
Algorithmic self-assembly with DNA tiles
Tutorial

David Doty (UC-Davis)

23rd International Meeting on DNA Computing and Molecular Programming

University of Texas–Austin

September 2017

DNA tile self-assembly

2

DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

2
Source: Programmable disorder in random DNA tilings. Tikhomirov,

Petersen, Qian, Nature Nanotechnology 2017

tile lattice

Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

3

Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

3

Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

3

Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011
4

Practice of DNA tile self-assembly

(not the same tile motif in this image)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly

Practice of DNA tile self-assembly

single crossover

Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009

Practice of DNA tile self-assembly
other tile motifs

triple-crossover
tile (LaBean, Yan,

Kopatsch, Liu,
Winfree, Reif,
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein, Reif, LaBean,

Science 2003)

DNA origami tile (Liu, Zhong, Wang,

Seeman, Angewandte Chemie 2011)
Tikhomirov, Petersen, Qian,
Nature Nanotechnology 2017

single-stranded tile (Yin,

Hariadi, Sahu, Choi, Park, LaBean,
Reif, Science 2008)

150 nm

Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree

8

Abstract Tile Assembly Model
Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model

• tile type = unit square

Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate
strength 0

strength 1 (weak)

strength 2 (strong)

n
o

rt
h

 g
lu

e
la

b
el

so
u

th
 g

lu
e

la
b

el

west glue label

Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

• assembly starts as a single
copy of a special seed tile

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

• assembly starts as a single
copy of a special seed tile

• tile can bind to the assembly
if total binding strength ≥ 2
(two weak glues or
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree,
Ph.D. thesis,
Caltech 1998

9

W
N

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

10

W
N

seed

1

1

1

0

1

1

0

1

N

N
1 W W

1

0

0

0

0

0

0

1

1

11

W
N

W
N

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

N

N
1 W W

0

seed

change function to half-adder

12

W
N

W
N

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

N

N
1 W W

0

seed

change function to half-adder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12

Algorithmic self-assembly
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

Algorithmic self-assembly
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

Track B talk by Damien Woods at 11:30am tomorrow!

w

parity

sorting

simulation

AFM image

cellular
automaton
rule 110

100 nm

[Iterated Boolean circuit computation via a programmable DNA tile array.
Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation]

How computationally powerful
are self-assembling tiles?

14

Turing machines

15

Turing machines

15

…0 1 0 0 1 _1 _ _

tape ≈ memory

Turing machines

15

…0 1 0 0 1 _1 _ _

tape ≈ memory

state ≈ line of code

Turing machines

15

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

q

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

q

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

t

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 1

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

u

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 11

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Tile assembly is Turing-universal

Tile assembly is Turing-universal

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ *

_

←

_^

_
_^

* s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

HALT
halt

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

HALT
halt

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALTspace

time

Putting the algorithm in algorithmic self-assembly

• set of tile types is like a program

• shape it creates, or pattern it paints, is like the output of the program

17

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?

18

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
• Where’s the input to the program?

18

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
• Where’s the input to the program?

• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
• Where’s the input to the program?

• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
• Where’s the input to the program?

• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
• Where’s the input to the program?

• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
• Where’s the input to the program?

• One perspective: pre-assembled seed encodes the input

18

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

seed encoding 100101

seed encoding 110101

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

single set of tiles
computing parity

seed encoding 100101

seed encoding 110101

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

single set of tiles
computing parity

seed encoding 100101

seed encoding 110101

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

[Iterated Boolean circuit computation via a programmable DNA tile
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation,
work presented in DNA 23 talk tomrrow by Damien Woods]

single set of tiles
computing parity

seed encoding 100101

seed encoding 110101

26 seeds:

So tiles can compute… what’s that good for?

20

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

σsmiley_face

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

σsmiley_face
σEiffel_tower

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

σsmiley_face
σEiffel_tower

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.

Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else

21

Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else

• active self-assembly: monomers with a “state”:

21

Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else

• active self-assembly: monomers with a “state”:
• state can change after binding

21

Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else

• active self-assembly: monomers with a “state”:
• state can change after binding

• monomer can communicate with neighbors

21

Active self-assembly

• tiles are passive: they bind based on glue identity, and do little else

• active self-assembly: monomers with a “state”:
• state can change after binding

• monomer can communicate with neighbors

• possibly, monomer can move

21

Active self-assembly at DNA 23

• Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana
Randall, and Andréa W. Richa. A Stochastic Approach to Shortcut
Bridging in Programmable Matter

• Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time

22

23

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.
- Asynchronous,
- Each has constant-size memory,
- Each can communicate only with neighboring particles,
- There is no common orientation, only common chirality,
- Often desirable that the system stays connected.

23

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.
- Asynchronous,
- Each has constant-size memory,
- Each can communicate only with neighboring particles,
- There is no common orientation, only common chirality,
- Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle,
hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

https://sops.engineering.asu.edu/

23

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Stochastic algorithms exist for:

- Compression: gathering a particle system together as tightly as possible.
• Often found in natural systems.
• Approach is decentralized, self-stabilizing, and oblivious (no leader necessary).
• Uses a Markov chain to derive a local algorithm.

- Shortcut bridging (DNA23): Generalizes the stochastic approach.

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.
- Asynchronous,
- Each has constant-size memory,
- Each can communicate only with neighboring particles,
- There is no common orientation, only common chirality,
- Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle,
hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

https://sops.engineering.asu.edu/

24

Markov chain algorithm:

Starting at any configuration, repeat:

1. Pick a random particle.

2. Choose a random direction.

3. If certain properties hold, move in that
direction with probability […..] .

4. Otherwise, do nothing.

Distributed algorithm:

Each particle continuously executes:

1. Particle proceeds at its own processing
speed (possibly variable).

2. Choose a random direction.

3. If certain properties hold, move in that
direction with probability […..] .

4. Otherwise, do nothing.

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Depends on
application Depends on

application

Poisson clock with
individual rate

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

24

Markov chain algorithm:

Starting at any configuration, repeat:

1. Pick a random particle.

2. Choose a random direction.

3. If certain properties hold, move in that
direction with probability […..] .

4. Otherwise, do nothing.

Distributed algorithm:

Each particle continuously executes:

1. Particle proceeds at its own processing
speed (possibly variable).

2. Choose a random direction.

3. If certain properties hold, move in that
direction with probability […..] .

4. Otherwise, do nothing.

Shortcut Bridging: Bridge across a V-shaped gap in a way that balances minimizing paths
between endpoints with cost of bridge.

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Inspired by ants (Reid et al. 2015) Our algorithm

Chris R. Reid, Matthew J. Lutz, Scott Powell, Albert
B. Kao, Iain D. Couzin, and Simon Garnier. Army
ants dynamically adjust living bridges in response to
a cost-benefit trade-off. Proceedings of the
National Academy of Sciences, 112(49):15113-
15118, 2015.

Depends on
application Depends on

application

Poisson clock with
individual rate

A Stochastic Approach to Shortcut Bridging in Programmable Matter
Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

103

Main layer

Theorem:

if each nubot can only perform one state change, then

the main layer can only grow linearly.

Supplementary

layer

With only one supplementary layer,

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]

104

Theorem:

◼ Two supplementary layers

or

◼ Disappearance does not require a state change

Simple extensions allow exponential growth:

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

repeated
tile type

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Non-cooperative binding

27

Conjecture: Non-cooperative
tiles can only self-assemble
“periodic” patterns like this.
(formally, semilinear sets)

Non-cooperative binding

Non-cooperative binding at DNA 23

• Pierre-Étienne Meunier and Damien Woods, The non-cooperative tile
assembly model is not intrinsically universal or capable of bounded
Turing machine simulation

28

29

30

Hierarchical self-assembly

31

Hierarchical self-assembly

31

Hierarchical self-assembly

31

Hierarchical self-assembly

32

Hierarchical self-assembly

32

Hierarchical self-assembly

Hierarchical self-assembly at DNA 23

• Robert Schweller, Andrew Winslow, and Tim Wylie, Complexities for
high temperature two-handed tile self-assembly

33

Thank you!
Questions?

34

