Algorithmic self-assembly with DNA tiles
Tutorial

David Doty (UC-Davis)
23" International Meeting on DNA Computing and Molecular Programming

University of Texas—Austin
September 2017

DNA tile self-assembly

DNA tile self-assembly

monomers (“tiles” made from DNA) bind into a crystal lattice

4 ———N B

&3 5 2 15 15 153 1= S 1S
. T3I311ITIIIIITITII L .
SR OGROROROR OGRS SR SR GRS
SPEOPORPORPORPOPEORPORORPORSR
| SEEESEe 0050508888888
OOP0OY BB E 8085558085805 GOGUP
vy LTI T2 3-2-3-3 A
DOOOD ‘\e—k%-ie-bs—sv-&e—%s—a w” W
COQ0O0HY EERRLELLERERELLLLR O ivwm
DOODOPOOIEN\S SB S5 SS ST SD S S VIOV
0 "’““" S8 BIRR R R 2R E0G0 ww‘w‘v‘
'"!\'"” tovm’t‘: TITRTS g‘:wsnhn PP
oquumuu‘o\ R8I8282% m‘w%nyudcwv [
30bRO0) '%" YRS $5 L HOUVOPON l”l“l AN
9 5 0000 B85 600

GOOVGVGOTUPVGUR]
QO'OQ}M"\'WM
Sgeaengsoleneurtciy

W'QJ’\V}C’"’!V
G VGU QQOMI’\“

ROVPOGOPUPOPUHPH

DOHBOOHOHOOEOPOE
mmlupo.ho
0040 Wm‘.m 0
2060HO0) ””'"""' 0
OG0B 00500000
m;’mw%uw

O W 0000003

> &

1»0‘% X
! ‘00‘51‘
bt

DX
4}0‘ O

“&’

e
0

)dur

OO0 D00 3
1l
0000 u*mbf SEERERER
Eannandnn’ Be oSS SSSS sl N, 3 ;
q« BOOHOOOON B E XKL LK K& XN wwm
uup« OO :{: EEEEEKES gt: QOVOVGGIVVU
Mu«uc S 2S SIS AE AX EX EX S\ JOUOUGVEUP
m ESEDEEEREEEEES WQ‘“
DODO ﬁ’ 04g4¢¢:,¢4:4¢,:4~"¢"0’0 P
"‘*““’. R S SR TR TR TR TI TS T2 200G
SOOBNN SRS IS & & O
LS D) i)
SRV LS
SSDSS
25 525 <
< <
<Q

OO DOD
OAODDDHOX
POQDHOON

DO
LODMH
HOHOOO
LODOH
HOHOHOO0
DHODOD
DONBARO0
HODO

OHON

\a0b0o

<

B
bood

OO

OO

Source: Programmable disorder in random DNA tilings. Tikhomirov,
Petersen, Qian, Nature Nanotechnology 2017 2

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

oobboo—c—ionb|olm|—c|o|—|

[N LvN Eull Eul I2H LN D=0 b=N IeN IoN k!

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982

@
2]
=
o

sfelel Al

[aR B=N FoN IoN Eol FoN EN EoN b0 InE Io]

|O|O|I>|G)|)?O—IOOOO>)>—|DG)

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at

en.wikipedia; Permission: PDB; Released / T [
under the GNU Free Documentation License. C— D NA tIIe
z
|G
C
é{tﬁ‘ A Ned Seeman, Journal of
TRV c o .)
T Ry | o Theoretical Biology 1982
4 (TR
T A
G C
C G
AT
AT
G C
C G
T T[T Tl c T T C TCGICICIAITI
CIGIGITIAIAGCCAATCAGT Tle|lclalclalclslT]als
G C
AT
T A .
T A sticky end
G C
cC G
G C
G ¢
AT
G C
A
G|
A
|
el
/ 3

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

[

||°|° [+le]-

[N IoN b= BN [oN [N EoN EoN VN FoN -
[N LvN Eull Eul I2H LN D=0 b0 EeN IoN By

[aR B=N FoN IoN Eol FoN EN EoN b0 InE Io]

G)IOI:PIG)I}O—!OOOO::»—!DG)

-

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982

2]
=
o

A G|c|c|A|T|
G| 7| Al G

H_I

sticky end

ile self-assembly

ice of DNA t

Pract

on...

in solut

ile

ies of DNA t

Place many cop

(not the same tile motif in this image)

5NN ENE R

KN N K

u”,f

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

J
NERERHBERHERAEEN
N

. P4
BERREEEERERRBRERENERRERRRRE!
/

e,
REREERERERREEEEERNEREERERER|
-

i ENENEEENEREEENNEEENNEEREN

B

HHENENEEENEEEEENNEEENNEENEN

BRB3REEEAE AR
3 \

J
NPEERH BERNERAREB!
~

e
BENNNEBEREENENERENENNERARER
e

EEENENEEENEEEEE NN EERREENEN

-
KEREREEEEAENERERANERRERAREE|
.-\

.w/,
FHEERFEE R RERER
{

J
NEREREBERNEREEEN
~

L
BENNREBEERREENEEENERNERERRE|
p

RERERRERERRRERERRNERERERERE

””./
B EE R EEFRRRAR

EEENENEEENEEEEE NN EEENREENER!

8

=

g

%

B EMEHENBE MM EBERNEE G

7

i/
NRRERHRENNERRERE
~

S
LLTTLELLIT: MERNERAEER
ba

o
EENEREEEERERERERAKERNERRREE
o

EREErNEEENNEENEN

.

EBBERNEEENHEENEN

\
BE AREEE SR AR
< \

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

. 1111
<€

TP

L

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

1111
TP

Al
Jilll

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

T e <Jund LT I {mIIIIIIIIIIIIII IIIIIIIIIIIIII"")
T ||||||||IIIIII,HImIIIIIIIIIIIII IIIIIIIIIIIIIEIII“IIIIIIIIIIIII IIIIIIIIIIIIIIHImIIIIIIIIIIIII IIIIIIIIIIIIIEIIIHIIIIIIIIIIIII ™
T ||||IIIIIIIIIQIIIHIIIIIIIIIIIII IIIIIIIIIIIIIwImIIIIIIIIIIIII IIIIIIIIIIIII“IIIHIIIIIIIIIIIII IIIIIIIIIIIIIIHImIIIIIIIIIIIII ™
o (I T <l I <L I

£ £ 4 £

Practice of DNA tile self-assembly

_ 1111
<€

TP

AT

Practice of DNA tile self-assembly

1111

Al

TP

AT

N

single crossover

Practice of DNA tile self-assembly

1111

Al

TP

U

N

single crossover

e N —
)i X il

Figure from Schulman, Winfree, PNAS 2009

double crossover

Practice of DNA tile self-assembly

other tile motifs

Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

Erik Winfree

Erik Winfree,

Abstract Tile Assembly Model e

Erik Winfree,

Abstract Tile Assembly Model e

* tile type = unit square o

Abstract Tile Assembly Model

* tile type = unit square B

north glue label

* each side has a glue
with a label and south glue label
strength (0, 1, or 2) H

[39e| an|3 1som

strength O

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Ph.D. thesis,

Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square

K9]
Q0
&
Q
=
oo
<
+—
>
-,

* each side has a glue
with a label and
strength (O, 1, or 2)

west glue labg

strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Ph.D. thesis,

Caltech 1998

Erik Winfree,

Abstract Tile Assembly Model e

* tile type = unit square northgl.uelabel * finitely many tile types

[39e| an|3 1som

* each side has a glue * infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H

strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Abstract Tile Assembly Model e

* tile type = unit square B * finitely many tile types

north glue label

* each side has a glue

[39e| an|3 1som

* infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H
strength 0 e assembly starts as a single
* tiles cannot rotate copy of a special seed tile

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Abstract Tile Assembly Model e

* tile type = unit square B

north glue label

finitely many tile types

* each side has a glue * infinitely many tiles: copies

[39e| an|3 1som

with a label and south glue label of each type
strength (O, 1, or 2) H
strength O e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
B * tile can bind to the assembly
if total binding strength > 2

strength 2 (strong)

o~ (two weak glues or

one strong glue)

Example tile set

Example tile set

Example tile set

Example tile set

“cooperative
binding”

10

Example tile set

“cooperative
binding”

10

Example tile set

“cooperative
binding”

10

Example tile set

“cooperative
binding”

10

Example tile set

e o o o
BRI o b b

B S e o o S

o ok et
B e el e e i
-
e
ol e ol ke
B e e
-9 Y
T ot e bt
e ch

PO RS RS
B

S

|
I
|
|
+

[

9 FEESEEE Y PR
P
PR PR O
ool R o PR
SECIC S

o st s e

q
4
a3
4
4
€
o

e e o S i o o
Sl
oot £ e
ESFS R ER S SRR SRR R
P R SRR AR R - R
- SRR SRR AR SRS Y Y P
. SR B SRS, b o o o
E Y REESE E R,
T
BEE . REEE
I g
ERES RN R SRS ERRE
T R
B

FEE SRR B S S R SR
S S S R A
f SRR S R S B R
S RS R B S R S SR
B R R S R N A
FHE SR SRR S S R S
FHE SR R S SRR o A
FEE R R S R o S
FEE R R S R o
FEE SR B S S SR S SR
FHE SR R S R o

FEE S SR S R
S N I O I

okt ++-

T e g S

SLoEs o bl b

change function to half-adder

B - ER
Fiht £ £ £

o
TR

Algorithmic self-assembly
In action

N raw AFM image

sheared image

:

$44
b
«

-

e

lloli;ﬂ.
b“{
.

shearing

»

80 nm

[Crystals that couht! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

A | go r |t h m | C S e H:_a SS e m b |y Track B talk by Damien Woods at 11:30am tomorrow!
i n a Ct I O n [iz‘53 :;;...3 ; “....................... simulation

: <€<—— AFM image
i sheared image _
N raw AFM image sorting
100 nm
- - ’
'e‘ "" ~§ ::z..........m..........‘m...........-m.......
/- -
T
y shearing parity
b .
.
e
cellular
automaton
rule 110
80 nm
[Crystals that couht! Physical principles and experimental investigations of DNA tile self- [Iterated Boolean circuit computation via a programmable DNA tile array.

assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014] Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation] 13

How computationally powerful
are self-assembling tiles?

Turing machines

Turing machines

H/—/

tape = memory

15

Turing machines

state = line of code

H/—/

tape = memory

15

Turing machines
state = line of code

initial state =s

H/—/

tape = memory

15

Turing machines
state = line of code

initial state =s

5,0 q,0,—

R/—/
transitions

(instructions) tape = memory

15

Turing machines
state = line of code

current state initial state = s

\6}): q,0,~>

Hﬁ
transitions

(instructions) tape = memory

15

Turing machines
state = line of code
current symbol

current state initial state = s

N

0) q,0,>

Hﬁ
transitions

(instructions) tape = memory

15

Turing machines
state = line of code
current symbol

next state |n|t|a| state = s

current state \
s,0: ,9

Hﬁ
transitions

(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

current state \ next state initial state = s
s,0: 0@

Hﬁ
transitions

(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

current state \ next state / next move initial state = s

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

ext move initial state = s

current state next state

q,0: t,1,&
q,1: s,0,—>
t,0: ul,—>
u,l: HALT

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

ext move initial state = s

current state next state

q,0: t,1,<

t,0: ul,—>

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

ext move initial state = s

current state next state

q,0: t,1,<

t,0: ul,—>

transitions
(instructions) tape = memory

15

Turing machines
state = line of code
current symbol next symbol

current state next state / next move initial state = s

t,0: ul,—>

u,1: HALT g ——

transitions
(instructions) tape = memory

15

Turing machines
state = line of code
current symbol next symbol

current state next state / next move initial state = s

u,1: HALT g ——

transitions
(instructions) tape = memory

15

Turing machines
state = line of code
current symbol next symbol

current state next state / next move initial state = s

transitions
(instructions) tape = memory

15

Tile assembly is Turing-universal

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,¢&
q,1: s,0,—>
t,0: ul,—>
u,1: HALT

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,¢&
q,1: s,0,—>
t,0: ul,—>
u,1: HALT

Tile assembly is Turing-universal

s,0: 9,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

gr+4 4+

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,~>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

gr+4 4+

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,—>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,~>
q,0: t,1,&
q,1: s,0,—>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

Tile assembly is Turing-universal

OO Ona s R
+EFE

EFE

0 gl 0

e e

Tile assembly is Turing-universal

+FE
+EFE

A+
LR R

Tile assembly is Turing-universal

HALT

+hFE
+FE

+4F
S+
S EREREREREREE o uis

u,l: HALT

Tile assembly is Turing-universal

HALT

+hFE
+FE

+4F
S+
S EREREREREREE o uis

u,l: HALT

time

Putting the algorithm in algorithmic self-assembly

* set of tile types is like a program

* shape it creates, or pattern it paints, is like the output of the program

tile set A:

J

tile set B:

17

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set

A 0o
EE
EEEEE

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
A 00 seed X: a

H N
EEEEDE

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
A 0O seed X: . seed Y. E

EEEEE @ @

A(X) A(Y)

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set o

A oo seed X: . seed Y E seed Z: (DNA origami
- rectangle with sticky

- @ @ ends on right edge)

. © Barish, Schulman, Rothemund,
Winfree, PNAS 2009

Calculating parity of 6-bit string:
1 algorithm, 2° inputs

1 R I

Calculating parity of 6-bit string:
1 algorithm, 2° inputs

eI 3.

single set of tiles <
computing parity

Ny

19

Calculating parity of 6-bit string:
1 algorithm, 2° inputs

single set of tiles <
computing parity

19

o(eeeeel) = 001 o(1eeeee) = 211

o(eeee1e) = 011 of1e0011) = 213

Calculating parity of 6-bit string; - Ex==.--
. 6 . o(ee108e) = 441 a(lemel)im
1 algorithm, 2° inputs

o(ee1101) = 182 o(1e1100) = 234

o(ee111e) = 103 o(181111) = 382

o(e1e0e0) = 111 o(110001) = 318

: \ o(e1ee11) = 114
(BQ) 3 \\g AL SN LS S sotoion o122
! o(e10110) = 123

1 1 o(e11081) = 131

o(e1101e) = 132

o{110018) = 320

o{11e1ee) = 338

o{110111) = 400

o{111000) = 481
o{111011) = 411

o(e111ee) = 134 of1111e1) = 421

D o(e11111) = 218

ZRSEEESIN -——=—=—= eSS S == e e e e e e

. . 0(000000) = 000
o _ 0(100016):=212

o{111110) = 430

0(100001) = 002

single set of tiles <
computing parity

o(100100) = 221 8] »

0(100111) = 223

o{eee101) = 621

\ o(eee110) = 022

0{001001) = 824
0(101000) = 230

S
iss
“
ofeor610) =030 [le R
o(101611) = 233
o(101101) = 300
V1@ '
r1e
2 .
2ot e

o(1e1110) = 301

0(e10010) = 113

0(110000) = 303

0(110011) = 333 NN

o(e10100) = 121

o(110101) = 004
o(e1e111) = 130 R <

0(111001) = 404

[Iterated Boolean circuit computation via a programmable DNA tile R . o(111010)= 410
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, in preparation, PERCE 200 . | ofr11100) = 420
work presented in DNA 23 talk tomrrow by Damien Woods] P o1 - sy = an

a
2

So tiles can compute... what’s that good for?

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

UEiffeI_tower

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

20

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

. UEiffeI_tower
smiley face

These tiles are universally programmable for building any shape.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

20

Active self-assembly

* tiles are passive: they bind based on glue identity, and do little else

Active self-assembly

* tiles are passive: they bind based on glue identity, and do little else
* active self-assembly: monomers with a “state”:

Active self-assembly

* tiles are passive: they bind based on glue identity, and do little else

* active self-assembly: monomers with a “state”:
 state can change after binding

Active self-assembly

* tiles are passive: they bind based on glue identity, and do little else

* active self-assembly: monomers with a “state”:
 state can change after binding
* monomer can communicate with neighbors

Active self-assembly

* tiles are passive: they bind based on glue identity, and do little else

* active self-assembly: monomers with a “state”:
 state can change after binding
* monomer can communicate with neighbors
e possibly, monomer can move

Active self-assembly at DNA 23

* Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana
Randall, and Andréa W. Richa. A Stochastic Approach to Shortcut
Bridging in Programmable Matter

* Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.

Asynchronous,

Each has constant-size memory,

Each can communicate only with neighboring particles,
There is no common orientation, only common chirality,
Often desirable that the system stays connected.

23

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.

Asynchronous,

Each has constant-size memory,

Each can communicate only with neighboring particles,
There is no common orientation, only common chirality,
Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle,

hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

23

https://sops.engineering.asu.edu/

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

Abstraction of Programmable Matter: Self-organizing Particle Systems

A collection of simple computational elements that self-organize to solve system-wide
problems of movement, configuration, and coordination via fully distributed, local algorithms.

Geometric Amoebot Model: Particles move on the triangular lattice.
- Asynchronous,

- Each has constant-size memory,

- Each can communicate only with neighboring particles,

- There is no common orientation, only common chirality,

- Often desirable that the system stays connected.

(Mostly) deterministic algorithms exist for: Leader election, Shape formation (triangle,
hexagon, etc.), Infinite object coating. (See sops.engineering.asu.edu).

Stochastic algorithms exist for:

- Compression: gathering a particle system together as tightly as possible.
e Often found in natural systems.
e Approach is decentralized, self-stabilizing, and oblivious (no leader necessary).
e Uses a Markov chain to derive a local algorithm.

- Shortcut bridging (DNA23): Generalizes the stochastic approach.

https://sops.engineering.asu.edu/

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, Andréa W. Richa

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Markov chain algorithm: Distributed algorithm:
Starting at any configuration, repeat: Each particle continuously executes:
1. Pick a random particle. 1. Particle proceeds at its own processing

speed (possibly variable).

2. Choose a random direction. Poisson clock with

3. If certain properties hold, move in that 2. Choose a random direction. individual rate

direction with probability [.....] . 3. If certain properties hold, move in that

i ' R Depends on direction with probabilit
4. Otherwise, do nothing. application p y [k] Depends on

4. Otherwise, do nothing. application

A framework for transforming Markov chains into local, asynchronous distributed algorithms:

Markov chain algorithm: Distributed algorithm:
Starting at any configuration, repeat: Each particle continuously executes:
1. Pick a random particle. 1. Particle proceeds at its own processing

speed (possibly variable).

2. Choose a random direction. Poisson clock with

3. If certain properties hold, move in that 2. Choose a random direction. individual rate

direction with probability [.....] . 3. If certain properties hold, move in that

W Depends on direction with probability [.....] .

application Depends on
4. Otherwise, do nothing. N application

4. Otherwise, do nothing.

Shortcut Bridging: Bridge across a V-shaped gap in a way that balances minimizing paths
between endpoints with cost of bridge.

Chris R. Reid, Matthew J. Lutz, Scott Powell, Albert
B. Kao, lain D. Couzin, and Simon Garnier. Army
ants dynamically adjust living bridges in response to
a cost-benefit trade-off. Proceedings of the
National Academy of Sciences, 112(49):15113-
15118, 2015.

Inspired by ants (Reid et al. 2015) Our algorithm

Theorem:

With only one supplementary layer,

Supplementary
layer

Main layer

If each nubot can only perform one state change, then
the main layer can only grow linearly.

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]

103

Theorem:

Simple extensions allow exponential growth:

= Two supplementary layers
or

= Disappearance does not require a state change

[Yen-Ru Chin, Jui-Ting Tsai and Ho-Lin Chen. A Minimal Requirement
for Self-Assembly of Lines in Polylogarithmic Time, DNA 23]

104

Non-cooperative binding

Non-cooperative binding

Non-cooperative binding

Non-cooperative binding

repeated
tile type

27

Non-cooperative binding

Non-cooperative binding

Non-cooperative binding

Non-cooperative binding

Non-cooperative binding

Non-cooperative binding

Non-cooperatiye binding
a

Non-coogﬂ/

Non-coogﬂ/

Non-coogﬂ/

Non-coogﬂ/

i

=

(™

o

Non-cooperatily

Conjecture: Non-cooperative
tiles can only self-assemble
“periodic” patterns like this.
(formally, semilinear sets)

N
n

Er

Non-cooperative binding at DNA 23

* Pierre-Etienne Meunier and Damien Woods, The non-cooperative tile
assembly model is not intrinsically universal or capable of bounded
Turing machine simulation

Temperature 1 does not simulate itself

Pierre-Etienne Meunier and Damien Woods

...and much more on our poster!

29

Hierarchical self-assembly

30

Hierarchical self-assembly

N mane

S S

Hierarchical self-assembly

Hierarchical self-assembly

T

Hierarchical self-assembly

Hierarchical self-assembly

Hierarchical self-assembly at DNA 23

e Robert Schweller, Andrew Winslow, and Tim Wylie, Complexities for
high temperature two-handed tile self-assembly

Thank you!

