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DNA tile self-assembly



DNA tile self-assembly

monomers (“tiles” made from DNA) bind into a crystal lattice
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Source: Programmable disorder in random DNA tilings. Tikhomirov,
Petersen, Qian, Nature Nanotechnology 2017 2




Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at

en.wikipedia; Permission: PDB; Released / T [
under the GNU Free Documentation License. C— D NA tIIe
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.
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Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly

other tile motifs




Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

Erik Winfree
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Abstract Tile Assembly Model

* tile type = unit square B

north glue label

* each side has a glue
with a label and south glue label
strength (0, 1, or 2) H

[39e| an|3 1som

strength O

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Ph.D. thesis,

Caltech 1998
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* tile type = unit square
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* each side has a glue
with a label and
strength (O, 1, or 2)
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strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)
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Ph.D. thesis,

Caltech 1998
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* tile type = unit square northgl.uelabel * finitely many tile types

[39e| an|3 1som

* each side has a glue * infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H

strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

N




Erik Winfree,

Abstract Tile Assembly Model e

* tile type = unit square B * finitely many tile types

north glue label

* each side has a glue

[39e| an|3 1som

* infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H
strength 0 e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
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Erik Winfree,

Abstract Tile Assembly Model e

* tile type = unit square B

north glue label

finitely many tile types

* each side has a glue * infinitely many tiles: copies

[39e| an|3 1som

with a label and south glue label of each type
strength (O, 1, or 2) H
strength O e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
B * tile can bind to the assembly
if total binding strength > 2

strength 2 (strong)

o~ (two weak glues or

one strong glue)
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Example tile set

“cooperative
binding”
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Example tile set
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Algorithmic self-assembly
In action
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[Crystals that couht! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]
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How computationally powerful
are self-assembling tiles?



Turing machines



Turing machines
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tape = memory

15



Turing machines
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Tile assembly is Turing-universal
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Tile assembly is Turing-universal

HALT
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Putting the algorithm in algorithmic self-assembly

* set of tile types is like a program

* shape it creates, or pattern it paints, is like the output of the program

tile set A:

J

tile set B:

17
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How is a set of tile types not like a program?
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How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input
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Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
A 00 seed X: a
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Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
A 0O seed X: . seed Y. E

EEEEE @ @

A(X) A(Y)




Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set o

A oo seed X: . seed Y E seed Z: (DNA origami
- rectangle with sticky

- @ @ ends on right edge)

. © Barish, Schulman, Rothemund,
Winfree, PNAS 2009




Calculating parity of 6-bit string:
1 algorithm, 2° inputs
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eI 3.

single set of tiles <
computing parity

Ny

19



Calculating parity of 6-bit string:
1 algorithm, 2° inputs

single set of tiles <
computing parity
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o(eeeeel) = 001 o(1eeeee) = 211

o(eeee1e) = 011 of1e0011) = 213

Calculating parity of 6-bit string; - Ex==.--
. 6 . o(ee108e) = 441 a(lemel)im
1 algorithm, 2° inputs

o(ee1101) = 182 o(1e1100) = 234

o(ee111e) = 103 o(181111) = 382

o(e1e0e0) = 111 o(110001) = 318

: \ o(e1ee11) = 114
(BQ) 3 \\g AL SN LS S sotoion o122
! o(e10110) = 123

1 1 o(e11081) = 131

o(e1101e) = 132

o{110018) = 320

o{11e1ee) = 338

o{110111) = 400

o{111000) = 481
o{111011) = 411

o(e111ee) = 134 of1111e1) = 421

D o(e11111) = 218

ZRSEEESIN -——=—=—= eSS S == e e e e e e

. . 0(000000) = 000
o _ 0(100016):=212

o{111110) = 430

0(100001) = 002

single set of tiles <
computing parity

o(100100) = 221 8] »

0(100111) = 223

o{eee101) = 621

\ o(eee110) = 022

0{001001) = 824
0(101000) = 230

S
iss
“
ofeor610) =030 [le R
o(101611) = 233
o(101101) = 300
V1@ '
r1e
2 .
2ot e

o(1e1110) = 301

0(e10010) = 113

0(110000) = 303

0(110011) = 333 NN

o(e10100) = 121

o(110101) = 004
o(e1e111) = 130 R <

0(111001) = 404

[Iterated Boolean circuit computation via a programmable DNA tile R . o(111010)= 410
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation, PERCE 200 . | ofr11100) = 420
work presented in DNA 23 talk tomrrow by Damien Woods] P o1 - sy = an

a
2




So tiles can compute... what’s that good for?



So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]
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Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

UEiffeI_tower

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]
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So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

. UEiffeI_tower
smiley face

These tiles are universally programmable for building any shape.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

20
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* tiles are passive: they bind based on glue identity, and do little else
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Active self-assembly

* tiles are passive: they bind based on glue identity, and do little else

* active self-assembly: monomers with a “state”:
 state can change after binding
* monomer can communicate with neighbors
e possibly, monomer can move



Active self-assembly at DNA 23

* Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana
Randall, and Andréa W. Richa. A Stochastic Approach to Shortcut
Bridging in Programmable Matter

* Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time




A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.

Asynchronous,

Each has constant-size memory,

Each can communicate only with neighboring particles,
There is no common orientation, only common chirality,
Often desirable that the system stays connected.

23
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Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.

Asynchronous,

Each has constant-size memory,

Each can communicate only with neighboring particles,
There is no common orientation, only common chirality,
Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle,

hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

23


https://sops.engineering.asu.edu/

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.
- Asynchronous,

- Each has constant-size memory,

- Each can communicate only with neighboring particles,

- There is no common orientation, only common chirality,

- Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle,
hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

Stochastic algorithms exist for:

- Compression: gathering a particle system together as tightly as possible.
e Often found in natural systems.
e Approach is decentralized, self-stabilizing, and oblivious (no leader necessary).
e Uses a Markov chain to derive a local algorithm.

- Shortcut bridging (DNA23): Generalizes the stochastic approach.


https://sops.engineering.asu.edu/

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Markov chain algorithm: Distributed algorithm:
Starting at any configuration, repeat: Each particle continuously executes:
1. Pick a random particle. 1. Particle proceeds at its own processing

speed (possibly variable).

2. Choose a random direction. Poisson clock with

3. If certain properties hold, move in that 2. Choose a random direction. individual rate

direction with probability [.....] . 3. If certain properties hold, move in that

i ' R Depends on direction with probabilit
4. Otherwise, do nothing. application p y [k] Depends on

4. Otherwise, do nothing. application
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Markov chain algorithm: Distributed algorithm:
Starting at any configuration, repeat: Each particle continuously executes:
1. Pick a random particle. 1. Particle proceeds at its own processing

speed (possibly variable).

2. Choose a random direction. Poisson clock with

3. If certain properties hold, move in that 2. Choose a random direction. individual rate

direction with probability [.....] . 3. If certain properties hold, move in that
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4. Otherwise, do nothing.

Shortcut Bridging: Bridge across a V-shaped gap in a way that balances minimizing paths
between endpoints with cost of bridge.

Chris R. Reid, Matthew J. Lutz, Scott Powell, Albert
B. Kao, lain D. Couzin, and Simon Garnier. Army
ants dynamically adjust living bridges in response to
a cost-benefit trade-off. Proceedings of the
National Academy of Sciences, 112(49):15113-
15118, 2015.

Inspired by ants (Reid et al. 2015) Our algorithm



Theorem:

With only one supplementary layer,

Supplementary
layer

Main layer

If each nubot can only perform one state change, then
the main layer can only grow linearly.

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]
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Theorem:

Simple extensions allow exponential growth:

= Two supplementary layers
or

= Disappearance does not require a state change

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]
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Non-cooperative binding
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Non-cooperative binding

repeated
tile type
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Non-cooperatily

Conjecture: Non-cooperative
tiles can only self-assemble
“periodic” patterns like this.
(formally, semilinear sets)
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Non-cooperative binding at DNA 23

* Pierre-Etienne Meunier and Damien Woods, The non-cooperative tile
assembly model is not intrinsically universal or capable of bounded
Turing machine simulation



Temperature 1 does not simulate itself

Pierre-Etienne Meunier and Damien Woods

...and much more on our poster!
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Hierarchical self-assembly
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Hierarchical self-assembly
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Hierarchical self-assembly at DNA 23

e Robert Schweller, Andrew Winslow, and Tim Wylie, Complexities for
high temperature two-handed tile self-assembly



Thank you!



