances minimizing paths 
between endpoints with cost of bridge.

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Inspired by ants (Reid et al. 2015) Our algorithm

Chris R. Reid, Matthew J. Lutz, Scott Powell, Albert 
B. Kao, Iain D. Couzin, and Simon Garnier. Army 
ants dynamically adjust living bridges in response to 
a cost-benefit trade-off. Proceedings of the 
National Academy of Sciences, 112(49):15113-
15118, 2015.

Depends on 
application Depends on 

application

Poisson clock with 
individual rate

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa
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Main layer

Theorem:

if each nubot can only perform one state change, then

the main layer can only grow linearly.

Supplementary 

layer

With only one supplementary layer,

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement 
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]
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Theorem:

◼ Two supplementary layers

or

◼ Disappearance does not require a state change 

Simple extensions allow exponential growth:

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement 
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]
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Conjecture: Non-cooperative 
tiles can only self-assemble 
“periodic” patterns like this. 
(formally, semilinear sets)

Non-cooperative binding



Non-cooperative binding at DNA 23

• Pierre-Étienne Meunier and Damien Woods, The non-cooperative tile 
assembly model is not intrinsically universal or capable of bounded 
Turing machine simulation

28
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Hierarchical self-assembly at DNA 23

• Robert Schweller, Andrew Winslow, and Tim Wylie, Complexities for 
high temperature two-handed tile self-assembly
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Thank you!
Questions?
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