
Every Sequence is Decompressible from a
Random One

David Doty ∗

Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
ddoty at iastate dot edu

Abstract. Kučera and Gács independently showed that every infinite
sequence is Turing reducible to a Martin-Löf random sequence. We ex-
tend this result to show that every infinite sequence S is Turing reducible
to a Martin-Löf random sequence R such that the asymptotic number
of bits of R needed to compute n bits of S, divided by n, is precisely
the constructive dimension of S. We show that this is the optimal ratio
of query bits to computed bits achievable with Turing reductions. As an
application of this result, we give a new characterization of constructive
dimension in terms of Turing reduction compression ratios.

Keywords: constructive dimension, Kolmogorov complexity, Turing re-
duction, compression, martingale, random sequence

1 Introduction

An (infinite, binary) sequence S is Turing reducible to a sequence R, written
S ≤T R, if there is an algorithm M that can compute S, given oracle access to
R. Any computable sequence is trivially Turing reducible to any other sequence.
Thus, if S ≤T R, then intuitively we can consider R to contain the uncomputable
information that M needs to compute S.

Informally, a sequence is Martin-Löf random [Mar66] if it has no structure
that can be detected by any algorithm. Kučera [Kuč85,Kuč89] and Gács [Gác86]
independently obtained the surprising result that every sequence is Turing re-
ducible to a Martin-Löf random sequence. Thus, it is possible to store informa-
tion about an arbitrary sequence S into another sequence R, while ensuring that
the storage of this information imparts no detectable structure on R. In the words
of Gács, “it permits us to view even very pathological sequences as the result
of the combination of two relatively well-understood processes: the completely
chaotic outcome of coin-tossing, and a transducer algorithm.” Merkle and Mi-
hailović [MM04] have provided a simpler proof of this result using martingales,
which are strategies for gambling on successive bits of a sequence.

Bennett [Ben88] claims that “This is the infinite analog of the far more ob-
vious fact that every finite string is computable from an algorithmically random
∗ This research was funded in part by grant number 9972653 from the National Science

Foundation as part of their Integrative Graduate Education and Research Trainee-
ship (IGERT) program.

string (e.g., its minimal program).” However, the analogy is incomplete. Not only
is every string s computable from a random string r, but r is an optimally com-
pact representation of s. Viewing the sequence R as a compressed representation
of the sequence S, the asymptotic number of bits of R needed to compute n bits
of S, divided by n, defines the compression ratio between them. Gács showed
that his reduction achieves a compression ratio of 1: for any n, n + o(n) bits of
R are required to compute n bits of S. But as in the case of strings, sequences
that are sparse in information content should in principle be derivable from a
more compact description.

Lutz [Lut03b] defined the (constructive) dimension dim(S) of a sequence S as
an effective version of Hausdorff dimension (the most widely-used fractal dimen-
sion; see [Hau19,Fal90]). Constructive dimension is a measure of the “density of
computably enumerable information” in a sequence. Lutz defined dimension in
terms of constructive gales, a generalization of martingales. Mayordomo [May02]
proved that for all sequences S, dim(S) = lim infn→∞

K(S�n)
n , where K(S � n) is

the Kolmogorov complexity of the nth prefix of S.
Athreya et. al. [AHLM04], also using gales, defined the (constructive) strong

dimension Dim(S) of a sequence S as an effective version of packing dimen-
sion (see [Tri82,Sul84,Fal90]), another type of fractal dimension and a dual of
Hausdorff dimension. They proved the analogous characterization Dim(S) =
lim supn→∞

K(S�n)
n . Since Kolmogorov complexity is a lower bound on the algo-

rithmic compression of a finite string, dim(S) and Dim(S) can respectively be
considered to measure the best- and worst-case compression ratios achievable on
finite prefixes of S.

Consider the following example. It is well known that K, the characteristic
sequence of the halting language, has dimension and strong dimension 0 [Bar68].
The binary representation of Chaitin’s halting probability Ω =

∑
M halts 2−|M |

(where M ranges over all halting programs and |M | is M ’s description length)
is an algorithmically random sequence [Cha75]. It is known that K ≤T Ω (see
[LV97]). Furthermore, only the first n bits of Ω are required to compute the
first 2n bits of K, so the asymptotic compression ratio of this reduction is 0.
Ω can be considered an optimally compressed representation of K, and it is no
coincidence that the compression ratio of 0 achieved by the reduction is precisely
the dimension of K.

We generalize this phenomenon to arbitrary sequences, extending the re-
sult of Kučera and Gács by pushing the compression ratio of the reduction
down to its optimal lower bound. Thus, this paper completes Bennett’s above-
mentioned analogy between reductions to random sequences and reductions to
random strings. Compression can be measured by considering both the best-
and worst-case limits of compression, corresponding respectively to measuring
the limit inferior and the limit superior of the compression ratio on longer and
longer prefixes of S. We show that, for every sequence S, there is a sequence
R such that S ≤T R, where the best-case compression ratio of the reduction
is the dimension of S, and the worst-case compression ratio is the strong di-
mension of S. Furthermore, we show that the sequence R can be chosen to be

Martin-Löf random, although the randomness of R is easily obtained by invok-
ing the construction of Gács in a black-box fashion. The condition that R is
random is introduced chiefly to show that our main result is a strictly stronger
statement than the result of Kučera and Gács, but the compression is the pri-
mary result. Finally, a single machine works in all cases; as is the case with
Kolmogorov complexity, a single Turing reduction reproduces each sequence S
from its shortest description. Our result also extends a compression result of
Ryabko [Rya86], discussed in section 3, although it is not a strict improvement,
since Ryabko considered two-way reductions (Turing equivalence) rather than
one-way reductions.

One application of this result is a new characterization of constructive di-
mension as the optimal compression ratio achievable on a sequence with Turing
reductions. This compression characterization differs from Mayordomo’s Kol-
mogorov complexity characterization in that the compressed version of a prefix
of S does not change drastically from one prefix to the next, as it would in the
case of Kolmogorov complexity. While the theory of Kolmogorov complexity as-
signs to each finite string an optimally compact representation of that string –
its shortest program – this does not easily allow us to compactly represent an
infinite sequence with another infinite sequence. This contrasts, for example, the
notions of finite-state compression [Huf59] or Lempel-Ziv compression [ZL78],
which are monotonic: for all strings x and y, x v y (x is a prefix of y) implies
that C(x) v C(y), where C(x) is the compressed version of x. Monotonicity en-
ables these compression algorithms to encode and decode an infinite sequence –
or in the real world, a data stream of unknown length – online, without needing
to reach the end of the data before starting. However, if we let π(x) and π(y)
respectively be shortest programs for x and y, then x v y does not imply that
π(x) v π(y). In fact, it may be the case that π(x) is longer than π(y), or that
π(x) and π(y) do not even share any prefixes in common. In the self-delimiting
formulation of Kolmogorov complexity, π(x) cannot be a prefix of π(y).

Our characterization of sequence compression via Turing reductions, coupled
with the fact that the optimal compression ratio is always achievable by a sin-
gle oracle sequence and reduction machine, gives a way to associate with each
sequence S another sequence R that is an optimally compressed representation
of S. As in the case of Kolmogorov complexity, the compression direction is in
general uncomputable; it is not always the case that R ≤T S.

2 Preliminaries

Preliminaries and background theorems required for the proofs of the new results
may be located in the Technical Appendix.

2.1 Notation

All logarithms are base 2. We write R, Q, Z, and N for the set of all real numbers,
rational numbers, integers, and non-negative integers, respectively. For A ⊆ R,
A+ denotes A ∩ (0,∞).

{0, 1}∗ is the set of all finite, binary strings. The length of a string x ∈ {0, 1}∗
is denoted by |x|. λ denotes the empty string. Let s0, s1, s2, . . . ∈ {0, 1}∗ denote
the standard enumeration of binary strings s0 = λ, s1 = 0, s2 = 1, s3 = 00,
For k ∈ N, {0, 1}k denotes the set of all strings x ∈ {0, 1}∗ such that |x| = k.
The Cantor space C = {0, 1}∞ is the set of all infinite, binary sequences. For
x ∈ {0, 1}∗ and y ∈ {0, 1}∗ ∪C, xy denotes the concatenation of x and y, and
x v y denotes that x is a prefix of y; i.e., there exists u ∈ {0, 1}∗ ∪C such that
xu = y. For S ∈ {0, 1}∗ ∪ C and i, j ∈ N, we write S[i] to denote the ith bit
of S, with S[0] being the leftmost bit, we write S[i . . j] to denote the substring
consisting of the ith through jth bits of S (inclusive), with S[i . . j] = λ if i > j,
and we write S � i to denote S[0 . . i− 1].

2.2 Reductions and Compression

Let M be a Turing machine and S ∈ C. We say M computes S if, on input
n ∈ N, M outputs the string S � n.

We define an oracle Turing machine (OTM) to be a Turing machine M that
can make constant-time queries to an oracle sequence, and we let OTM denote
the set of all oracle Turing machines. For R ∈ C, we say M operates with oracle
R if, whenever M makes a query to index n ∈ N, the bit R[n] is returned.

Let S, R ∈ C and M ∈ OTM. We say S is Turing reducible to R via M , and
we write S ≤T R via M , if M computes S with oracle R. In this case, define
M(R) = S. We say S is Turing reducible to R, and we write S ≤T R, if there
exists M ∈ OTM such that S ≤T R via M .

Since we do not consider space or time bounds with Turing reductions, we
may assume without loss of generality that an oracle Turing machine queries
each bit of the oracle sequence at most once, caching the bit for potential future
queries.

In order to view Turing reductions as decompression algorithms, we must
define how to measure the amount of compression achieved. Let S, R ∈ C and
M ∈ OTM such that S ≤T R via M . Define #R

S (M,n) to be the query usage
of M on S � n with oracle R, the number of bits of R queried by M when
computing S � n. Define

ρ−M (S, R) = lim inf
n→∞

#R
S (M,n)

n
,

ρ+
M (S, R) = lim sup

n→∞

#R
S (M,n)

n
.

ρ−M (S, R) and ρ+
M (S, R) are respectively the best- and worst-case compression

ratios as M decompresses R into S. Note that 0 ≤ ρ−M (S, R) ≤ ρ+
M (S, R) ≤ ∞.

Let S ∈ C. The lower and upper compression ratios of S are respectively defined

ρ−(S) = min
R∈C

M∈OTM

{
ρ−M (S, R)

∣∣ S ≤T R via M
}

,

ρ+(S) = min
R∈C

M∈OTM

{
ρ+

M (S, R)
∣∣ S ≤T R via M

}
.

Note that 0 ≤ ρ−(S) ≤ ρ+(S) ≤ 1. As we will see, by Lemma 4.1 and Theorem
4.2, the two minima above exist. In fact, there is a single OTM M that achieves
the minimum compression ratio in each case.

2.3 Constructive Dimension

See [Lut03a,Lut03b,AHLM04,Lut05] for a more comprehensive account of the
theory of constructive dimension and other effective dimensions.

1. An s-gale is a function d : {0, 1}∗ → [0,∞) such that, for all w ∈ {0, 1}∗,

d(w) = 2−s[d(w0) + d(w1)].

2. A martingale is a 1-gale.

Intuitively, a martingale is a strategy for gambling in the following game. The
gambler starts with some initial amount of capital (money) d(λ), and it reads
an infinite sequence S of bits. d(w) represents the capital the gambler has after
reading the prefix w v S. Based on w, the gambler bets some fraction of its
capital that the next bit will be 0 and the remainder of its capital that the next
bit will be 1. The capital bet on the bit that appears next is doubled, and the
remaining capital is lost. The condition d(w) = d(w0)+d(w1)

2 ensures fairness: the
martingale’s expected capital after seeing the next bit, given that it has already
seen the string w, is equal to its current capital. The fairness condition and an
easy induction lead to the following observation.

Observation 2.1. Let k ∈ N and let d : {0, 1}∗ → [0,∞) be a martingale. Then∑
u∈{0,1}k

d(u) = 2kd(λ).

An s-gale is a martingale in which the capital bet on the bit that occurred is
multiplied by 2s, as opposed to simply 2, after each bit. The parameter s may
be regarded as the unfairness of the betting environment ; the lower the value of
s, the faster money is taken away from the gambler. Let d : {0, 1}∗ → [0,∞) be
a martingale and let s ∈ [0,∞). Define the s-gale induced by d, denoted d(s), for
all w ∈ {0, 1}∗ by

d(s)(w) = 2(s−1)|w|d(w).

If a gambler’s martingale is given by d, then, for all s ∈ [0,∞), its s-gale is d(s).
Let S ∈ C, s ∈ [0,∞), and let d : {0, 1}∗ → [0,∞) be an s-gale. d succeeds

on S, and we write S ∈ S∞[d], if

lim sup
n→∞

d(S � n) =∞.

d strongly succeeds on S, and we write S ∈ S∞str[d], if

lim inf
n→∞

d(S � n) =∞.

An s-gale succeeds on S if, for every amount of capital C, it eventually makes
capital at least C. An s-gale strongly succeeds on S if, for every amount of capital
C, it eventually makes capital at least C and stays above C forever.

Let d : {0, 1}∗ → [0,∞) be an s-gale. We say that d is constructive (a.k.a.
lower semicomputable, subcomputable) if there is a computable function d̂ :
{0, 1}∗ × N→ Q such that, for all w ∈ {0, 1}∗ and t ∈ N,

1. d̂(w, t) ≤ d̂(w, t + 1) < d(w), and
2. lim

t→∞
d̂(w, t) = d(w).

Let R ∈ C. We say that R is Martin-Löf random, and we write R ∈ RAND,
if there is no constructive martingale d such that R ∈ S∞[d]. This definition of
Martin-Löf randomness, due to Schnorr [Sch71], is equivalent to Martin-Löf’s
traditional definition (see [Mar66,LV97]).

The following well-known theorem (see [MM04]) says that there is a single
constructive martingale that strongly succeeds on every S 6∈ RAND.

Theorem 2.2. [MM04] There is a constructive martingale d such that S∞str[d] =
RANDc.

Let d̂ : {0, 1}∗ × N → Q be the computable function testifying that d is
constructive.

The following theorem, due independently to Hitchcock and Fenner, states
that d(s) is “optimal” for the class of constructive t-gales whenever s > t.

Theorem 2.3. [Hit03,Fen02] Let s > t ∈ R+, and let d be a constructive t-gale.
Then S∞[d] ⊆ S∞[d(s)] and S∞str[d] ⊆ S∞str[d

(s)].

By Theorem 2.3, the following definition of constructive dimension is equiva-
lent to the definitions given in [Lut03b,AHLM04]. Let X ⊆ C. The constructive
dimension and the constructive strong dimension of X are respectively defined

cdim(X) = inf{s ∈ [0,∞) | X ⊆ S∞[d(s)]},
cDim(X) = inf{s ∈ [0,∞) | X ⊆ S∞str[d

(s)]}.

Let S ∈ C. The dimension and the strong dimension of S are respectively defined

dim(S) = cdim({S}),
Dim(S) = cDim({S}).

Intuitively, the (strong) dimension of S is the most unfair betting environment
s in which the optimal constructive gambler d (strongly) succeeds on S. The
following theorem – the first part due to Mayordomo and the second to Athreya
et. al. – gives a useful characterization of the dimension of a sequence in terms
of Kolmogorov complexity, and it justifies the intuition that dimension measures
the density of computably enumerable information in a sequence.

Theorem 2.4. [May02,AHLM04] For all S ∈ C,

dim(S) = lim inf
n→∞

K(S � n)
n

, and Dim(S) = lim sup
n→∞

K(S � n)
n

.

One of the most important properties of constructive dimension is that of
absolute stability, shown by Lutz [Lut03b], which allows us to reason equivalently
about the constructive dimension of individual sequences and sets of sequences:

Theorem 2.5. [Lut03b] For all X ⊆ C,

cdim(X) = sup
S∈X

dim(S), and cDim(X) = sup
S∈X

Dim(S).

3 Previous Work

The next theorem says that every sequence is Turing reducible to a random
sequence. Part 1 is due independently to Kučera and Gács, and part 2 is due to
Gács.

Theorem 3.1. [Kuč85,Kuč89,Gác86] There is an OTM M such that, for all
S ∈ C, there is a sequence R ∈ RAND such that

1. S ≤T R via M .
2. ρ+

M (S, R) = 1.

Let X ⊆ C. Define the code cost of X by

cT(X) = inf
Me,Md∈OTM

{
sup
S∈X

ρ−Md
(S, Me(S))

∣∣∣∣ (∀S ∈ X) Md(Me(S)) = S

}
.

cT(X) is the optimal lower compression ratio achievable with reversible Turing
reductions on sequences in X. The next theorem is due to Ryabko [Rya86].

Theorem 3.2. [Rya86] For every X ⊆ C, cT(X) = cdim(X).

The Technical Appendix explains the superficial differences between the def-
inition of cT and the statement of Theorem 3.2 above and Ryabko’s formulation
of these in [Rya86].

Theorem 3.2 achieves weaker compression results than the main results of
this paper, Theorems 4.2 and 4.3. Theorem 3.2 does not include ρ+ or cDim,
and it requires optimizing over all OTMs. However, unlike Theorem 4.2, in which
only the decompression is computable, the compression achieved in Theorem 3.2
is computable, by the definition of cT.

4 Results

An OTM that computes a sequence S, together with a finite number of oracle
bits that it queries, is a program to produce a prefix of S. Thus, the query
usage of the Turing machine on that prefix cannot be far below the Kolmogorov
complexity of the prefix. This is formalized in the following lemma, which bounds
the compression ratio below by dimension.

Lemma 4.1. Let S, R ∈ C and M ∈ OTM such that S ≤T R via M . Then

ρ−M (S, R) ≥ dim(S), and ρ+
M (S, R) ≥ Dim(S).

The next theorem is the main result of this paper. It shows that the com-
pression lower bounds of Lemma 4.1 are achievable, and that a single OTM M
suffices to carry out the reduction, no matter which sequence S is being com-
puted. Furthermore, the oracle sequence R to which S reduces can be made
Martin-Löf random.

Theorem 4.2. There is an OTM M such that, for all S ∈ C, there is a sequence
R ∈ RAND such that

1. S ≤T R via M .
2. ρ−M (S, R) = dim(S).
3. ρ+

M (S, R) = Dim(S).

Finally, these results give a new characterization of constructive dimension.

Theorem 4.3. For every sequence S ∈ C,

dim(S) = ρ−(S), and Dim(S) = ρ+(S),

and, for all X ⊆ C,

cdim(X) = sup
S∈X

ρ−(S), and cDim(X) = sup
S∈X

ρ+(S).

Proof. Immediate from Lemma 4.1 and Theorems 4.2 and 2.5. ut

5 Conclusion

We have shown that every infinite sequence is Turing reducible to a Martin-
Löf random infinite sequence with the optimal compression ratio possible. Since
this optimal ratio is the constructive dimension of the sequence, this gives a
new characterization of constructive dimension in terms of Turing reduction
compression ratios.

The Turing reductions of Theorems 3.1, 3.2, and 4.2 satisfy the stronger
properties of the weak truth-table reduction (see [Soa87]), which is a Turing
reduction in which the query usage of the reduction machine M on input n
is bounded by a computable function of n. For example, 2n + O(1) suffices.

Thus, constructive dimension could also be defined in terms of weak truth-table
reductions.

As noted in the introduction, for the sequences S and R in Theorems 3.1
and 4.2, it is not necessarily the case that R ≤T S. In other words, though the
decompression is computable, it is not computably reversible in all cases. For
instance, if S is computable, then R 6≤T S, since no sequence R ∈ RAND is
computable. For this reason, Theorem 4.2 does not imply Theorem 3.2, which
allows for the reduction to be computably reversed, subject to the trade-off that
the compression requirements are weakened.

The compression of Theorem 4.2 may not be computable even if we drop the
requirement that the oracle sequence be random. If the sequence S in Theorem
4.2 satisfies dim(S) > 0 and Dim(S) > 0, then for all P ∈ C (not necessarily
random) and M ∈ OTM satisfying S ≤T P via M , ρ−M (S, P) = dim(S), and
ρ+

M (S, P) = Dim(S), it follows that dim(P) = Dim(P) = 1. This implies that
the reversibility of decompression – whether P ≤T S – is related to an open
question posed by Miller and Nies when considering Reimann and Terwijn’s
[Rei04] question concerning the ability to compute a random sequence from
a sequence of positive dimension. Question 10.2 of [MN05] asks whether it is
always possible, using an oracle sequence S of positive dimension, to compute a
sequence P with dimension greater than that of S.

Acknowledgments. I am grateful to Philippe Moser and Xiaoyang Gu for their
insightful discussions, to Jack Lutz and Jim Lathrop for their helpful advice in
preparing this article, and to John Hitchcock for making useful corrections in an
earlier draft. I also thank anonymous referees for helpful suggestions.

References

[AHLM04] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective
strong dimension, algorithmic information, and computational complexity.
SIAM Journal on Computing, 2004. To appear. Preliminary version ap-
peared in Proceedings of the 21st International Symposium on Theoretical
Aspects of Computer Science, pages 632-643.

[Bar68] Y. M. Barzdin′. Complexity of programs to determine whether natural
numbers not greater than n belong to a recursively enumerable set. Soviet
Mathematics Doklady, 9:1251–1254, 1968.

[Ben88] C. H. Bennett. Logical depth and physical complexity. In R. Herken, edi-
tor, The Universal Turing Machine: A Half-Century Survey, pages 227–257.
Oxford University Press, London, 1988.

[Cha75] G. J. Chaitin. A theory of program size formally identical to information
theory. Journal of the Association for Computing Machinery, 22:329–340,
1975.

[Edg04] G. A. Edgar. Classics on Fractals. Westview Press, Oxford, U.K., 2004.
[Fal90] K. Falconer. Fractal Geometry: Mathematical Foundations and Applica-

tions. John Wiley & Sons, 1990.
[Fen02] S. A. Fenner. Gales and supergales are equivalent for defining construc-

tive Hausdorff dimension. Technical Report cs.CC/0208044, Computing
Research Repository, 2002.

[Gác86] P. Gács. Every sequence is reducible to a random one. Information and
Control, 70:186–192, 1986.

[Hau19] F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen,
79:157–179, 1919. English version appears in [Edg04], pp. 75-99.

[Hit03] J. M. Hitchcock. Gales suffice for constructive dimension. Information
Processing Letters, 86(1):9–12, 2003.

[Huf59] D. A. Huffman. Canonical forms for information-lossless finite-state logical
machines. IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–
59, 1959. Also available in E.F. Moore (ed.), Sequential Machine: Selected
Papers, Addison-Wesley, 1964, pages 866-871.

[Kuč85] A. Kučera. Measure, Π0
1-classes and complete extensions of PA. Recursion

Theory Week, Lecture Notes in Mathematics, 1141:245–259, 1985.
[Kuč89] A. Kučera. On the use of diagonally nonrecursive functions. In Studies

in Logic and the Foundations of Mathematics, volume 129, pages 219–239.
North-Holland, 1989.

[Lut03a] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003. Preliminary version appeared in Proceedings of the
Fifteenth Annual IEEE Conference on Computational Complexity, pages
158–169, 2000.

[Lut03b] J. H. Lutz. The dimensions of individual strings and sequences. Informa-
tion and Computation, 187:49–79, 2003. Preliminary version appeared in
Proceedings of the 27th International Colloquium on Automata, Languages,
and Programming, pages 902–913, 2000.

[Lut05] J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly,
51:62–72, 2005. (Invited lecture at the International Conference on Com-
putability and Complexity in Analysis, Cincinnati, OH, August 2003.).

[LV97] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity
and its Applications. Springer-Verlag, Berlin, 1997. Second Edition.

[Mar66] P. Martin-Löf. The definition of random sequences. Information and Con-
trol, 9:602–619, 1966.

[May02] E. Mayordomo. A Kolmogorov complexity characterization of constructive
Hausdorff dimension. Information Processing Letters, 84(1):1–3, 2002.

[MM04] W. Merkle and N. Mihailović. On the construction of effective random sets.
Journal of Symbolic Logic, pages 862–878, 2004.

[MN05] J. S. Miller and A. Nies. Randomness and computability: Open questions.
Technical report, University of Auckland, 2005.

[Rei04] J. Reimann. Computability and Fractal Dimension. PhD thesis, Universität
Heidelberg, 2004.

[Rya86] B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of
Information Transmission, 22:170–179, 1986.

[Sch71] C. P. Schnorr. A unified approach to the definition of random sequences.
Mathematical Systems Theory, 5:246–258, 1971.

[Soa87] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag,
Berlin, 1987.

[Sul84] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of
geometrically finite Kleinian groups. Acta Mathematica, 153:259–277, 1984.

[Tri82] C. Tricot. Two definitions of fractional dimension. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 91:57–74, 1982.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transaction on Information Theory, 24:530–536, 1978.

6 Technical Appendix

This appendix contains proofs of the new results, as well as some preliminaries
and background theorems required for the proofs.

6.1 Self-delimiting Kolmogorov complexity

We work with the self-delimiting Kolmogorov complexity. See [LV97] for an
account of this model. All Turing machines are self-delimiting. This means that

– a Turing machine M is allowed to move its input tape head only to the right,
and

– if M does not halt with its tape head on the rightmost bit of its input, the
computation is considered invalid.

Fix a self-delimiting universal Turing machine U . Let x ∈ {0, 1}∗. The Kol-
mogorov complexity of x is

K(x) = min
π∈{0,1}∗

{ |π| | U(π) = x} .

For all q ∈ Q, let K(q) = K(s(q)), where s(q) ∈ {0, 1}∗ is some standard binary
representation of the rational q with a numerator, denominator, and sign bit.

For all x ∈ {0, 1}∗, let e0(x) = 0|x|1x. Define the self-delimiting encoding
function enc : {0, 1}∗ → {0, 1}∗ for all x ∈ {0, 1}∗ by

enc(x) = e0

(
s|x|

)
x.

For all n ∈ N, let enc(n) = enc(sn).
Strings encoded by enc and valid programs for U are self-delimiting. They

can be prepended to arbitrary strings and uniquely decoded.

Observation 6.1. For all x ∈ {0, 1}∗, |enc(x)| ≤ |x|+ 2 log |x|+ 3, and for all
n ∈ N, enc(n) ≤ log n + 2 log log n + 3.

Our results, being asymptotic in nature, do not depend crucially on using
the self-delimiting Kolmogorov complexity K; it is simply more convenient for
encoding purposes. All results would work out the same if we instead use the
plain Kolmogorov complexity C (see [LV97]). Whenever we would need to add a
program to a string and retain the ability to uniquely decode it, we could simply
encode it using enc.

6.2 Explanation of Ryabko’s theorem

Ryabko defined the value cT of Theorem 3.2 differently from the present pa-
per. Ryabko defined cT based on what he calls “T -codes” and did not explic-
itly mention OTMs, but these are essentially equivalent. A T -code is a pair
of encoder/decoder (i.e. compressor/decompressor) algorithms E,D : {0, 1}∗ →

{0, 1}∗ – implemented by the Turing machines Me and Md in the present paper’s
definition of cT – which are required to be monotonic: for all x, y ∈ {0, 1}∗,

x v y =⇒ E(x) v E(y) and D(x) v D(y).

Me and Md can be considered OTMs that always make queries to entire prefixes
of the oracle sequence, which is represented by the input string to the compres-
sion/decompression algorithm. The OTM’s input n, which represents the size
of the output prefix to compute, is then implicitly the number of bits output
by Me or Md. By restricting the behavior of an OTM in this way, the query
usage necessarily counts all oracle bits to the left of any bit that gets queried,
in addition to the queried bit. In other words, the query usage was implicitly
defined by Ryabko to be the index of the rightmost queried bit, as opposed to
the number of bits queried. All results of the present paper hold if query usage
is instead defined in this manner.

To define a lower compression ratio, instead of considering the lim inf
n→∞

over

all bit positions n in S, which is how ρ− is defined, Ryabko considered the
lim sup

i→∞
over all block positions ni (i.e. subsequences of bit positions), where

0 ≤ n1 < n2 < n3 < He then included the block positions as part of the
specification of the T -code, by requiring the Turing machines to read their input
and produce output in sequential blocks. Therefore the optimization over all
pairs of encoding/decoding machines Me,Md in the current paper’s definition of
cT simultaneously optimizes over all subsequences of bit positions at which to
measure the compression ratio. It is routine to verify that the infimum over all
subsequences of bit positions {ni}∞i=1 of the lim sup

i→∞
over the positions {ni}∞i=1

is exactly the lim inf
n→∞

over all bit positions n.
Finally, constructive dimension had not yet been defined at the time Ryabko

wrote [Rya86]. He in fact showed that, for all X ⊆ C, cT(X) = sup
S∈X

lim inf
n→∞

K(S�n)
n .

By Theorems 2.5 and 2.4, the right hand side is cdim(X).

6.3 Miscellaneous

The following theorem, due to Lutz, establishes an upper bound on the number
of strings on which an s-gale can perform well.

Theorem 6.2. [Lut03a] Let d be an s-gale. Then for all w ∈ {0, 1}∗, k ∈ N,
and α ∈ R+, there are fewer than 2k

α strings u ∈ {0, 1}k for which

max
vvu

{
2(1−s)|v|d(wv)

}
≥ αd(w).

Corollary 6.3. Let d be a martingale. Then for all l ∈ R, w ∈ {0, 1}∗, k ∈ N,
and α ∈ R+, there are fewer than 2l

α strings u ∈ {0, 1}k for which

d(wu) ≥ α2k−ld(w).

Let S, P, R ∈ C and MP
S ,MR

P ∈ OTM such that S ≤T P via MP
S and

P ≤T R via MR
P . Define the composition of MP

S with MR
P , denoted MP

S ◦MR
P ,

to be the oracle Turing machine that works as follows. On input n ∈ N and with
oracle R, MP

S ◦MR
P simulates MP

S to compute S � n. Whenever a bit of P is
queried by MP

S , MP
S ◦MR

P simulates MR
P with oracle R for the minimum number

of steps needed to compute that bit of P .

Observation 6.4. ≤T is transitive: if S ≤T P via MP
S and P ≤T R via MR

P ,
then S ≤T R via MP

S ◦MR
P .

The following lemma shows two senses in which the composition of two oracle
Turing machines in a transitive Turing reduction bounds the compression ratio
of the transitive reduction below the product of the compression ratios of the
two original reductions.

Lemma 6.5. Let S, P, R ∈ C and MP
S ,MR

P ∈ OTM such that S ≤T P via MP
S

and P ≤T R via MR
P , and let M = MP

S ◦MR
P , so that S ≤T R via M . Then

ρ+
M (S, R) ≤ ρ+

MP
S

(S, P)ρ+
MR

P

(P,R),

and
ρ−M (S, R) ≤ ρ−

MP
S

(S, P)ρ+
MR

P

(P,R).

Proof. Let rP+
S > ρ+

MP
S

(S, P), rP−
S > ρ−

MP
S

(S, P), and rR+
P > ρ+

MR
P

(P,R). It

suffices to show that ρ+
M (S, R) ≤ rP+

S rR+
P and ρ−M (S, R) ≤ rP−

S rR+
P .

For infinitely many n, #P
S (MP

S , n) < rP−
S n. For all but finitely many n,

#P
S (MP

S , n) < rP+
S n, and #R

P (MR
P , n) < rR+

P n. Then, for all but finitely many
n, to compute S � n, M requires

#R
S (M,n) = #R

P

(
MR

P ,#P
S

(
MP

S , n
))

< rR+
P #P

S

(
MP

S , n
)

< rP+
S rR+

P n

queries to R. Since this holds for all but finitely many n,

ρ+
M (S, R) = lim sup

n→∞

#R
S (M,n)

n
≤ rP+

S rR+
P .

For infinitely many n, to compute S � n, M requires

#R
S (M,n) = #R

P

(
MR

P ,#P
S

(
MP

S , n
))

< rR+
P #P

S

(
MP

S , n
)

< rP−
S rR+

P n

queries to R. Since this holds for infinitely many n,

ρ−M (S, R) = lim inf
n→∞

#R
S (M,n)

n
≤ rP−

S rR+
P .

ut

6.4 Proofs of main results

Proof (of Lemma 4.1). Let πM be a self-delimiting program for M , so that,
for all x ∈ {0, 1}∗, U(πMx) = M(x). Let rn ∈ {0, 1}#S

R(M,n) be the oracle
bits of R queried by M on input n, in the order in which they are queried.
Recall the self-delimiting encoding function enc. For each n ∈ N, let πn =
πM ′πMenc(sn)enc(rn), where πM ′ is a self-delimiting program that simulates
M , encoded by πM , on input n, encoded by enc(sn), with oracle R, encoded by
enc(rn). Then U(πn) = S � n, so K(S � n) ≤ |πn|. By Theorem 2.4,

dim(S) = lim inf
n→∞

K(S � n)
n

≤ lim inf
n→∞

|πM ′πMenc(sn)enc(rn)|
n

≤ lim inf
n→∞

|πM ′πM |+ log n + 2 log log n + #S
R(M,n) + 2 log #S

R(M,n) + 6
n

= lim inf
n→∞

#S
R(M,n)

n

= ρ−M (S, R),

and similarly, Dim(S) ≤ ρ+
M (S, R). ut

We now discuss the intuition behind the proof of Theorem 4.2. If the dimension
of S is small, then the optimal constructive martingale d performs well on S.
Thus, if we have already computed a prefix S � n of S, then on average, d
increases its capital more on the next k bits of S than it would on other k-bit
strings that could extend S � n. This places the next k bits of S in a small (on
average) subset of {0, 1}k, namely, those strings on which d increases its capital
above a certain threshold dn, which is slightly smaller than d(S � (n + k)),
the amount of capital made after the next k bits of S. Since d is constructive,
it is possible to enumerate strings from this set by evaluating the computable
function d̂ in parallel on all possible length-k extensions of S � n, and outputting
a string u ∈ {0, 1}k when d̂((S � n)u, t) is greater than dn, for some value of
t ∈ N. We will encode the next k bits of S as an index into this set, where the
index will represent the order in which this parallel evaluation enumerates the
string we want – the next k bits of S. This technique is similar to that used by
Merkle and Mihailović [MM04] to prove Theorem 3.1.

We require two lemmas to prove Theorem 4.2. Lemma 6.8 shows that the
average number of bits needed to encode the index of a length-k extension of
S � n is close to the dimension of S times k. We will also need to encode the
threshold dn into the oracle sequence, since the actual amount of capital that
d will make is uncomputable. Lemma 6.9 shows that we can find a rational
threshold dn that requires so few bits to represent that it will not affect the
compression ratio when added to the oracle sequence, yet which is still a close
enough approximation to d(S � (n + k)) to keep the index length of Lemma 6.8
small.

The following easily verified observations will be useful.

Observation 6.6. Let S ∈ C. If s > dim(S) and s′ > Dim(S), then for
infinitely many n, d(S � n) ≥ 2(1−s)nd(λ), and for all but finitely many n,
d(S � n) ≥ 2(1−s′)nd(λ).

Observation 6.7. If S ∈ RAND, then dim(S) = Dim(S) = 1.

Lemma 6.8. Let S ∈ C. For all i ∈ N, define ki = i+1, and define n0 = 0 and
ni = ni−1 + ki = i(i+1)

2 for i > 0. Let d0, d1, . . . be a sequence of real numbers
such that, for all i ∈ N, di ≥ d(S � ni)

(
1− 1

i2

)
. Define Ai ⊆ {0, 1}ki by

Ai =
{

u ∈ {0, 1}ki
∣∣ d((S � ni−1)u) > di

}
.

Then

lim inf
i→∞

∑i
j=0 log |Aj |

ni
≤ dim(S), and lim sup

i→∞

∑i
j=0 log |Aj |

ni
≤ Dim(S).

Proof. We show the result for dim(S). The proof for Dim(S) is similar, replacing
“for infinitely many i” conditions with “for all but finitely many i.”

The indices n0 < n1 < n2 < . . . partition S into blocks S[n0 . . n1 − 1],
S[n1 . . n2 − 1], . . ., with ki = ni+1 − ni equal to the length of the ith block, and
ni equal to the length of the first i + 1 blocks.

Let t′ > t > dim(S). It suffices to show that, for infinitely many i ∈ N,∑i
j=0 log |Aj | ≤ t′ni. Since t > dim(S), for infinitely many n ∈ N,

d(S � n) ≥ 2(1−t)nd(λ).

A martingale can at most double its capital after every bit, and each index n
with ni ≤ n < ni+1 is at most ki bits beyond ni. It follows that for infinitely
many i ∈ N,

d(S � ni) ≥ 2(1−t)ni−kid(λ). (6.1)

For all i ∈ N, set li ∈ R such that d(S � ni) = 2ki−lid(S � ni−1). By induction
on i,

d(S � ni) = d(λ)
i∏

j=0

2kj−lj . (6.2)

Then, by equations (6.1) and (6.2), and the fact that
∑i−1

j=0 ki = ni, for infinitely
many i ∈ N,

i∏
j=0

2kj−lj ≥ 2(1−t)ni−ki =⇒
i∑

j=0

(kj− lj) ≥ (1−t)ni−ki =⇒
i∑

j=0

lj ≤ tni +2ki.

Recall that d(S � ni)
(
1− 1

i2

)
≤ di. By Corollary 6.3 (take k = ki, l = li, α =

1− 1
i2 , w = S � ni−1) and the definition of li, since

di ≥
(

1− 1
i2

)
d(S � ni) =

(
1− 1

i2

)
2ki−lid(S � ni−1),

it follows that |Ai| ≤
2li

1− 1
i2

, and so log |Ai| ≤ li − log
(

1− 1
i2

)
. Let c0,1 =

log |A0|+ log |A1| − l0 − l1. Then

i∑
j=0

log |Aj | ≤
i∑

j=0

lj −
i∑

j=2

log
(

1− 1
j2

)
+ c0,1

≤ tni + 2ki −
i∑

j=2

(log(j + 1) + log(j − 1)− 2 log j)︸ ︷︷ ︸
telescopes

+c0,1

= t′ni + (t− t′)ni + 2ki − (log 1− log 2− log i + log(i + 1)) + c0,1.

t < t′, 2ki = o(ni), and lim
i→∞

log(i + 1)− log i = 0. Therefore, for infinitely many

i,
∑i

j=0 log |Aj | ≤ t′ni. ut

Lemma 6.9. Let i ∈ Z+ c ∈ R+, and r ∈
[
1, c2i2

]
. Then there is a rational

number d ∈ Q+ such that r > d ≥ r
(
1− 1

i2

)
and K(d) = O(log i).

Proof. We prove the cases r ≥ i2 and 1 ≤ r < i2 separately. Suppose r ≥ i2. In
this case we will choose d to be an integer. Set k ∈ Z+ such that 2k−1 < i2 ≤ 2k.
Since r ≥ i2 > 2k−1, dlog re > k − 1.

Let d ∈ Z+ be the integer whose binary representation is x0dlog re−k, where
x ∈ {0, 1}k is the first k bits of brc. Since d shares its first k bits with r,

r − d ≤ 2dlog re−k − 1 ≤ r + 2
2k
− 1 ≤ r

i2
,

so r > d ≥ r
(
1− 1

i2

)
. d can be fully described by the first k bits of r, along

with the binary representation of the number dlog re−k of 0’s that follow. Thus,
describing d requires no more than k + log(dlog re − k) ≤ log i2 + 1 + log log c +
log i2 = O(log i) bits.

This will not work if r ∈ Z+ and r’s least significant dlog re − k bits are 0,
which would result in d = r, rather than d < r. In this case, let

d = r − 1 = bnum
(
rep2(bnum(x)− 1)1dlog re−k

)
,

where bnum(x) is the integer whose binary representation is x, and rep2(n) is
the binary representation (with possible leading zeroes) of n ∈ N. This likewise
requires O(log i) bits to describe. Since r ≥ i2, d = r − 1 ≥ r

(
1− 1

i2

)
.

Now suppose that 1 ≤ r < i2. We approximate r by the binary integer brc,
plus a finite prefix of the bits to the right of r’s decimal point in binary form. If
x.S is the binary representation of r, where x ∈ {0, 1}∗ and S ∈ C, let d ∈ Z+

be represented by x.y, where y v S.
Since r < i2, |x| ≤ log i2 = O(log i). We need r−d ≤ r

i2 for d to approximate
r closely. Since r− d ≤ 2−|y|, it suffices to choose y v S such that 2−|y| ≤ r

i2 , or

|y| ≥ log i2

r . Let |y| =
⌈
log i2

r

⌉
= O(log i), since r ≥ 1. Thus |x|+ |y| = O(log i),

so describing d requires O(log i) bits.
This will not work if r is a dyadic rational x.z, where x, z ∈ {0, 1}∗ and

|z| ≤ |y|, which would result in d = r, rather than d < r. In this case, let
r′ ∈

[
r
(
1− 1

2i2

)
, r

)
be irrational. Choose d for r′ by the method just described,

such that r′ > d ≥ r′
(
1− 1

2i2

)
, and d requires O(log(i

√
2)) = O(log i) bits. Then

d ≥ r
(
1− 1

i2

)
by the triangle inequality, and d < r′ < r. ut

Finally, we prove the main theorem.

Proof (of Theorem 4.2). If S ∈ RAND, then S ≤T S via the trivial “bit copier”
machine M ′, with lower and upper compression ratio dim(S) = Dim(S) = 1, so
assume that S 6∈ RAND.

A single OTM M ′′ suffices to carry out the reduction described below, no
matter what sequence S 6∈ RAND is being computed. If S ∈ RAND, then M ′

is used. These two separate reductions are easily combined into one by reducing
each sequence S to a random sequence bR via M ∈ OTM, where b ∈ {0, 1},
R = S if S ∈ RAND, and R is given by the construction below if S 6∈ RAND.
The bit b indicates to M whether to use M ′ or M ′′ for the reduction. Hence a
single OTM M implements the “optimal decompression”.

For all i ∈ N, define ki = i+1, and define n0 = 0 and ni = ni−1 +ki = i(i+1)
2

for i > 0. Note that ni ≤ i2 for all i ≥ 3. ki represents the length of the ith block
into which we subdivide S. ni is the total length of the first i + 1 blocks. Define
di ∈ Q+ to be a rational number satisfying

1. d(S � ni)
(
1− 1

i2

)
≤ di < d(S � ni); i.e., di is a rational number approxi-

mating d(S � ni) from below.
2. K(di) = o(ki); i.e. di can be computed from a program asymptotically smaller

than the length of the ith block.

By Observation 2.1, d(S � ni) ≤ 2nid(λ) ≤ 2i2d(λ) for i ≥ 3. By Theorem 2.2,
S 6∈ RAND implies that for all but finitely many i, d(S � ni) ≥ 1. Thus, by
Lemma 6.9 (take r = d(S � ni) and c = d(λ)), there is a di ∈ Q+ satisfying the
above two conditions.

Define the set Ai ⊆ {0, 1}ki for all i ∈ N as in Lemma 6.8 by

Ai =
{

u ∈ {0, 1}ki
∣∣ d((S � ni−1)u) > di

}
,

the set of all length-ki extensions of S � ni−1 that add more capital to the optimal
constructive martingale d than S[ni−1 . . ni − 1] does, to within multiplicative
factor 1− 1

i2 . Since d(S � ni) > di, it follows that S[ni−1 . . ni − 1] ∈ Ai.
For all i ∈ N, let pi ∈ N be the output of the following partial computable

procedure, when given as input the string S[ni−1 . . ni − 1] ∈ {0, 1}ki :

String-To-Index(S[ni−1 . . ni − 1])
1 GOOD ← ∅
2 for t = 0, 1, 2, . . .
3 do for each u ∈ {0, 1}ki −GOOD

4 do if d̂((S � ni−1)u, t) > di

5 then add u to GOOD
6 if u = S[ni−1 . . ni − 1]
7 then output |GOOD| and halt

In other words, pi is the order in which d(S � ni) is shown to exceed di

by a parallel evaluation of d̂((S � ni−1)u, t) on all extensions u ∈ {0, 1}ki of
S � ni−1, for t = 0, 1, 2, Since di < d(S � ni), there exists some t ∈ N such
that d̂(S � ni, t) > di, and so pi is well-defined. The computation of Index-
To-String, the inverse of String-To-Index, resembles that of String-To-
Index:

Index-To-String(pi)
1 GOOD ← ∅
2 for t = 0, 1, 2, . . .
3 do for each u ∈ {0, 1}ki −GOOD

4 do if d̂((S � ni−1)u, t) > di

5 then add u to GOOD
6 if |GOOD| = pi

7 then output u and halt

Note that Index-To-String will not halt if given as input an integer greater
than |Ai|.

For all i ∈ N, let π(di) denote a self-delimiting, shortest program for com-
puting di. Define the sequence P ∈ C by

P = enc(p0)π(d0)enc(p1)π(d1)enc(p2)π(d2)

Define the oracle Turing machine MP
S that produces n bits of S, with oracle

P , as follows. Let i(n) denote the block in which n resides – the unique i ∈ N
such that ni ≤ n < ni+1. First, MP

S reads the first i(n) + 1 blocks of P :

enc(p0)π(d0) . . . enc(pi(n))π(di(n)).

MP
S then calculates the first i(n) + 1 blocks of S iteratively. On block i, MP

S

first computes pi from enc(pi) and di from π(di). Then, MP
S evaluates Index-

To-String(pi) to obtain S[ni−1 . . ni] and outputs it as the ith block of S.
Since S[ni−1 . . ni − 1] ∈ Ai, it follows that pi ≤ |Ai|, and so |enc(pi)| ≤

log |Ai|+ 2 log log |Ai|+ 3. Therefore, by Lemma 6.8,

lim inf
i→∞

∑i
j=0 |enc(pj)|

ni
≤ lim inf

i→∞

∑i
j=0 log |Aj |

ni
≤ dim(S), (6.3)

and

lim sup
i→∞

∑i
j=0 |enc(pj)|

ni
≤ lim sup

i→∞

∑i
j=0 log |Aj |

ni
≤ Dim(S). (6.4)

By our choice of di, |π(di)| = o(ki), so
∑i

j=0 |π(dj)| = o(ni), giving

lim inf
i→∞

∑i
j=0 |enc(pj)π(dj)|

ni
= lim inf

i→∞

∑i
j=0 |enc(pj)|

ni
, (6.5)

and

lim sup
i→∞

∑i
j=0 |enc(pj)π(dj)|

ni
= lim sup

i→∞

∑i
j=0 |enc(pj)|

ni
. (6.6)

By the definition of lim inf,

lim inf
n→∞

∑i(n)
j=0 |enc(pj)π(dj)|

n
≤ lim inf

i→∞

∑i
j=0 |enc(pj)π(dj)|

ni
. (6.7)

Since ni = ki(ki+1)
2 , ki = o(ni), so

lim sup
n→∞

∑i(n)
j=0 |enc(pj)π(dj)|

n
≤ lim sup

i→∞

∑i
j=0 |enc(pj)π(dj)|

ni
. (6.8)

In other words, because the block size grows slower than the prefix length, the
lim sup over all blocks is at least the lim sup over all bits (and they are in fact
equal by the definition of lim sup). Regardless of the block growth rate, this
inequality holds trivially for lim inf.

For all n ∈ N, MP
S requires

∑i(n)
j=0 |enc(pj)π(dj)| bits of P in order to compute

n bits of S, and hence, by inequalities (6.3)-(6.8),

ρ−
MP

S

(S, P) = lim inf
n→∞

∑i(n)
j=0 |enc(pj)π(dj)|

n
≤ dim(S),

and

ρ+
MP

S

(S, P) = lim sup
n→∞

∑i(n)
j=0 |enc(pj)π(dj)|

n
≤ Dim(S).

Let R ∈ RAND and MR
P ∈ OTM be given by the construction of Gács in his

proof of Theorem 3.1, satisfying P ≤T R via MR
P and ρ+

MR
P

(P,R) = 1. Let

M ′′ = MP
S ◦MR

P . Then S ≤T R via M ′′ and, by Lemma 6.5,

ρ−M ′′(S, R) ≤ ρ−
MP

S

(S, P)ρ+
MR

P

(P,R) ≤ dim(S),

and
ρ+

M ′′(S, R) ≤ ρ+
MP

S

(S, P)ρ+
MR

P

(P,R) ≤ Dim(S).

By Lemma 4.1, ρ−M ′′(S, R) ≥ dim(S) and ρ+
M ′′(S, R) ≥ Dim(S). ut

