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Abstract

Amajor goal of self-assembly research is the synthesis
of biomolecular structures with diverse, intricate features
across multiple length scales. Designing self-assembly
processes becomesmore difficult as the number of species
or target structure size increases. Just as the ordered
assembly of a machine or device makes complex manu-
facturing possible, ordered (or "algorithmic") biomolecular
self-assembly processes could enable the self-assembly
of more complex structures. We discuss the design of
ordered assembly processes with particular attention to
DNA and RNA. The assembly of complexes can be or-
dered using selective, multivalent interactions or active
components that change shape after assembly. The self-
assembly of spatial gradients driven by reaction-diffusion
can also be ordered. We conclude by considering topics
for future research.

Highlights.

• Self-assembly processes can be designed by explic-
itly designing assembly kinetics.

• Designing the steps of a self-assembly process can
make it easier to scale.

• Self-assembly process design can employ sophisti-
cated tools from computer science.

• Simple components can self-assemble complex struc-
tures by computing as they grow.

Introduction

While significant progress has been made toward the
self-assembly of complex, synthetic biomolecular struc-
tures (1; 2; 3), the complexity and functionality of these
structures are still dwarfed by the complexity and func-
tionality of the structures assembled by organisms. For
example, animals can have billions or more ordered fea-
tures across 12 orders of magnitude in size: Fundamen-
tal advances are needed to design and synthesize struc-
tures whose complexity compares to those of living things.
One potential route to self-assembling structures of sig-
nificantly greater complexity than is possible currently is

to design self-assembly processes by modeling them af-
ter the way macroscale machinery is designed and built.
Typically, cars or computers are assembled using well-
defined, sequential processes. Considered generally, this
notion of a set of well-defined sequential steps can be ap-
plied not only to building, but also to process design or in-
formation processing. In each case, such a well-defined
recipe is referred to as an algorithm. Importantly, this us-
age of the word "algorithm" does not refer to software run
on an electronic computer to help design self-assembling
systems. Rather, this algorithm is the set of steps biomolecules
themselves follow to assemble a given structure. The idea
that biomolecules could execute an algorithm to self-assemble
complex structures is supported by recent studies of self-
assembly processes in biology: one of their hallmarks is
the control of assembly kinetics over multiple assembly
steps (4; 5; 6).

To design an algorithm for the self-assembly of a biomolec-
ular structure, it is necessary to design both the struc-
ture of what is to be assembled and the sequence of self-
assembly steps expected to produce the desired struc-
ture. We will refer to a self-assembly process designed
in this way as an ordered self-assembly process. In con-
trast to designing a set of components that stably form a
desired structure at equilibrium, designing an ordered as-
sembly process means that the kinetics of assembly must
be understood and optimally, explicitly designed. In prac-
tice, characterization and determination of assembly ki-
netics is more difficult than equilibrium analysis and de-
sign because the latter requires only characterizing the
minimum energy states of the systems, whereas the for-
mer requires characterizing all possible states of the sys-
tem, and the transition rates between them. Experimen-
tal characterization of rapid kinetic transitions can also be
technically challenging. Yet despite these potential obsta-
cles, it is become increasingly possible to approach these
problems and to do so with an eye to scaling the com-
plexity and functionality of the structures being assem-
bled. Further, the scaling and design of ordered assem-
bly processes can be addressed by considering assembly
processes as algorithmic and applying powerful tools for
algorithm design from computer science.

This article describes progress toward designing or-
dered self-assembly processes for DNA and RNA compo-
nents that assemble via Watson-Crick hybridization, with
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an emphasis on the application of algorithmic ideas from
computer science to enable processes to be scaled. By
scaling, we refer to scaling both the size of the assem-
bly (so that it extends across multiple length scales) and
the complexity with which the components are arranged
(which may be measured in a variety of ways). An in-
crease in either of these metrics may also require that the
number of different types of components (species) used
to self-assemble a structure also increase.

Watson-Crick hybridization processes are particularly
amenable to scalable design because base pairing inter-
actions are relatively easy to model and predict compu-
tationally (7). It is also often possible to scale the num-
ber of components in a process by using many different
components with similar or identical architectures but dif-
ferent sets of complementary subsequences. Because
these different subsequence pairs assemble specifically
and can have almost identical structures, it is feasible to
design large structures in which the order of interactions
between the components of the assembled structure are
controlled. Examples are shown in Fig. 1. In this article
we describe two of these examples---algorithmic tile self-
assembly and reaction diffusion systems---in detail and
touch on related work.

Algorithmic tile self-assembly

Algorithmic tile self-assembly was first described by
Winfree (13) as a mechanism for assembling aperiodic
crystals from different types of DNA monomers that could
cocrystallize (8). Winfree showed that the assembly of
these crystals could be viewed as analogous to the ex-
ecution of a type of computer program, called a cellular
automaton (14). This view of the assembly process is
powerful because it makes it possible to assemble large,
complex structures with only a few types of components
in a one pot reaction. Algorithmic tile self-assembly pro-
cesses have been used to assemble fractal structures (15;
16) and nanoscale circuit diagrams (17), to design self-
replication processes (18) and could in principle be ex-
tended to assemble structures of arbitrary complexity and
size in one pot reactions.

The ordered execution of programmatic steps during
assembly is made possible by experimental conditions in
which a monomer attaches favorably to two or more bind-
ing sites on a crystal but unfavorably to only a single bind-
ing site. In algorithmic assembly literature, the term coop-
erative binding is used to describe this effect. The bio-
chemistry literature sometimes uses the term avidity to
describe this effect, and reserves "cooperative binding"
for a different usage (to describe how binding affinity of
a ligand to a substrate increases nonlinearly with ligand
concentration).

While a preference for cooperative interactions can be
used to order assembly steps with high probability (19;
15), one challenge in algorithmic tile self-assembly is that
it is difficult to achieve conditions where this preference is

strong enough to ensure that assembly occurs with few or
no errors (15; 17; 9).

The abstract tile assembly model
Because both the programming of a tile assembly pro-

cess and the chemical kinetics of an algorithmic tile self-
assembly process can be difficult to understand, it is help-
ful to separate the problems of i) designing algorithmic
tile self-assembly processes as programs, where it is as-
sumed that only idealized cooperative interactions can oc-
cur (formally, this means that a monomer can bind to a
polymer if and only if at least two of its binding sites match)
and ii) analyzing how reliably self-assembly occurs when
stochastic events may violate this constraint (e.g., when a
monomer erroneously binds when only one of its binding
sites matches).

The abstract Tile Assembly Model (aTAM) (19) ad-
dresses concern (i), and is described in Figure 2. The
aTAM considers the assembly of basic components called
tiles; the assembly is considered algorithmic because cer-
tain binding reactions between tiles are automatically al-
lowed or disallowed by the growth process itself, thus care-
fully controlling the assembly.

An assembly step can be viewed as a computation be-
cause when a tile binds cooperatively to growing crystal,
it binds via two binding sites (glues); these binding sites
can be viewed as inputs to a function. Its two other glues
-- which will serve as binding sites for future attachments
-- can then be viewed as the outputs of the function. In
Figure 2d the function computed in this manner is a half-
adder : the input bits from the south and east glues are
summed to create a two-bit number (00, 01, or 10), with
the least significant bit of the sum appearing on the north
glue, and the most significant bit of the sum (i.e., the carry)
appearing on the west glue. Multiple binding events using
this function produce a complex pattern in which the rows
of the assembly appear to "count" in binary, if blue tile
types represent 0 and orange tile types represent 1.

Algorithmic tile self-assembly processes can make it
possible to assemble many complex objects efficiently (in
terms of the number of components) by exploiting com-
plex patterns in the final product or by transmitting infor-
mation during an assembly process that can be used to
guide and pace assembly. The aTAM makes it possible
to explore these issues without considering the complex-
ities of crystallization kinetics. For example, while square
and cubic objects of fixed size can be assembled by us-
ing a different tile for each position (20; 21), aTAM studies
suggest that by controlling assembly order, it may be pos-
sible to assemble such structures using only about log2 n
unique tile types (each of which appears in several posi-
tions through the final assembly) that self-assemble into
an n×n square (22). Other studies suggest that algorith-
mic tile self-assembly serves as a general-purpose "pro-
gramming language" for assembling shapes: any shape
(sufficiently re-scaled) can be assembled by a number of
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Figure 1: DNA/RNA structures produced using processes in which the order of assembly is designed and controlled. (Figures taken from respective
citations.) a) Algorithmic tile self-assembly of double-crossover DNA tiles (8). Here, monomers assemble into an aperiodic crystal structure. The
example shown is a "binary counter" in which the dots in each row encode incrementing numbers in binary (9). (Width of structure ≈ 100 nm). The
structure is assembled from bottom to top, such that each tile that attaches matches two binding sites in the structure, effectively integrating inforamtion
about the structure's current assembly state (Figure 2). In other words, assembly steps perform simple computations. b) Catalytically-triggered self-
assembly of a three-arm junction from DNA hairpin components (10). (Scale bar: 10 nm.) Although a three-arm junction is the thermodynamically
most stable state, a large energetic barrier prevents the formation of the structure until a catalyst strand triggers its assembly. A cascade of trigger
and release steps can be used to order an assembly process. c) Co-transcriptional folding of an RNA structure. Secondary structure formation occurs
more quickly than transcription so that existing complementary domains will hybridize first and will not interact with domains transcribed later. The
order of transcription therefore controls the order of self-assembly. Tile components subsequently assembly into a hexagonal lattice (11). (Scale bar:
100 nm) d) A transformation of a concentration pattern of DNA components, driven by a designed reaction diffusion process. (12). While multiple
reactions and diffusion processes are occurring at once, a separation of time-scales of reaction and diffusion processes produces a well-defined
pattern of chemical concentrations. (Scale bar: 3 mm)

tile types close to the number of bits required to describe
the shape by a computer program (23).

Comparison of the computational power of different as-
sembly models can serve as a guide for the design of
future assembly processes. For example, two basic as-
sumptions of algorithmic tile self-assembly in the aTAM
are that an assembly always nucleates from a seed tile,
and that single tiles then attach to a growing assembly.
But molecular processes could be designed to allow for
different types of interactions. "Hierarchical assembly,"
in which any two tiles or assemblies that interact strongly
enough to attach, can be more computationally sophisti-
cated than the original aTAM (24). However, hierarchical
assembly is in another sense weaker, in that its dynamics
cannot emulate those of other hierarchical self-assembly
systems (25). In contrast, there is a single tile set in the
original aTAM that can emulate the dynamics of any other
system in the original aTAM (26), but it relies crucially on
cooperative binding (27).

The kinetic tile assembly model
While the aTAM predicts that complex patterns can be

produced efficiently using algorithmic tile self-assembly,
these patterns can only be assembled in practice if co-
operative assembly can correctly order the assembly pro-

cess in line with the aTAM's assumptions. Designed to
investigate this question, the kinetic Tile Assembly Model
(kTAM)models the assembly process using stochastic chem-
ical kinetics. In the kTAM, tiles attach to assemblies at a
rate proportional to the concentration of a particular tile
type and independent of temperature, and tiles detach
from assemblies at a rate exponential in−∆G◦/RT , where
∆G◦ is proportional to the total glue strength between in-
teracting tiles,R is the universal gas constant, and T is ab-
solute temperature (19). Under these assumptions, there
are regimes close to assemblymelting temperature in which
assembly is predicted to occur almost exactly as the aTAM
predicts, i.e., with few errors (defined as tiles that attach
without forming bonds of strength at least 2), but very slowly (19);
reducing the temperature for a given the concentration of
a particular tile type speeds up assembly but increases
the error rate.

The kTAM also makes it possible to develop methods
for designing tiles for which errors are intrinsically less
likely to occur under any set of physical conditions for as-
sembly. Proofreading (28; 29; 30; 31) has been proposed
as a strategy which allows one to transform a given set of
tiles into amore complex set of tiles that make fewer errors
during assembly. In a proofreading transformation, each
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Figure 2: The abstract Tile Assembly Model (aTAM) is a simplified model of an assembly process involving many different types of DNA nanostructures
(or "tiles") that can assemble together into lattices via hybridization reactions involving short single-stranded regions on the tiles, known as sticky ends
(or in the aTAM, glues). The goal of the aTAM is to make it possible to design a set of tiles that, assuming that crystallization kinetics generally
follow a set of rules that determine the order of reactions, correctly assemble into a designed shape. a) A typical DNA tile used in an algorithmic tile
self-assembly process. Each colored ribbon represents a strand of DNA. The sequences of single-stranded regions, or sticky ends, determine which
tile types can interact. Complementary sticky ends can participate in binding reactions, whereas noncomplementary sticky ends do not interact. b)
An abstract representation of a tile like the one in (a), as it is represented in the aTAM. A tile is modeled as a square with a glue on each side that
denotes the type of sticky end present. Only matching glues can interact. c) An example tile set considered by the aTAM. Each glue has an integer
strength, depicted by the number of black squares on a side. d) An example growth process in the aTAM involving the tiles in (c). An assembly
process starts from a seed tile; another tile can bind to a growing assembly if, and only if, it binds with total strength at least 2, which means either
a single strength-2 glue, or two cooperating strength-1 glues (the latter condition idealizing cooperative binding). Any ordered assembly process in
which each tile addition follows these rules is allowed. Assembly is considered successful when all possible assembly processes produce the desired
final structure. For this particular tile set, cooperative interactions between the 0 and 1 labels on south and east glues of the bottom four tiles in the tile
set and matching glues on a growing assembly can simulate the execution of a "half-adder" Boolean function (interpreting the south and east glues of
a tile to be inputs to the function and the other two glues on the same tile to be outputs). Many evaluations of this function during assembly lead the
growth of the structure to produce a crystal whose components appear to "count" in binary: the n'th row represents the number n in binary (starting
the count at 0).

component is replaced by a block of new tile types. In ex-
periments, proofreading tile sets based on these models
have reduced errors during both assembly growth (32; 17;
18) and nucleation (33).

Active self-assembly

In algorithmic tile self-assembly a complex assembly
process is ordered because only cooperative (or multiple
simultaneous) attachments between components and a
growing structure are allowed. The opportunity to make
grow viamultiple attachments arises only when assembly
grow reaches particular states. An alternative approach
to ordering assembly is active assembly, in which com-
ponents change conformation upon binding, which in turn
alters other components in the assembly react with them.
While this type of mechanism is common in vivo, a sys-
tematic consideration of this idea for designing DNA-based
assembly processes and the design of synthetic struc-
tures with this capacity has begun only recently. The best
explored mechanism for active assembly using DNA com-
ponents aremechanisms that employ strand displacement
reactions to trigger downstream self-assembly reactions
by activating binding sites on previously inactive tiles (34).
BranchedDNA strand structures (10) or a tetrahedron (35)
may be assembled from single DNA strands which unfold
as the reaction proceeds. The unfolding process controls

which assembly steps can occur when. Possible mech-
anisms for implementing more generalized active com-
ponents include strand displacement reactions on DNA
tiles (34) or helper enzymes (36).

While the computational implications of active assem-
bly are just beginning to explored, recent results indicate
that at least in principle, active self-assembly may improve
both the efficiency and accuracy of complex assembly pro-
cesses as compared to passive self-assemblymechanisms.
Certain shapes can be assembled with fewer component
types (37), and some shapes that cannot be assembled
at all in the aTAM can be assembled by active tiles (37;
38). General-purpose computation can also be done with
fewer total components (37), since several steps of com-
putation can use tiles that are recycled by being broken
off from an earlier assembly by deactivating some bonds.
The use of active tiles also means that general-purpose
computation can be done without requiring the use of co-
operative binding as in most aTAM results (37; 39). Ac-
tive self-assembly may also make it possible to design dy-
namic self-assembly processes, such as self-replication:
starting from a "template" assembly containing a pattern,
the pattern can be replicated by growing a copy on the
original and then using signals to deactivate bonds to break
the two copies apart (40).
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Reaction-diffusion patterning

The DNA lattices produced by an algorithmic tile self-
assembly process are crystals whose structure is deter-
mined by the precise arrangement of the componentmonomers
(Fig. 1a-c). Algorithmic design can also be used to de-
sign processes to produce other kinds of ordered arrange-
ment, such as spatial concentration gradients of soluble
molecules (Fig. 1d.) Gradients as a form of spatial organi-
zation are common in living systems as, for example, con-
centration gradients of morphogens or growth factors (41).

Coupled reaction-diffusion processes have been stud-
ied computationally as pattern formation processes formore
than 50 years (42). While in principle, controlling the rate
of each of the reaction and diffusion processes in these
systems can enable controlled pattern formation, it has
been difficult to build systems based on these principles
such that they can be programmed and scaled (43).

Recently, advances in the de novo design of chemi-
cal reaction networks based on interactions between syn-
thetic DNA complexes (45; 46; 36) has provided a new
method of building complex systems for pattern gener-
ation akin to the complex networks seen in multicellular
systems. Diffusion rates for DNA molecules are also well-
characterized (47), which could be exploited for pattern-
ing.

Particularly amenable to engineering and scaling is the
process of pattern transformation, the formation of a well-
defined pattern given a well-defined reaction-diffusion net-
work and a well-defined initial, generally simpler pattern
of concentrations. An initial demonstration of DNA-driven
pattern transformation showed the transformation of an
initial pattern (produced using photolithography which ac-
tivated a DNA species in some areas of the environment
but not others) into a second pattern with a well-defined
"edge" (12). Reactions only happened at boundary re-
gions where multiple reactants could encounter one an-
other. Slightly more elaborate patterns could be produced
by building multiple possible reactions between compo-
nents with different diffusion rates. Another DNA-based
reaction-diffusion patterning system for the production of
a traveling wave of molecules driven by a set of autocat-
alytic reactions was also recently demonstrated (48).

In order to scale the complexity of patterns that can
be produced, new design and simulation techniques are
needed (49) so that designs for scalable systems, such
as modular reaction-diffusion networks, in which new fea-
tures can be produced by chaining modules together (44;
50) can be implemented and scaled (Figure 3).

Conclusions

The design of kinetic pathways for assembly processes
and flexible design frameworks that allow for robustness
and scaling are underway in different areas of DNA- RNA-
based self-assembly design. An important challenge will

be integrating modeling and design with experimental ap-
proaches. In the future, an understanding of assembly
kinetics could make it possible to address assembly prob-
lems in nanostructures that are currently designed using
thermodynamicmethods, including DNA origami structures (51;
52) and single-stranded tile structures (20; 21). Recent
work focuses on optimizing assembly conditions in order
to produce the desired lowest energy structure (53), but
the assembly processes producing these structures are
still poorly understood.

Future algorithmic tile self-assembly researchmust ad-
dress the challenges inherent in reaction ordering using
cooperative binding. While many models of complex self-
assembly processes have been proposed, high error rates
in experiments mean that scaling assembly processes to
implement most of these ideas will be difficult or impossi-
ble without new process improvements. Perhaps a more
viable alternative for the design of self-assembly processes
is to explore alternative assembly models for a variety of
architectures and at a variety of scales. For example, ac-
tive assembly processes may make nanoscale assembly
more robust, and reaction-diffusion processes may be ap-
propriate for inducing spatial organization at the millimeter
scale.

In addition, the explicit design of assembly processes
for nucleic acid components may be increasingly impor-
tant for assembly processes in complex environments, where
it may not be easy to reach equilibrium and many rates of
interaction may be unknown, such as in vivo or in confined
environments. Self-assembly process design and an un-
derstanding of how a particular environment changes the
rates and mechanism of component interactions could to-
gether produce a systematic method of constructing novel
structures in such complex environments.

As of today, the majority of research into the design
of ordered self-assembly processes has been focused on
DNA andRNA self-assembly processes, because hybridiza-
tion interactions between these molecules are highly spe-
cific and the rate constants between components can be
chosen to some extent by design. However, as more in-
formation about rate constants for protein interactions be-
comes available and in silico models of protein improve,
we expect that these ideas could be extended to apply
to protein self-assembly as well, and in principle to other
molecules for which both kinetic and thermodynamic pa-
rameters are available. The ability to apply these ideas
to a diverse set of biomolecules will be an important step
toward the development of principles self-assembly tech-
niques that make it possible to synthetically recapitulate
the complexity of biological complexes and molecular ma-
chines.
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