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Abstract
We study population protocols: networks of anonymous agents whose pairwise interactions are
chosen uniformly at random. The size counting problem is that of calculating the exact number
n of agents in the population, assuming no leader (each agent starts in the same state). We give
the first protocol that solves this problem in sublinear time.

The protocol converges in O(logn log logn) time and uses O(n60) states (O(1)+60 logn bits of
memory per agent) with probability 1−O( log log n

n ). The time to converge is also O(logn log logn)
in expectation. Crucially, unlike most published protocols with ω(1) states, our protocol is
uniform: it uses the same transition algorithm for any population size, so does not need an
estimate of the population size to be embedded into the algorithm.
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1 Introduction

Population protocols [4] are networks that consist of computational entities called agents
with no control over the schedule of interactions with other agents. In a population of n
agents, repeatedly a random pair of agents is chosen to interact, each observing the state of
the other agent before updating its own state.
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47:2 Brief announcement: Exact size counting in uniform population protocols in nearly logarithmic time

The (parallel) time for some event to happen in a protocol is a random variable, defined
as the number of interactions, divided by n, until the event happens. A recent blitz of
impressive results in population protocol has shown that leader election [1, 7–9] and exact
majority [2,3] can be solved in polylog(n) time using polylog(n) states. Most of the protocols
with ω(1) states use a nonuniform model: given n, the state set Qn and transition function
δn : Qn ×Qn → Qn ×Qn are allowed to depend arbitrarily on n, other than the constraint
that |Qn| ≤ f(n) for some function f growing as polylog(n). This nonuniformity is used in
most of the cited protocols to encode a value such as blognc into each agent.

We define a uniform variant of the model: the same transition algorithm is used for all
populations, though the number of states may vary with the population size. A uniform
protocol can be deployed into any population without knowing in advance the size, or even
a rough estimate of the size. The original, O(1)-state model [4–6], is uniform since there is
a single transition function. Because we allow memory to grow with n, our model’s power
exceeds that of the original, but is strictly less than that of the nonuniform model of most
papers using ω(1) states.

2 Algorithm

The problem of counting the number of agents and storing this number in each agent is
clearly solvable by an O(n) time protocol using a straightforward leader election: Agents
initially assume they are leaders and the count is 1. When two leaders meet, one agent sums
their counts while the other becomes a follower, and followers propagate by epidemic the
maximum count. No faster protocol was previously known. Our main result improves this.

I Theorem 2.1. There is a leaderless, uniform population protocol solving the exact size
counting problem with probability 1. With probability at least 1− 10+5 log log n

n , the convergence
time is at most 6 lnn log logn, and each agent uses 17+60 logn bits of memory. The expected
time to convergence is at most 7 lnn log logn.

Key to our technique is a protocol, due to Mocquard et al. [10] (and similar to that
of Alistarh and Gelashvili [3]), that counts the exact difference between the number b of
“blue” and r of “red” agents in the initial population. The protocol assumes that each
agent initially stores n exactly (so is nonuniform). Blue agents start with an integer value
−M, while red agents start with M. When two agents meet, they average their values, one
rounding up and the other down if the sum is odd. This eventually converges to all agents
sharing the population-wide average (b − r) M

n , and the estimates of this average get close
enough for the output to be correct within O(logn) time [10].

Our protocol essentially inverts this, starting with one blue agent (a leader) and n − 1
red agents, we compute the population size as a function of the average. (See below for
details.) However, for this to work, our protocol requires a leader and for each agent to
share a value M ≥ 3n3, which are not present initially. Four sub-protocols are used in total
(although all agents run in parallel, each subprotocol runs sequentially within each agent
whenever it interacts): UniqueID, ElectLeader, Averaging, and Timer.

UniqueID eventually assigns to every agent a unique ID, represented as a binary string.
Agents start with ID ε (empty string), and whenever two agents with the same ID meet,
all agents double the length of their IDs with uniformly random bits (appending a single
bit when two ε’s meet). This protocol requires Ω(n) time to converge, but within only
O(logn log logn) time can be used by the next subprotocol to elect a leader.

ElectLeader propagates the lexicographically largest ID (considered the ID of the
leader) by epidemic (via transition of the form x, y → y, y if y > x lexicographically). The
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length of the leader’s ID is used as a polynomial-factor upper bound on 3n3.
Averaging uses a fast averaging protocol [3, 10]. We assume the initial configuration

of this protocol is one leader and n− 1 followers. (This protocol and the next (Timer) are
restarted each time the UniqueID protocol discovers two agents shared an ID; so eventually
Averaging will be restarted with a unique leader.) Each agent stores the value M, and the
leader initializes an integer field ave to be M, with followers initializing ave to be 0. When
two agents meet, they average their ave fields, with one rounding up and the other rounding
down if the sum is odd. Thus the population-wide sum is always M. Eventually all agents
have ave = d M

ne or b
M
nc, so n =

⌊ M
ave + 1

2
⌋
(i.e., M

ave + 1
2 rounded to the nearest integer). It

could take linear time for ave to converge this closely to M
n , but as long as M ≥ 3n3 and ave

is within n of M
n ,

⌊ M
ave + 1

2
⌋
is the correct population size n; we show that in O(logn) time

all ave fields are within n of M
n .

Since UniqueID continues restarting beyond the O(logn log logn) time required for
initialize convergence to a correct output, Timer is used to detect when Averaging has
likely converged, waiting to write output into the output field of the agent. Timer is a phase
clock [6] that ensures after the correct value is written, on subsequent restarts of Averaging,
the incorrect values that exist before Averaging re-converges will not overwrite the correct
value recorded into output during the earlier restart.

3 Conclusion

Ω(n) is a clear lower bound on the number of states required for any protocol computing the
exact population size, since logn bits are required merely to write the number n. (Note that
our protocol uses 60 logn bits.) It is an open question if there exists a uniform polylog-time,
O(n)-state population protocol for exact size computation.
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