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Abstract
We study population protocols: networks of anonymous agents whose pairwise interactions are
chosen uniformly at random. The size counting problem is that of calculating the exact number
n of agents in the population, assuming no leader (each agent starts in the same state). We give
the first protocol that solves this problem in sublinear time.

The protocol converges in O(logn log logn) time and uses O(n60) states (O(1)+60 logn bits of
memory per agent) with probability 1−O( log logn

n ). The time to converge is also O(logn log logn)
in expectation. Crucially, unlike most published protocols with ω(1) states, our protocol is
uniform: it uses the same transition algorithm for any population size, so does not need an
estimate of the population size to be embedded into the algorithm. A sub-protocol is the first
uniform sublinear-time leader election population protocol, taking O(logn log logn) time and
O(n18) states. The state complexity of both the counting and leader election protocols can be
reduced to O(n30) and O(n9) respectively, while increasing the time to O(log2 n).

1 Introduction

Population protocols [4] are networks that consist of computational entities called agents
with no control over the schedule of interactions with other agents. In a population of n
agents, repeatedly a random pair of agents is chosen to interact, each observing the state of
the other agent before updating its own state.6 They are an appropriate model for electronic
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3 Supported by EEE/CS initiative NeST.
4 Supported by EEE/CS initiative NeST.
5 Supported by EEE/CS initiative NeST, Leverhulme Research Centre for Functional Materials Design.
6 Using message-passing terminology, each agent sends its entire state of memory as the message.
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computing scenarios such as sensor networks and for “fast-mixing” physical systems such
as animal populations [33], gene regulatory networks [13], and chemical reactions [29], the
latter increasingly regarded as an implementable “programming language” for molecular
engineering, due to recent experimental breakthroughs in DNA nanotechnology [15,31].

The (parallel) time for some event to happen in a protocol is a random variable, defined
as the number of interactions, divided by n, until the event happens. This measure of time is
based on the natural parallel model where each agent participates in Θ(1) interactions each
unit of time; hence Θ(n) total interactions per unit time [6]. In this paper all references to
“time” refer to parallel time. The original model [4] stipulated that each agent is a finite-state
machine, with a state set Q constant with respect to the population size, and a transition
function δ : Q×Q→ Q×Q indicating that if agents in states a ∈ Q and b ∈ Q interact, and
δ(a, b) = (c, d), then they update respectively to states c and d. Many important distributed
computing problems provably require Ω(n) time for population protocols to solve under the
constraint of O(1) states, such as leader election [16], exact majority computation [1], and
many other predicates and functions [10].

This limitation on time-efficient computation with constant-memory protocols motivates
the study of population protocols with memory that can grow with n. A recent blitz of
impressive results has shown that leader election [1, 11, 12, 17] and exact majority [2, 3]
can be solved in polylog(n) time using polylog(n) states. Notably, each of these protocols
requires an approximate estimate of the population size n to be encoded into each agent
(commonly a constant-factor upper bound on blognc or blog lognc).

This partially motivates our study of the size counting problem of computing the popula-
tion size n. The problem is clearly solvable by an O(n) time protocol using a straightforward
leader election: Agents initially assume they are leaders and the count is 1. When two lead-
ers meet, one agent sums their counts while the other becomes a follower, and followers
propagate by epidemic the maximum count. No faster protocol was previously known.

Our study is further motivated by the desire to understand the power of uniform
computation in population protocols. All of the mentioned positive results with ω(1)
states [1–3, 11, 12, 17, 26, 27] use a nonuniform model: given n, the state set Qn and trans-
ition function δn : Qn ×Qn → Qn ×Qn are allowed to depend arbitrarily on n, other than
the constraint that |Qn| ≤ f(n) for some “small” function f growing as polylog(n).7 This
nonuniformity is used to encode a value such as blognc into the cited protocols.8

We define a stricter uniform variant of the model: the same transition algorithm is
used for all populations, though the number of states may vary with the population size
(formalized with Turing machines; see Section 2.) A uniform protocol can be deployed into
any population without knowing in advance the size, or even a rough estimate of the size.
The original, O(1)-state model [4–6], is uniform since there is a single transition function.
Because we allow memory to grow with n, our model’s power exceeds that of the original,
but is strictly less than that of the nonuniform model of most papers using ω(1) states.

7 Another constraint, sometimes explicitly stated, e.g., [1], but usually implicit from the constructions,
requires that if |Qn| = |Qm| for n 6= m, then Qn = Qm and δn = δm.

8 In these papers [1–3, 11, 12, 17, 26, 27], the role of the value logn (or log logn) is as a threshold to
compare to some other integer k, which starts at 0 and increments, stopping some stage of the protocol
when k ≥ logn. A naïve attempt to achieve uniformity is to initialize the comparison threshold to
some constant c < logn, which is then updated by the agent with each interaction in such a way that c
“quickly” reaches some value ≥ logn. The challenge, however, is that prior to the event c ≥ logn, the
comparison “k ≥ c?” should never evaluate to true and cause an erroneous early termination of the
stage, nor should a fast-growing c “overshoot” logn and excessively increase the memory requirement.
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1.1 Contribution

Our main result is a uniform protocol that, with probability ≥ 1− 10+5 log logn
n , counts the

population size, converging in 6 logn log logn time using 215n60 states (15 + 60 logn bits),
without an initial leader (all agents have an initially identical state). The protocol is stabil-
izing: the output is correct with probability 1, converging in expected time 7 logn log logn.9

A key subprotocol performs leader election in time O(logn log logn) with high probability
and in expectation. It uses O(n18) states, much more than the O(log logn) known to be
necessary [1] and sufficient [17] for sublinear time leader election. However, it is uniform,
unlike all known sublinear-time leader election protocols [1,11,12,17]. It repeatedly increases
the length of a binary string each agent stores, where the protocol, with probability at least
1 − O(1/n), takes O(logn) time once the length of this string reaches ≈ logn. The length
increases in stages that each take O(logn) time. Our main protocol doubles the string length
each stage, so takes log logn stages (hence O(logn log logn) time) to reach length logn.

The protocol generalizes straightforwardly to trade off time and memory: by adjusting
the rate at which the string length grows, the convergence time t(n) is O(f(n) logn), where
f(n) is the number of stages required for the string length to reach logn. For example,
if the code length increments by 1 each stage, then f(n) = logn, so t(n) = log2 n. In
this case the state complexity would be O(n30) for the full protocol and O(n9) for just
the leader election portion. (See Section 3.7.) By squaring the string length each stage,
t(n) = logn log log logn. By exponentiating the string length, t(n) = logn log∗ n. Even
slower-growing f(n) such as inverse Ackermann are achievable. However, the faster the
string length grows each stage, the more it potentially overshoots logn, increasing the space
requirements. For example, for t(n) = logn log log logn by repeated squaring, the worst-
case string length is log2 n, meaning 2O(log2 n) = nO(logn) states. Multiplying length by a
constant gives the fastest increase that maintains a polynomial number of states.

The number of states our protocol uses is very large compared to most population pro-
tocol results, which typically have polylog(n) states. However, it is worth noting that a
different goalpost is germane for the size counting problem: at least n states are required,
since it takes logn bits merely to write the number n. Our protocol uses a constant factor
more bits: about 60 logn. Chemical reaction networks are frequently cited as a real system
for which population protocols are an appropriate model. It is reasonable to object that
since each state corresponds to a different chemical species, such a large number of states is
unrealistic. However, biochemistry provides numerous examples of heteropolymers, such as
nucleic acids and peptide chains (linear polymers of amino acids that fold into proteins), in
which c = O(1) basic monomer types (e.g., the 4 DNA bases A, C, G, T) suffice to construct
ck different polymer types consisting of k monomers. On the engineering side, DNA strand
displacement systems [30] can in principle construct and modify such information-rich “com-
binatorial” polymers in a controllable algorithmic fashion, for example simulating a Turing
machine whose length-k tape is represented by O(k) DNA strands [28] or searching for solu-
tions to a quantified Boolean formula [32]. The synthesis cost for such systems would scale
with the number of bits of memory (O(1) molecules per bit stored), thus only logarithmically
with the total number of states. It is thus reasonable to conjecture that reliable algorithmic
molecular systems, with moderately sized memories in each molecule, are on the horizon.

9 The time to reach a stable configuration, from which the output cannot change, is Ω(n) for our protocol.
We leave open the question of a protocol that reaches a stable configuration in sublinear time.
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1.2 Related Work
For the exact population size counting problem, the most heavily studied case is that of
self-stabilization, which makes the strong adversarial assumption that arbitrary corruption
of memory is possible in any agent at any time, and promises only that eventually it will
stop. Thus, the protocol must be designed to work from any possible configuration of the
memory of each agent. It can be shown that counting is impossible without having one agent
(the “base station”) that is protected from corruption [9]. In this scenario Θ(n logn) time is
sufficient [8] and necessary [7] for self-stabilizing counting. Counting has also been studied
in the related context of worst-case dynamic networks [14,19,21,22,24].

In the less restrictive setting in which all nodes start from a pre-determined state, Michail
[23] proposed a terminating protocol in which a pre-elected leader equipped with two n-
counters computes an approximate count between n/2 and n in O(n logn) parallel time with
high probability. Regarding approximation rather than exact counting, Alistarh, Aspnes,
Eisenstat, Gelashvili, Rivest [1] have shown a uniform protocol that in O(logn) expected
time converges to an approximation n′ of the true size n such that with high probability
1/2 logn ≤ logn′ ≤ 9 logn, i.e.,

√
n ≤ n′ ≤ n9.10

Key to our technique is a protocol, due to Mocquard, Anceaume, Aspnes, Busnel, and
Sericola [27]. Despite the title of that paper (“Counting with Population Protocols”), it
actually solves a different problem, a generalization of the majority problem: count the
exact difference between “blue” and “red” agents in the initial population. The protocol
assumes an initial leader and that each agent initially stores n exactly. In a follow-up
work [26], Mocquard et al. showed a uniform protocol that, for any ε > 0, computes an
approximation of the relative proportion (but not exact number) of “blue” nodes in the
population, within multiplicative factor (1 + ε) of the true proportion. The approximation
precision ε depends on a constant number m, which is encoded in the initial state. They also
describe a protocol to find the number of “blue” nodes in the population, However, like [27],
this latter protocol is not uniform since the transition function encodes the exact value of n.

In a different network model, Jelasity and Montresor [20] use a similar technique to ours
that involves a fast “averaging” similar to [26, 27]. However, they do arbitrary-precision
rational number averaging, so have a larger memory requirement (not analyzed). They also
assume each agent initially has a unique IDs. Goldwasser, Ostrovsky, Scafuro, Sealfon [18]
study a related problem in a synchronous variant of population protocols: assuming that
both an adversary and the agents themselves have the ability to create and destroy agents
(similar to the more general model of chemical reaction networks), using polylog(n) states,
they maintain the population size within a multiplicative constant of a target size. This
is likely relevant to the exact and approximate size counting problems, since the protocol
of [18] must “sense” when the population size is too large or small and react.

2 The model

The system consists of a population of n distributed and anonymous (no unique IDs) agents,
also called nodes or processes, that can perform local computations. Each agent is a mul-
titape (r-tape) Turing Machine which is defined by a 6-tuple M = 〈Q,Γ, q0, ε, F, δ〉. Q is a

10 We also require an approximate estimate of n in the subprotocol that computes n exactly, but it is
not straightforward to adapt the technique of [1] to our setting. The state complexity would be higher,
since our method of estimating n obtains n′ such that n ≤ n′ ≤ n6. By squaring n′ obtained from [1]
to ensure it is at least n, the result could be as large as n18.
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finite set of TM states, Γ is the binary tape alphabet {0, 1}, q0 ∈ Q is the initial TM state,
F ⊆ Q is the set of final TM states, and δ : Q × Γr → Q × (Γ × {L,R, S})r is the TM
transition function, where L is left shift, R is right shift and S is no shift. We assume that
r is a fixed constant, i.e. independent of the population size.

We define three types of tapes. Input, Output and Work tapes. The Input and Output
tapes provide information from and to the other agent during an interaction. The Work
tapes are used for storing data and for internal operations, which can be assumed to be
additions, subtractions and multiplications (divisions can be performed via the Euclidean
Division Algorithm, which divides two integers using additions and subtractions).

Let ri < r be the number of input tapes, ro < r the number of output tapes and
rw < r the number of work tapes, where ri + ro + rw = r. For any t ≥ 0 let I(t), O(t) and
W (t) be |V | × ri, |V | × ro and |V | × rw matrices respectively, such that Iv,j(t), Ov,j(t) and
Wv,j(t) are the values of the j-th Input, Output and Work tapes respectively of the agent
v ∈ V at time t. Furthermore, for every t ≥ 0, let q(t) be a |V |-dimensional vector such
that qv(t) is the state (or agent-TM-configuration) of v ∈ V at time t. We refer to q(t) as
the configuration (or global-configuration) at time t. We say that a population protocol is
leaderless if qv(0) = q0 ∀ v ∈ V , i.e. all agents have the same state in the initial configuration.
We also say that I(0) is the population input at time 0.

Let S be the finite set of binary strings {0, 1}∗. This model is defined on a population
V of agents and consists of an input initialization function ι : S → Sr × Q and an output
function γ : Sr ×Q→ D (D is the set of output values). Initially, the values of the tapes of
each agent are determined by the input initialization function ι, and in every step t+ 1 ≥ 1,
a pair of agents interacts. During an interaction (a, b) between two agents at time t+1, each
agent updates its state and copies the contents of its Output tapes to the Input tapes of the
other agent (Oa,:(t) → Ib,:(t + 1) and Ob,:(t) → Ia,:(t + 1)). In addition, they update their
states according to the (global) joint transition function f : Q×Q→ Q×Q as in standard
population protocols.

We furthermore assume that each agent has access to independent uniformly random bits,
assumed to be pre-written on a special read-only tape (so that we can use a deterministic TM
transition function). This is different from the traditional definition of population protocols,
which assumes a deterministic transition function. Several papers [1,11] indicate how to use
the randomness built into the interaction scheduler to provide nearly uniform random bits
to the agents, using various synthetic coin techniques, showing that the deterministic model
can effectively simulate the randomized model. In the interest of brevity and simplicity of
presentation, we will simply assume in the model that each agent has access to a source of
uniformly random bits.
Memory requirements for ExactCounting protocol. In our main protocol, Exact-
Counting, the agents need ri = ro = 3 Input and Output tapes for storing the variables
C, LC and ave. The memory requirements (number of bits) are |C| = 6 logn, |LC| = 12 logn
and |ave| = 18 logn. In addition, three Work tapes are needed in order to store the vari-
ables M, count and the constants isLeader and phase (the first cell of a tape can be
used for storing the boolean variable isLeader, while phase can be stored after that cell).
The memory requirements (number of bits) are |M| = 1 + 18 logn, |count| = 6 logn and
|isLeader| + |phase| = 1 + log 1184. Finally, two more Work tapes are needed in order to
perform divisions between integers, using the Euclidean Division Algorithm.
Terminology conventions. Throughout this paper, n denotes the number of agents in
the population. The time until some event is measured as the number of interactions until
the event occurs, divided by n, also known as parallel time. This represents a natural model
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of time complexity in which we expect each agent to have O(1) interactions per unit of
time, hence across the whole population, Θ(n) total interactions occur per unit time. All
references to “time” in this paper refer to parallel time. logn is the base-2 logarithm of n,
and lnn is the base-e logarithm of n.

For ease of understanding, we will use standard population protocol terminology and not
refer explicitly to details of the Turing machine definition except where needed. Therefore
a state always refers to the TM initial configuration of an agent (leaving out TM state and
tape head positions since these are identical in all initial configurations), a configuration ~c
refers to the length-n vector giving the state of each agent, and transition function refers to
the function computing the next state of an agent, taking as input its state and the other
agent’s state, by running its Turing machine until it halts. An epidemic [6] is a subprotocol
of the form δ(i, u) = (i, i) starting with one agent with i (“infected”) and all other n − 1
agents with u (“uninfected”), which in O(logn) expected time converts all agents to i.

2.1 Stabilization and convergence
A protocol converges when it reaches a configuration where all agents have the same output,
which does not subsequently change. In our main protocol, agents have a field count, and
convergence to the correct output occurs when each agent has written the value n into
count for the last time. Configuration ~c is stable if every agent agrees on the output,
and no configuration reachable from ~c has a different output in any agent. A protocol
stabilizes if, with probability 1, it eventually reaches a correct stable configuration. Using
this terminology, a protocol stably solves the exact size counting problem if, for all n ∈ Z+,
with probability 1, on a population of n agents, the protocol converges to output n and
enters a stable configuration.

If the number of configurations reachable from the initial configuration is finite, then
stabilization is equivalent to requiring that, for every configuration ~c reachable from the
initial configuration, a correct stable configuration is reachable from ~c. It is also equivalent
to saying that every fair execution reaches a correct stable configuration, where an execution
is fair if every configuration that is infinitely often reachable in it is infinitely often reached.
Although our protocol as defined has an infinite number of reachable configurations, this
is done solely to make the analysis simpler, and it can easily be modified to be finite (see
explanation of the UniqueID protocol in Section 3.1).

3 Exact Population Size Counting

This section is devoted to proving the main theorem of our paper:

I Theorem 3.1. There is a leaderless, uniform population protocol that stably solves the
exact size counting problem. With probability at least 1− 10+5 log logn

n , the convergence time
is at most 6 lnn log logn, and each agent is uses 15 + 60 logn bits of memory. The expected
time to convergence is at most 7 lnn log logn.

The stabilization time can be much larger, up to O(n). (See Section 3.6.) Theorem 3.1
follows from Theorems 3.14 and 3.15, which respectively cover the “with high probability”
and “stabilization and expected time” parts of Theorem 3.1.

The protocol is ExactCounting. There are four main subprotocols: UniqueID,
ElectLeader, Averaging, and Timer, each discussed in detail in later subsections. Ex-
actCounting runs in parallel on all agents, but within an agent, each subprotocol runs
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Protocol 1 ExactCounting(rec, sen)

. state: strings C (code), LC (leader code), Bool isLeader, ints M, ave, count, phase

. initial state of agent: C = LC = ε, isLeader = True, M = ave = count = phase = 1
UniqueID(rec, sen)
ElectLeader(rec, sen)
if rec.LC = sen.LC then . separate restarts under different leaders

Averaging(rec, sen)
Timer(rec, sen)

sequentially (for correctness each subprotocol must run in the given order). Most state up-
dates use one-way rules for selected agents sen (sender) and rec (receiver). The only rule
that is not one-way is Averaging, in which both sender and receiver update their state. In
all other cases, only the receiver potentially updates the state.
High-level overview of ExactCounting protocol. UniqueID eventually assigns to
every agent a unique id, represented as a binary string called a code C. UniqueID requires
Ω(n) time to converge, but it does not need to converge before it can be used by the other
subprotocols. In fact, in other subprotocols, agents do not use each others’ codes directly.
Agents also have a longer code called a leader code LC, such that 2|C| = |LC| and, for any
candidate leader, C is a prefix of LC. ElectLeader elects a leader by selecting the agent
whose leader code is lexicographically largest. The code length |C| will eventually be at
least length logn, so |C| can be used to estimate an upper bound M on the value 3n3 to
within a polynomial factor. Averaging uses M in a leader-driven protocol that counts
the population size exactly, which is correct so long as M ≥ 3n3, by using a fast averaging
protocol similar to the one studied by Mocquard et al. [27]. Averaging must be restarted by
the upstream UniqueID subprotocol many times, and in fact will be restarted beyond the
O(logn log logn) time bound we seek. However, within O(logn log logn) time, Averaging
will converge to the correct population size. Subsequent restarts of Averaging will re-
converge to the correct output, but prior to convergence will have an incorrect output.
Timer is used to detect when Averaging has likely converged, waiting to write output
into the count field of the agent. This ensures that after the correct value is written,
on subsequent restarts of Averaging, the incorrect values that exist before Averaging
re-converges will not overwrite the correct value recorded during the earlier restart.

3.1 UniqueID
We assume that two subroutines are available: For x, y ∈ {0, 1}∗, Append(x, y) returns xy,
and for m ∈ Z+, RandBits(m) returns a random string in {0, 1}m.

Subprotocol 2 UniqueID(rec, sen)
if |rec.C| < |sen.C| then . If receiver’s code shorter than sender’s, make same length.

ExtendCode(rec, |sen.C| − |rec.C|))
if rec.C = sen.C then . If codes are the same, double the length.

ExtendCode(rec,max(1, |rec.C|))

UniqueID can be viewed as traversing a labeled binary tree, until all agents reach a
node unoccupied by any other agent. We say the level is the maximum depth (longest code
length) of any agent in the population. Initiating a new level happens when two agents with
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Subroutine 3 ExtendCode(rec, numBits)
if rec.isLeader then . extend LC by twice numBits; take new C bits from LC

newLC← Append(rec.LC,RandBits(2 · numBits))
SetNewLeaderCode(rec, newLC) . described in Subsection 3.2
rec.C← Append(rec.C, newLC[(|rec.C|+ 1) .. (|rec.C|+ numBits)])

else
rec.C← Append(rec.C,RandBits(numBits))

Subroutine 4 SetNewLeaderCode(rec, newLC)
rec.LC← newLC
. restart Timer and Average protocols whenever LC changes.
rec.phase← 1
rec.M← 3 · 23|rec.C|

if rec.isLeader then
rec.ave← rec.M

else
rec.ave← 0

the same code interact. The receiver doubles the length of its code with uniformly random
bits, going twice as deep in the tree. To ensure each agent reaches the new level quickly,
agents at deeper levels recruit other agents to that level by epidemic, which generate random
bits to reach the same code length.

The key property of this protocol is that, in any level ` < logn, only O(logn) time
is required to increase the level. Since we double the level when it increases, log logn such
doublings are required to reach level≥ logn, soO(logn log logn) time. Lemma 3.3 formalizes
this claim, explaining how the length-increasing schedule can be adjusted to achieve a trade-
off between time and memory.
Number of reachable configurations. Since all codes are generated randomly, the
number of reachable configurations is infinite. This choice is merely to simplify analysis,
allowing us to assume that all agents at a level have uniformly random codes. However, if
a finite number of reachable configurations is desired (so that, for instance, the definition of
stabilization we use is equivalent to definitions based on reachability), it is possible to modify
UniqueID so that when two agents with the same code meet, they both append bits that are
guaranteed to be different. The protocol still works in this case and in fact takes strictly less
expected time for the codes to become unique. Viewing two agents with compatible codes
(i.e., one code is a prefix of the other) as equivalent, each new level increases the number of
equivalence classes by 1. Thus it is guaranteed that all agents will converge on unique codes
of length at most n− 1, implying the reachable configuration space is finite.

The following lemma is essentially Lemmas 1 and 2 from the paper [6]. However, that
paper does not state how the various constants are related, which we require for our proofs.
We recapitulate their proof, deriving those relationships explicitly.

I Lemma 3.2 ( [6]). Let T denote the time to complete an epidemic. Then E[T ] ≤ 4 lnn,
Pr[T < 1

4 lnn] < 2e−
√
n, and for any αu > 0, Pr[T > αu lnn] < 4n−αu/4+1.

Proof. We begin by showing Pr[T > αu lnn] < 4n−αu/4+1. Suppose we have αun lnn
interactions, starting with one infected agent. We want to bound the probability that
any agent remains uninfected. The second half of an epidemic (after exactly n/2 agents
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11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111

(a) When two agents in the same node at level i interact, receiver moves to a random descendant
at level 2i.

10

11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111

10

11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111

(b) When sender is in a deeper level of the tree, receiver moves to a random descendant in its own
subtree at the sender’s level.

Figure 1 Agents moving through the binary tree (i.e., choosing binary codes) in accordance with
the UniqueID subprotocol.

are infected) has equivalent distribution to the first, so we analyze just the second half,
bounding the probability it requires more than (αu/2)n lnn interactions. When half of
the agents are infected, each interaction picks an infected sender with probability at least
1/2. The number of interactions to complete the epidemic is then stochastically dominated
by a binomial random variable B((αu/2)n lnn, 1/2), equal to the number of heads after
(αu/2)n lnn coin flips if Pr[heads] = 1/2.

Let µ = E[B((αu/2)n lnn, 1/2)] = (αu/4)n lnn and δ = 2/
√
n. By the Chernoff

bound [25, Corollary 4.10],

Pr [B((αu/2)n lnn, 1/2) < (1− δ)µ] < e−δ
2µ = e−(4/n)(αu/4)n lnn = e−αu lnn = n−αu .

So with probability at least 1 − n−αu , more than ((1 − δ)αu/4)n lnn > (αu/8)n lnn (since
δ < 1/2) interactions involve an infected sender.

To complete the proof of the time upper bound, we need to bound the probability that
these (αu/8)n lnn interactions fail to infect all agents. Conditioned on each interaction
having an infected sender, the random variable giving the number of interactions until all
agents are infected is equivalent to the number of collections required to collect the last
n/2 coupons out of n total. Angluin et al. [6, Lemma 1] showed that for any β, it takes
more than β(n/2) ln(n/2) < (β/2)n lnn collections to collect n coupons with probability at
most n−β+1. Let β = αu/4. Then Pr[(αu/8)n lnn interactions fail to infect every agent] ≤
n−β+1 < n−αu/4+1. By the union bound on the events “fewer than (αu/8)n lnn interactions
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involved an infected sender” and “(αu/8)n lnn interactions fail to infect every agent”, the
second half of the epidemic fails to complete within (αu/2)n lnn interactions with probability
at most n−αu + n−αu/4+1 < 2n−αu/4+1.

Again by the union bound on the events “first half of the epidemic takes more than
(αu/2)n lnn interactions” and “second half of the epidemic takes more than (αu/2)n lnn
interactions”, the whole epidemic takes more than αun lnn interactions with probability at
most 4n−αu/4+1.

To show Pr[T < 1
4 lnn] < 2e−

√
n, we note that Lemma 1 of [6] shows that if Sn is the

number of times a coupon must be collected to collect all coupons, then Pr[Sn < 1
4n lnn] <

2e−
√
n. The proof says 2e−Θ(

√
n), but inspection of the argument reveals that the big-Θ

constant can be assumed to be 1. In this case, applying the coupon collector argument to
the epidemic, since we are proving a time lower bound, if we assume that every interaction
involves an infected sender, this process stochastically dominates the real epidemic. Thus
Pr[T < 1

4 lnn] < 2e−
√
n.

To analyze the expected time, observe that when k agents are infected, the probability
that the next interaction infects an uninfected agent is k(n−k)

n(n−1) >
k(n−k)
n2 , so expected inter-

actions until an infection at most n2

k(n−k) . By linearity of expectation, the expected number
of interactions to complete the epidemic is

n−1∑
k=1

n2

k(n− k) = 2n2
n/2∑
k=1

1
k(n− k) sum is symmetric about middle index

< 2n2
n/2∑
k=1

1
kn/2 = 4n

n/2∑
k=1

1
k
< 4n ln(n/2 + 1) < 4n lnn,

i.e., expected time < 4 lnn. J

The next lemma bounds the time for UniqueID to reach level at least logn, assuming
a generalized way of increasing the level, defining f(n) to be the number of times the level
must increase before reaching at least level logn. Afterwards we state a corollary for our
protocol, which doubles the level whenever it increases, so f(n) = log logn. By using this
lemma with different choices of f , one can obtain a tradeoff between time and space; if the
level increases more (corresponding to a slower-growing f) this takes less time to reach level
at least logn, but may overshoot logn and use more space.

Intuitively, the lemma is proven by observing that the worst case is that the current
level is log(n) − 1. It takes O(logn) time for all agents not yet at that level to reach it by
epidemic. At that point the worst case is that codes are distributed to maximize expected
time: exactly n/2 codes each shared by two agents. Then the expected time is constant for
the first interaction between two such agents, starting the next level. Thus it takes time
O(logn) to increase the level, hence O(f(n) logn) time for the level to increase from 0 to at
least logn.

I Lemma 3.3. For all n ∈ N, define f(n) to be the number of times UniqueID must
increase the level (last line of UniqueID) to reach level at least logn. For all α > 0, in
time 5αf(n) lnn, all agents reach level at least logn with probability at least 1− 5f(n)n−α.

Proof. Imagine an alternate process where at each level agents wait until all other agents
also reach the same level before enabling transitions that start the next level (where two
agents with the same code meet and the receiver will double its code length). The time
for such a process stochastically dominates the time for our protocol, so we can use its
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time as an upper bound for our protocol. It suffices to show that, when all agents are at
the same level, it takes constant time to start the next level. After initializing a level, by
Lemma 3.2, the new code length will spread by epidemic in time αu lnn with probability at
least 1− 4n−4αu+1.

Assume all agents are currently at level i. Denote by Sj the number of agents in node
j of the tree at level i (i.e., they have the j’th code in {0, 1}i in lexicographic order). The
probability that the next interaction is between two agents at the same node (having equal
codes) is minimized when Sj = Sj′ = n/2i for all 1 ≤ j, j′ ≤ 2i. Then for all 0 ≤ i < logn,
if the current level is i,

Pr [next interaction initializes new level] =
∑2i
j=1

(
Sj
2
)(

n
2
) =

∑2i
j=1

(
n/2i

2
)(

n
2
)

= 2i(n/2i)(n/2i − 1)
n(n− 1) = n/2i − 1

n− 1

≥ n/2log(n)−1 − 1
n− 1 = 1

n− 1 >
1
n
.

Therefore, the expected number of interactions to start a new level is ≤ n, equivalently
parallel time 1. This is a geometric random variable with success probability at least 1

n .
Then at any level i < logn, for any α′u > 0,

Pr [initializing next level take more than α′un lnn interactions] =
(

1− 1
n

)α′un lnn

< e−α
′
u lnn = n−α

′
u .

By Lemma 3.2, for any αu > 0, more than αu lnn time is required for all agents to
reach this level by epidemic with probability at most 4n−αu/4+1. By the union bound over
this event and the event “once all agents are at a level, it takes more than time α′u lnn
to start a new level” (shown above to happen with probability at most n−α′u), the time
spent at each level is more than αu lnn+ α′u lnn = (αu + α′u) lnn with probability at most
4n−αu/4+1 + n−α

′
u . Given α > 0, let α′u = α and αu = 4(α + 1). Then this probability

bound is 4n−αu/4+1 + n−α
′
u = 5n−α.

By the union bound over all f(n) levels visited in the tree, it takes more than time
f(n)(α lnn + 4α lnn) = 5αf(n) lnn time to reach level at least logn with probability at
most 5f(n)n−α. J

The next corollary is specific to our level-doubling schedule, used throughout the rest of
the paper, corresponding to f(n) = log logn in Lemma 3.3.

I Corollary 3.4. In the UniqueID protocol, for all α > 0, in 5α lnn log logn time all agents
reach level at least logn with probability at least 1− 5 log logn

nα .

The previous results show UniqueID quickly gets to level logn. The next lemma states
that it does not go too far past logn. Intuitively, if the level is 2 logn, there are n2 pos-
sible codes chosen uniformly at random among n agents, a standard birthday problem with
probability 1

e of a collision, which drops off polynomially with the level beyond 2 logn.

I Lemma 3.5. Let ε > 0. If the current level is (2 + ε) logn, all codes are unique with
probability at least 1− 1

nε .
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Proof. Consider the agents in order for agent 1, 2, . . .. The code of agent i collides with the
code of some agent 1, 2, . . . , i − 1 with probability i−1

c , where c = 2(2+ε) logn = n2+ε is the
number of available codes. Then by the union bound,

Pr[at least one collision] ≤
n∑
i=1

i− 1
c

= n(n− 1)
2c <

n2

n2+ε = 1
nε
. J

However, since the code length doubles when it changes, not all values of ε in Lemma 3.5
correspond to a level actually visited. It could overshoot by factor two, giving the following.

I Corollary 3.6. Let ε > 0. The eventual code length of each agent is < (4 + 2ε) logn with
probability at least 1− 1

nε .

Proof. Recall that a new level of the tree is initiated when two agents with the same code
interact. Since the level is doubled in this case, the code lengths exceed (4 + 2ε) logn
if there was a duplicate code at the power-of-two level k such that (2 + ε) logn ≤ k <

(4 + 2ε) logn ≤ 2k. Over all k satisfying this inequality, the probability of a duplicate code
is largest if k = (2 + ε) logn. Applying Lemma 3.5 gives the stated probability bound. J

3.2 ElectLeader

Subprotocol 5 ElectLeader(rec, sen)

p← min(|rec.LC|, |sen.LC|)
if rec.LC[1..p] lexicographically precedes sen.LC[1..p] then
. Propagate by epidemic the lexicographically greatest leader code

rec.isLeader← False
SetNewLeaderCode(rec, sen.LC)

if (not rec.isLeader) and (|rec.LC| < |sen.LC|) then
. Ensure all leader codes eventually have equal length

SetNewLeaderCode(rec, sen.LC)

ElectLeader works by propagating by epidemic the “winning” leader code, where a
candidate leader drops out if they see an agent (whether leader or follower) with a leader
code that beats its own. The trick is to define “win”. We compare the shorter leader code
with the same-length prefix of the other. If they disagree, the lexicographically largest wins.
To ensure all leader code lengths are eventually equal, a follower with the shorter leader
code replaces it with the longer one.11

The next lemma shows that the leader is probably unique when the population reaches
level at least logn. Let k ∈ N be such that logn ≤ k. When the candidate leaders generate
new values of LC upon reaching level k, |LC| = 2k ≥ 2 logn. Since there are at least n2

strings of length 2k ≥ 2 logn, in the worst case, even if all n agents remain candidate leaders
at that time, the probability that the lexicographically greatest leader code is duplicated is
at most 1

n .
12 Thus, with probability at least 1 − 1

n , one unique leader has the maximum

11 Leaders with shorter codes do not replace with longer codes, because it may be that after adding new
random bits to get to the current population level, that agent would have the lexicographically largest
leader code. This is because a leader with a shorter leader code LC also has a shorter code C, so will
eventually catch up in leader code length through the UniqueID protocol.

12 This almost looks like a birthday problem, but we don’t need all the remaining candidate leaders to
have a unique leader code, only that the largest code appears only once.
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leader code, and in O(logn) time this leader code reaches the remaining candidate leaders
by epidemic, who drop out.

I Lemma 3.7. At any level ≥ logn, with probability ≥ 1− 1
n , there is a unique leader.

Proof. Every remaining candidate leader at level ≥ logn has a leader code with at least
2 logn bits. We say i and j collide if agents i and j are candidate leaders with the same
leader code. Let Xi,j be the indicator variable:

Xi,j =
{

1 if i and j collide
0 otherwise

Let c ≥ 22 logn = n2 be the number of possible leader codes. Note Pr[Xi,j = 1] = 1
c . Let

Xi =
∑
j 6=iXi,j ; by linearity of expectation E[Xi] = n−1

c . Since c > n2, E[Xi] < n−1
n2 < 1

n .
By Markov’s inequality, Pr [Xi ≥ 1] ≤ 1

n , and the eventXi ≥ 1 is equivalent to the event that
the leader code of agent i is not unique. If we set i to be the agent with the lexicographically
greatest leader code of any remaining candidate leader, we conclude that leader is unique
with probability ≥ 1− 1

n . J

By Corollary 3.4, the protocol reaches level logn in O(logn log logn) time. Thus, by
Lemma 3.7, with high probability, in time O(logn log logn) ElectLeader converges (the
second-to-last candidate leader is eliminated). Unfortunately ElectLeader is not termin-
ating: the remaining leader does not know when it becomes unique. Thus it is not straight-
forward to compose it with the downstream protocols Averaging and Timer. Standard
techniques for making the protocol terminating with high probability, such as setting a timer
for a termination signal that probably goes off only after K logn log logn time for a large
constantK, do not apply here, because when we start we don’t know the value logn log logn.
Thus, it is necessary, each time a leader adds to its code length, to restart the downstream
protocols the existence of a unique leader.13 This is done in SetNewLeaderCode, which
is actually called by both ElectLeader and UniqueID, since extending C for a leader also
requires extending LC, to maintain that 2|C| = |LC|.

3.3 Averaging

Subprotocol 6 Averaging(rec, sen)

rec.ave, sen.ave←
⌈
rec.ave + sen.ave

2

⌉
,

⌊
rec.ave + sen.ave

2

⌋

The previous subsections described how to set up a protocol (perhaps restarted many
times) to elect a leader and to produce a value M ≥ 3n3. (With high probability we also
have M ≤ 3 ·n18.) Thus we assume the initial configuration of this protocol is one leader and
n− 1 followers, each storing this value M, and that the goal is for all of them to converge to
a value in ave such that n =

⌊ M
ave + 1

2
⌋
.

There is an existing nonuniform protocol [27] that can do the following in O(logn) time.
Each agent starts with a bit b ∈ {0, 1} and a number M = Ω(n3/2). Let nb be the (unknown)

13 One might imagine restarts could be tied to the elimination of candidate leaders, which stops within
O(logn log logn) time, rather than the extending of codes, which persists for Ω(n) time. However, the
leader may become unique before level logn, when |C| < logn, so M = 3 · 22|C| < 3 ·n3 is not sufficiently
large to ensure correctness and speed of Averaging. (See Lemma 3.8, which is applied with c = 1.)
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number of agents storing bit b, so that n0 +n1 = n. The agents converge to a state in which
they all report the value n1 − n0, the initial different in counts between the two bits.

Their protocol requires that M ≥
⌊
n3/2/

√
2δ
⌋
to obtain an error probability of ≤ δ.

The protocol is elegantly simple: agents with b = 0 start with an integer value −M, while
agents with b = 1 start with an integer value M, and state space integers in the interval
{−M,−M + 1, . . . , M − 1, M}. When two agents meet, they average their values, with one
taking a floor and the other a ceiling in case the sum of the values is odd. If an agent
holds value x, that agent’s output is reported as bnx/M + 1/2c, i.e., nx/M rounded to the
nearest integer. This eventually converges to all agents sharing the population-wide average
(n1 − n0) M

n , and the estimates of this average get close enough for the output to be correct
within O(logn) time [27].

Our protocol essentially inverts this, starting with a known n0 = 1 and n1 = n −
1, computing the population size as a function of the average. The leader starts with
value ave = M, and followers start with ave = 0, and the state space is {0, 1, . . . , M}. The
population-wide sum is always M.14 Eventually all agents have ave = d M

ne or b
M
nc, which

could take linear time in the worst case. We show below that with probability at least
1− n−c, in O(logn) time, all agents’ ave values are within nc of M

n . Each agent reports the
population size as

⌊ M
ave + 1

2
⌋
. This is the exact population size n as long as M ≥ 3nc+2 and

ave is within nc of M
n , as the following lemma shows.

I Lemma 3.8. Let c ≥ 0. If M ≥ 3nc+2, and x ∈
[
M
n − n

c, Mn + nc
]
, then

⌊
M
x + 1

2
⌋

= n.

Proof. Since
⌊
M
x + 1

2
⌋
is monotone in x, it suffices to show this holds for the two endpoints

of the interval. For the case x = M
n − n

c, since x < M
n , we have n < M

x , and

M

x
= M

M
n − nc

= M
M−nc+1

n

= Mn

M − nc+1

≤ Mn

M −M/(3n) since M ≥ 3nc+2

= n

1− 1/(3n) = n

(3n− 1)/(3n) = 3n2

3n− 1 = n+ 1
3(3n− 1) + 1

3 < n+ 1
2 .

So n < M
x < n + 1

2 , so
⌊
M
x + 1

2
⌋

= n. In the case x = M
n + nc, a similar argument shows

that n− 1
2 < x < n. J

The above results show that the count computed by Averaging is correct if M is suffi-
ciently large and ave is within a certain range of the true population-wide average M

n . The
next lemma, adapted from [27, Corollary 8], shows that each agent’s ave estimate quickly
gets within that range. That corollary is stated in terms of a general upper bound K on
how far each agent’s ave field starts from the true population-wide average. In our case,
this is given by the leader, which starts with ave = M, while the true average is M

n , so we
choose K = M > M− M

n in Corollary 8 of [27], giving the following.

I Lemma 3.9 ( [27]). For all δ ∈ (0, 1) and all t ≥ ln(4M2), with probability at least 1− δ,
after time t, each agent’s ave field is in the interval

[
M
n −

√
n
2δ ,

M
n +

√
n
2δ
]
.

I Corollary 3.10. Let c > 0 and let δ = 1
2n2c−1 . For all t ≥ ln(4M2), with probability at

least 1− δ, within time t, each agent’s ave field is in the interval
[
M
n − n

c, Mn + nc
]
.

14 Think of the leader starting with M “balls”. Interacting agents exchange balls until they have an equal
number, or within 1.
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Setting c = 1 (so δ = 1
2n ) gives the following corollary.

I Corollary 3.11. For all t ≥ ln(4M2), with probability at least 1− 1
2n , within time t, each

agent’s ave field is in the interval
[
M
n − n,

M
n + n

]
.

3.4 Timer
Note that Averaging does not actually write the value

⌊ M
ave + 1

2
⌋
into the count field; that

is the job of the Timer protocol, which we now explain. The leader is guaranteed with high
probability to become unique at least by level logn (Lemma 3.7). However, since UniqueID
likely continues after this point, although the leader is unique, when its level increases, the
leader will again generate more bits for its leader code, updating its value M, initiating a
restart of Averaging. The problem is that although we can prove that the agents likely
reach level logn in O(logn log logn) time, it may take much longer to reach subsequent
levels. Thus, although the value M estimated at any level k ≥ logn is large enough for
Averaging to be correct, if Averaging were to blindly write

⌊ M
ave + 1

2
⌋
into count each

time ave changes, the output will be disrupted while this restart of Averaging converges.

Subprotocol 7 Timer(rec, sen)
. run phase clock until MaxPhase = 1184 is reached
if rec.isLeader and (rec.phase = sen.phase) and (rec.phase < MaxPhase) then

rec.phase← rec.phase + 1
if (not rec.isLeader) and (rec.phase < sen.phase) then

rec.phase← sen.phase

newCount← brec.M/rec.ave + 1/2c . M/ave rounded to the nearest integer
. only write output if timer is done and new count is different
if (rec.phase = MaxPhase) and (rec.count 6= newCount) and (M ≥ 3 · newCount3) then

rec.count← newCount

We deal with this problem in the following way. When the leader restarts Averaging,
it simultaneously restarts Timer, which is a phase clock as described by Angluin et al. [6].
Timer is so named because we can find βl < βu and MaxPhase such that MaxPhase phases
of the phase clock will take time between βl lnn and βu lnn with high probability. So long as
βl lnn is greater than a high-probability upper bound on the running time of Averaging,
the timer likely will not go off (reach the final phase MaxPhase) until Averaging has
converged. It is only once Timer has reached phase MaxPhase that count is written, and
then only if the new calculated size differs from the previous value in count.

There is one additional check done before writing to count: if newCount =
⌊ M

ave + 1
2
⌋
,

we must have M ≥ 3 · newCount3 in order to write to count. In particular, if M ≥ 3n3, then
newCount cannot be n unless M ≥ 3 · newCount3. This is an optimization to save space.
Averaging is only guaranteed to get the correct size n efficiently if M ≥ 3n3. However,
when ave is small before convergence (e.g., 1) then

⌊ M
ave + 1

2
⌋
can be as large as M, requiring

18 logn bits. But if
⌊ M

ave + 1
2
⌋

= n (i.e., is correct) then this value requires at most logn
bits. Since M could be as large as 3 · n18, requiring O(1) + 18 logn bits, this implies count
could be as large as n6, requiring 6 logn bits.

3.5 ExactCounting is fast and correct with high probability
The following is adapted from [6, Corollary 1]. It relates the number of phases in a phase
clock to upper and lower bounds on the likely time spent getting to that phase. Our
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proof appeals entirely to Corollary 1 of [6] but, unlike [6], the exact relationship between
the constants is given in the lemma statement.

I Lemma 3.12 ( [6]). Let βl, εl, εu > 0, and define p = max(8εl, 32βl) and βu = 4p(εu + 2).
Let Tp be the time needed for a phase clock with ≥ p phases to reach phase p. Then for all
sufficiently large n, Pr[Tp < βl lnn] < 1

nεl
and Pr[Tp > βu lnn] < 1

nεu
.

Proof. Based on [6, Corollary 1], setting (variables of [6, Corollary 1] on the left, and
our variables on the right) c = εl, d = βl, k = p, and a = 1/16, then by choosing p =
max(8εl, 32 ·βl), we have Pr[Tp < βl lnn] < 1

nεl
. By Lemma 3.2, for all αu > 0, the epidemic

corresponding to each phase i will complete (all agents reach phase i) in time > αu lnn with
probability < 4n−αu/4+1. Since the time to complete the epidemic is an upper bound on
the time for the leader to interact with an agent in phase i (which could happen before
the epidemic completes), we also have that the phase takes time > αu lnn with probability
< 4n−αu/4+1. By the union bound over all p phases, there exists a phase 1 ≤ i ≤ p

taking time > αu lnn with probability < 4pn−αu/4+1. Since at least one phase must exceed
time αu lnn for the sum to exceed pαu lnn, Pr[Tp > pαu lnn] < 4pn−αu/4+1. Let αu =
4(εu + 2). Substituting βu = pαu = 4p(εu + 2) gives Pr[Tp > βu lnn] < 4pn−(4(εu+2))/4+1 =
4pn−εu−1 < n−εu , which completes the proof. J

The next lemma says that Averaging and Timer “happen the way we expect”: first
Averaging converges, before Timer ends and records the output of Averaging, all in
O(logn) time. When we say “Averaging converges”, this refers to the Averaging pro-
tocol running in isolation, not as part of a larger protocol that might restart it. That is to
say, it may be that Averaging converges, but ExactCounting has not converged, since
ExactCounting then restarts Averaging and subsequently changes the count field. In-
tuitively, it follows by a simply union bound on the probability that Averaging is too slow
(Corollary 3.11) or Timer is too fast (Lemma 3.12).

I Lemma 3.13. For any level ≥ logn, if it takes ≥ 14208 lnn time to start the next level,
with probability ≥ 1− 3

n , first Averaging converges to the correct output, then Timer ends
and writes n into count, in ≤ 14208 lnn time.

Proof. Corollary 3.6 applied with ε = 1 shows that agents codes’ length are ≤ 6 logn with
probability ≥ 1− 1

n . Lemma 3.7 shows that after level ` the leader is unique with probability
≥ 1 − 1

n . Since ` ≥ logn the value of M is will be ≥ 3n3. By Lemma 3.8, if Averaging
converges, then

⌊ M
ave + 1

2
⌋
exactly n.

By the union bound on Lemma 3.12 and Corollary 3.11, with probability ≤ 1
n + 1

n

the timer takes more than 14208 lnn time, or Averaging takes more than 37 lnn time to
converge. Negating these conditions gives conclusion of the lemma.

To show that Timer does not end until Averaging converges, we apply Lemma 3.12
again, but using the time lower bound for Timer. Letting εl = 1 and βl = 37, Lemma 3.12
gives that for p = 32βl = 1184, with probability ≥ 1 − 1

n , Timer does not end before
βl lnn time. Applying the union bound to this case and the previous two cases then gives
probability 1− 1

n as desired. J

Finally, we can prove the “with high probability” portion of the main theorem.

I Theorem 3.14. With probability at least 1− 10+5 log logn
n , ExactCounting converges to

the correct output within 6 lnn log logn time, and each agent uses at most 15 + 60 logn bits.
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Proof sketch. We sketch the ideas while omitting exact bounds on time and probability.
Statements below are “with high probability”. Define k to be the unique power of two such
that logn ≤ k < 2 logn. By Corollary 3.4, level k is reached quickly, so it suffices to prove
fast convergence after the event that k is reached. By Lemma 3.7, the leader is unique
at level k, therefore also 2k and 4k, and since k ≥ logn, M ≥ 3n3. So by Lemma 3.13,
Averaging will converge within time t = 14208 lnn.

We look at three subcases: among levels k, 2k, 4k, one is the earliest among the three
where > t time is spent. By Lemma 3.5, level 4k is not exceeded since codes are unique.
Since codes are unique at level 4k, at > t (in fact, infinite time) will be spent at level 4k.
But it could be that the protocol also spends time > t at level k or 2k. Whichever is the
first among these three to spend time > t, since the previous spent less time, it takes time
≤ 2t to reach the first level taking time > t. By Lemma 3.13, Averaging converges in time
≤ t, and by the time upper bound of Lemma 3.12, Timer reaches phase MaxPhase in time
≤ t and records the output of Averaging.

If we are at level k or 2k, then we might go to a new level. If this is guaranteed to
happen within O(logn) time, then we would not need the Timer protocol. We could simply
claim that Averaging will converge at the last level reached, whether k, 2k, or 4k. The
problem that Timer solves is that ExactCounting may reach level k quickly, Averaging
converges quickly, yet a small number of duplicate nodes remain, say 2. It takes Ω(n) time
for them to interact and increase to level 2k, which restarts Averaging. By the time
lower bound of Lemma 3.12, in each of these restarts Timer will not reach phase MaxPhase
until Averaging reconverges, so the count field will not be overwritten. Thus convergence
happened at the first level where we spent time > t, even if there are subsequent restarts. J

Proof. By Corollary 3.4, agents reach level logn before 5 lnn log logn time with probability
at least 1− 5 log logn

n . By Lemma 3.7, the leader is unique at any such level, with probability
at least 1 − 1

n . Also M = 3 · 23|C| ≥ 3 · 23 logn = 3n2. Hence, if we could stop UniqueID
at this point, then based on Lemma 3.13, Averaging would converge in at most 14208 lnn
time with probability at least 1− 3

n . However, there may be duplicate codes, so UniqueID
possibly continues, restarting Averaging later.

Let t = 14208 lnn. For any `, define Round` to be the event that ExactCounting
spends more than time t at level `. Define k to be the unique power of two such that
logn ≤ k < 2 logn. We consider the following disjoint cases that cover all possible outcomes:

Roundk: Lemma 3.13 shows that with probability at least 1− 3
n Averaging converges to the

correct output and this output is recorded. By the time upper bound of Lemma 3.12,
with probability at least Timer reaches phase MaxPhase in time ≤ t and records the
output of Averaging. It remains to show that convergence is likely; i.e., this correct
value will not be overwritten. Again using Lemma 3.13, with probability at most 3

n ,
at level 2k Timer ends before Averaging, and similarly for error probability 3

n at
level 4k. By the union bound over these three subcases, in this case, with probability
≥ 1− 3+3+3

n = 1− 9
n , ExactCounting converges in time < t.

(not Roundk) and Round2k: Similar to above, we apply Lemma 3.13 to level 2k to obtain
probability ≥ 1− 3

n that Averaging converges and Timer writes n into count in time
< t, and apply Lemma 3.13 to level 4k to obtain probability probability at most 3

n that
Timer ends too early and disrupts convergence. By the union bound over these two
subcases, in this case, with probability ≥ 1− 3+3

n = 1− 6
n , ExactCounting converges

in time < t.
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(not Roundk) and (not Round2k) and Round4k: Apply Lemma 3.13 to level 4k to obtain
probability ≥ 1− 3

n that Averaging converges and Timer writes n into count in time
< t.

not Round4k: Lemma 3.5 applied with ε = 2 gives probability at most 1
n2 that there are

duplicate codes and we reach subsequent levels.

Since the four cases are disjoint, take the maximum error probability of any of them:
with probability at least 1− 9

n , once at level k, it takes time < t to converge.
By the union bound on the event that it takes more than time 5 lnn log logn to reach

level logn (probability ≤ 5 log logn
n ), the event that the leader is not unique (probability

≤ 1
n ), and the event that once at level k, it takes time ≥ t to converge (probability ≤ 9

n ), we
obtain that with probability at least 1 − 10+5 log logn

n , ExactCounting converges in time
< 6 lnn log logn.

We now prove the memory requirements. First, if the maximum level reached is `, then
the memory requirements are ` for C, 2` for LC, 2 + 3` for M, 2 + 3` for ave, ` for count, 1
for isLeader, and for phase, log MaxPhase = log 1184 < 12, summing to 17 + 10`.

There are two disjoint cases: 2k ≥ 3 logn and 2k < 3 logn. In the former case, applying
Lemma 3.5 with ε = 1 gives probability at most 1

n of a duplicate code. In the latter case,
4 logn ≤ 4k < 6 logn, and applying Lemma 3.5 with ε = 2 gives probability at most 1

n2 of
a duplicate code. In either case the level is less than 6 logn, so we set ` = 6 logn. The sum
of the bit requirements is then 15 + 60 logn as needed. Since the cases are disjoint, we take
the maximum error probability 1

n .
Taking a union bound between this event of “too much memory” and the previous event

of “too much time”, the total error probability bound is 10+5 log logn
n as required. J

3.6 ExactCounting converges in fast expected time
Most of the technical difficulty of our analysis is captured by the “with high probability”
results stated already. ExactCounting is also stabilizing, meaning that with probability
1 it gets to a correct configuration that is stable (the output cannot change). Probability 1
correctness is required for the expected correct convergence time to be finite, and indeed it
asymptotically matches the high probability convergence time of O(logn log logn). However,
the protocol takes longer to stabilize, up to O(n) time, since it does not stabilize until
UniqueID stabilizes.15

The next theorem shows a fast expected convergence time, and it completes the second
portion of the main result, Theorem 3.1.

I Theorem 3.15. ExactCounting converges in expected time 7 lnn log logn.

First we establish some other claims necessary to prove Theorem 3.15. Recall that a
protocol stabilizes if it converges to the correct output with probability 1.

I Lemma 3.16. ExactCounting stabilizes to the correct population size.

Proof. Since each agent generates code bits uniformly at random, any pair of agents has
probability 0 to generate the same infinite sequence of bits. So with probability 1 all

15 Prior to that, it is possible, with low probability, after n is written into each agent’s count field, for
a subsequent restart of Averaging to write incorrect values, if the corresponding restart of Timer
completes too quickly. So no configuration is stable until UniqueID converges and triggers the final
restart.
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agents eventually have unique codes, and UniqueID stabilizes. We now show that implies
ElectLeader stabilizes.

Since there are n agents, UniqueID cannot terminate until at least level logn. So when
UniqueID terminates, |C| ≥ logn, so M = 3 · 23|C| ≥ 3n3. Note that Averaging also has an
equivalence between converging and stabilizing: one all agents ave fields are within a certain
interval, they cannot leave that interval. So by Lemma 3.8, Averaging, if it stabilizes, will
stabilize to values of ave such that

⌊ M
ave + 1

2
⌋

= n. We claim that Averaging stabilizes
with probability 1, which is shown below. Furthermore, Timer reaches MaxPhase with
probability 1, since the only way to avoid incrementing the phase of an agent is forever
to avoid any interaction between it and an agent at the next phase, which happens with
probability 0. This implies that with probability 1, the correct population size is eventually
written into the field count.

It remains to show the claim that Averaging stabilizes with probability 1. Define the
potential function Φ for any configuration ~c by Φ(~c) =

∑
a |a.ave − M/n|, where the sum

is over each agent a in the population. The Averaging protocol stabilizes by the time Φ
reaches its minimum value,16 which is either n or 0 depending on whether n divides M, when
all agents have ave = bM/nc or dM/ne. We claim that Φ is nonincreasing with each transition
of Averaging. When two agents meet, there are two cases: 1) both of their ave fields are
≥ dM/ne, or both are ≤ bM/nc, and 2) one of their ave fields is < (resp., ≤) bM/nc, and the
other is ≥ (resp., >) dM/ne . Taking the average of their ave fields, in case (1) does not
change Φ, and in case (2) decreases Φ, so Φ is nonincreasing.

It remains to show that Φ will reach its minimum value with probability 1. If the
protocol has not converged, then there must be some agent with an ave field not equal to
either bM/nc or dM/ne. But since the population-wide sum of the ave values is always M,
this implies that case (2) holds for some pair of agents. With probability 1, such a pair of
agents must eventually meet, decreasing Φ. So with probability 1, Φ eventually reaches its
minimum value. J

UniqueID stabilizes when all agents have a unique code since, by inspection of the
UniqueID protocol, this implies that the codes no longer can change. The next lemma
shows that this happens at most linear time.

I Lemma 3.17. UniqueID stabilizes in expected time at most 1.03n.

Proof. By Lemma 3.2, once one agent reaches a new level, the expected time for all agents
to reach that level is at most 4 lnn. Once all agents are at the same level and there is at
least one pair of duplicate codes (i.e., UniqueID has not yet stabilized), the probability
that the next interaction is a pair of agents with the same code is at least 1/

(
n
2
)
> 2/n2, so

the expected number of interactions for these agents to meet and start a new level is at most
n2/2, so expected time n/2. Thus, once there is one agent at a level, the expected time to
get an agent at the next level (assuming UniqueID does not stabilize at the current level)
is at most 4 lnn+ n/2 < 0.51n.

By Lemma 3.3, setting α = 1, with probability at least 1 − 5 log logn
n , in 5 lnn log logn

time all agents reach a level k such that logn ≤ k < 2 logn. Once there, if duplicate codes
remain, it takes expected time < 0.51n to reach level 2k by the above argument. If duplicate
codes still remain, it similarly takes expected time < 0.51n to reach level at least 4k. By

16 If M� 2n2, then Averaging can stabilize prior to this time, since the ave values do not have to reach
their final convergent values for the output function

⌊
M

ave + 1
2

⌋
to converge, by Lemma 3.8.
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Lemma 3.5, for any j ≥ 0 (letting ε = j − 4 in Lemma 3.5), duplicate codes remain at level
j logn = (4 + ε) logn with probability at most n−(j−4).

Each new level after that takes < 0.51n expected time. Thus the total expected time is
at most (letting j above be 2i below):

5 lnn log logn︸ ︷︷ ︸
time to reach level k ≥ logn

+ 0.51n︸ ︷︷ ︸
time to reach level 2k ≥ 2 logn

+ 0.51n︸ ︷︷ ︸
time to reach level 4k ≥ 4 logn

+
∞∑
i=3

0.51n · Pr[level 2i logn has duplicate codes]︸ ︷︷ ︸
contribution of levels ≥ 8 logn

≤ 5 lnn log logn+ 1.02n+ 0.51n
∞∑
i=3

n−(2i−4) Lemma 3.5

< 5 lnn log logn+ 1.02n+ 0.51n
∞∑
i=1

n−2i+2

= 5 lnn log logn+ 1.02n+ 1 + 0.51n
∞∑
i=2

n−2i+2

< 5 lnn log logn+ 1.02n+ 1 + 0.51n
∞∑
i=2

n−i

< 5 lnn log logn+ 1.02n+ 1 + 0.51n
∞∑
i=1

n−i

= 5 lnn log logn+ 1.02n+ 1 + 0.51n
(

1
1− n−1 − 1

)
geometric series

= 5 lnn log logn+ 1.02n+ 1 + 0.51n 1
n− 1 < 1.03n. J

Proof of Theorem 3.15. By Theorem 3.14, ExactCounting converges to the correct an-
swer in time 6 lnn log logn with probability at least 1− 10+5 log logn

n .
By Lemma 3.17, UniqueID converges in expected time at most 1.03n. Once it has

converged, it takes expected time O(logn) for Averaging to converge and Timer to write
the correct output if it has not already been written. The sum of these times is at most
1.04n for sufficiently large n. We can bound the expected time as

Pr[convergence in time ≤ 6 lnn log logn] · 6 lnn log logn+
Pr[convergence in time > 6 lnn log logn] · 1.04n

=
(

1− 10 + 5 log logn
n

)
· 6 lnn log logn+ 10 + 5 log logn

n
· 1.04n

< 6 lnn log logn+ 1.04(10 + 5 log logn)
< 7 lnn log logn. J

3.7 Increasing time to minimize state complexity
ExactCounting generalizes straightforwardly to trade off time and memory: by adjusting
the rate at which the code length grows, the convergence time t(n) = O(f(n) logn), where
f(n) is the number of stages required for the code length to reach logn. The minimum state
complexity is achieved when the code length increments by 1 each stage, so that f(n) = logn
and t(n) = log2 n. In this case, a straightforward adaptation of Lemma 3.5, letting ε = 1,
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indicates that with probability at least 1− 1
n , all codes are unique by level 3 logn. Carrying

through the string length and integer bounds from the main argument gives state complexity
O(n30) for the full protocol and O(n9) for just the leader election.

3.8 Experiments
Simulations for the ExactCounting protocol are shown in Figure 2.
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Figure 2 Simulated convergence time of ExactCounting. The dots indicate the convergence
time of individual experiments. The population size axis is logarithmic, so exactly c log10 n time
complexity would correspond to a line of slope c. Since log logn is “effectively constant” (< 5) for
the values of n shown, we similarly expect the plot to appear roughly linear.

4 Conclusion

We have shown a uniform population protocol computing the exact population size using
O(logn) bits memory (i.e., poly(n) states) and O(logn log logn) time. By removing the
Averaging and Timer subprotocols, the remainder is a uniform protocol electing a leader
in O(logn log logn) time and 18 logn bits of memory (for C and LC).

Some interesting questions are open. Is there a uniform polylogarithmic time population
protocol, correct with high probability, for the problem of...

1. leader election, which is terminating?
2. constant-factor approximate size estimation, which is terminating?
3. exact size computation, which is terminating?
4. leader election, which is polylog(n) state-bounded?
5. constant-factor approximate size estimation, which is polylog(n) state-bounded?
6. exact size computation, which is O(n) state-bounded?

For Question 6, the trivial lower bound is n, but the Averaging protocol seems in-
tuitively to require Ω(n2) states. It would be interesting to prove a Ω(n2) lower bound,
either for “any scheme based on averaging” (suitably formalized), or more generally for any
sublinear-time size counting protocol. Since Averaging requires O(n2) states, if the initial
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configuration has a leader and a constant-factor approximation of n, this means that solu-
tions to questions 1, 2, 4, and 5 would immediately imply a O(n2) state, polylog(n) time
protocol for exact population size computation.

Since many problems such as leader election require only an estimate on the popula-
tion size, not an exact value, a protocol answering questions 2 and 5 is an important goal.
Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest [1] have shown a uniform protocol (conver-
ging, but not terminating) using only polylog(n) states that in O(logn) expected time can
get an estimate n′ within a polynomial (but not constant) factor of the true size n: with
high probability 1/2 logn ≤ logn′ ≤ 9 logn i.e.,

√
n ≤ n′ ≤ n9.
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