
The computational power of execution
bounded chemical reaction networks

David Doty, Ben Heckmann

May 2024
Seminar on the Mathematics of Reaction Networks

Acknowledgments

2

Ben Heckmann
Undergraduate student

Technische Universität München, UC Davis

Matthias Köppe
Professor
UC Davis

For teaching us about

“Theorems of the Alternative”

Chemical reaction networks

3

Chemical reaction networks

3

R→P1+P2
reactant(s) product(s)

Chemical reaction networks

3

R→P1+P2

M1+M2→D

reactant(s) product(s)

dimermonomers

Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

reactant(s) product(s)

dimermonomers

catalyst

Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language…
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst

Theoretical computer science approach

4

What computation is possible and what is not?

5

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

Chemical Reaction Network (CRN)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• state x∈ℕd: molecular counts of each species

6

A+B→A+C

C+B→C

C→A+A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

x =

7

A

B

A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

x =

7

A

B

A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)

x =

7

A
A

C

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)

x =

7

A
A

C

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

x =

7

...

A
A

A

A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

x =

7

...

A
A

A

A

A+B→A+C

C→A+A

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

⟹

α

(4, 0, 1)
...

x =

7

...

A
A

A

A

C

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

x

⟹
α

⟹
β ⟹

α

y

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

x

⟹
α

⟹
β ⟹

α

y

c =

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

x

⟹
α

⟹
β ⟹

α

y

c =

+ c + c

Notation

• For vectors x,y ∈ ℕd

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)

9

Notation

• For vectors x,y ∈ ℕd

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)

• If x ≧ 0, x is nonnegative.

• If x ≥ 0, x is semipositive.

• If x > 0, x is positive.

9

10

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions

starting at x are finite.

11

Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions

starting at x are finite.

• Why prefer execution bounded CRNs?
• Wet lab implementations of CRNs use up “fuel” to execute reactions; execution

bounded CRNs limit the amount of fuel needed

• Easier to reason about: as long as reactions keep happening, they make “progress”
towards reaching a final state.

11

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

⟹
β

x3 ≧ x1

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

⟹
β

x3 ≧ x1

⟹
α

⟹
β

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

⟹
β

x3 ≧ x1

⟹
α

⟹
β

⟹
α

⟹
β …

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

13

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy
2vA > vB+vC and 2vB > vA … vA=vB=1 and vC=0 works.

13

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy
2vA > vB+vC and 2vB > vA … vA=vB=1 and vC=0 works.

• A coefficient vS assigns a nonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

13

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy
2vA > vB+vC and 2vB > vA … vA=vB=1 and vC=0 works.

• A coefficient vS assigns a nonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

• By clearing denominators, we can assume each vS is an integer, so each
reaction decreases Φ by at least 1.

13

Linear potential functions characterize
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

14

Linear potential functions characterize
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

Forward direction is easy: Since each reaction reduces Φ by at least 1, at most
Φ(x) reactions are possible from any state x.

14

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]

x1

x2

x3

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]

x1

x2

x3

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

Mu = 2x1+x2

u = (2,1,0)

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]
x1

x2x3

v = (1,3)
x1

x2

x3

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

2. Or it doesn’t, and then some hyperplane (dashed line)
separates that cone from the nonnegative orthant:

Mu = 2x1+x2

u = (2,1,0)
vM < 0 ⇒
(∀i) v∙xi < 0

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

16

𝐌 =
−1 1
1 −2
2 0

α β
A
B
C

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the
vector Mu = (–1,0,4) indicates how species counts change.

16

𝐌 =
−1 1
1 −2
2 0

α β
A
B
C

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the
vector Mu = (–1,0,4) indicates how species counts change.

Claim: There is no u ≥ 0 such that Mu ≧ 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from x to y = x + Mu,
where y ≧ x, i.e., a self-covering execution, not possible since the CRN is execution
bounded from x.

16

𝐌 =
−1 1
1 −2
2 0

α β
A
B
C

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the
vector Mu = (–1,0,4) indicates how species counts change.

Claim: There is no u ≥ 0 such that Mu ≧ 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from x to y = x + Mu,
where y ≧ x, i.e., a self-covering execution, not possible since the CRN is execution
bounded from x.

Then there is a vector v ≥ 0 such that vM < 0. Let v be the coefficients of a linear
function Φ(x) = v∙x. Then vM < 0 means each reaction decreases Φ: it is a linear
potential function. QED

16

𝐌 =
−1 1
1 −2
2 0

α β
A
B
C

17

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

Defining stable computation

18

i
initial
state

Defining stable computation

18

i xreactions

∀

any reachable
state

initial
state

Defining stable computation

18

i x oreactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

Defining stable computation

18

i x o o’reactions reactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

correct
output

∀
o is stable

Defining stable computation

18

i x o o’reactions reactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

correct
output

∀
o is stable

(assuming finite set of reachable states) equivalent to:
The system will reach the correct output with probability 1.

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

19

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

19

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

19

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (state o outputs “yes”) if vote is unanimously yes: o(S)>0 ⇔ S∈ΛY

• ψ(o) = N (state o outputs “no”) if vote is unanimously no: o(S)>0 ⇔ S∈ΛN

• state o has undefined output otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

19

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (state o outputs “yes”) if vote is unanimously yes: o(S)>0 ⇔ S∈ΛY

• ψ(o) = N (state o outputs “no”) if vote is unanimously no: o(S)>0 ⇔ S∈ΛN

• state o has undefined output otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

• o is stable if ψ(o) = ψ(o’) for all o’ reachable from o

19

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

20

A

A A

A

A

A A

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

20

A votes no; B votes yes

A

A A

A

A

A A

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

20

A votes no; B votes yes

A

A A

A

A

A AB

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

20

A votes no; B votes yes

A

A A

A

A

A AB

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

20

A votes no; B votes yes

A

A A

A

A

A AB

B

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

20

A votes no; B votes yes

A

A A

A

A

A AB

B

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

20

A votes no; B votes yes

A

A A

A

A

A AB

B

B

B

B B

B

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

21

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

21

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

21

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

21

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

21

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

Not execution bounded!

Limits of stable computation

Theorem: φ: ℕk→{Y,N} is stably computable by a CRN if and only if φ is semilinear.

semilinear = Boolean combination of threshold and mod predicates:

take weighted sum s = w1∙a1 + … wk∙ak of inputs and ask if

s > constant c?

s ≡ c mod m for constants c,m?

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

a>b? a=b? a is odd? a>1? a>1 and b is odd?

NOT a=b2? a is a power of 2? a is prime?

23

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao Ao

AoAo

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao Ao

AoAo

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao

Ao

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao

Ao

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

AoAe

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

AoAe

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

24

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ae

Eventually constant predicates

Definition: A φ: ℕk→{Y,N} is eventually constant if, for some c ∈ ℕ,
φ(x) is constant on all inputs x ≧ (c,c,…,c).

25

Eventually constant predicates

Definition: A φ: ℕk→{Y,N} is eventually constant if, for some c ∈ ℕ,
φ(x) is constant on all inputs x ≧ (c,c,…,c).

25

Example of eventually constant predicate:
a < 2 and b is odd, or b < 3 and a+b is odd

Non-eventually constant predicates:
majority (a≥b?)
parity (a is odd?)
equality (a=b?)

and most anything interesting.

inputs ≧ (3,3)
all have output “no”

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

26

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

1. Start with {A}, CRN can reach to stable “yes” state s1.

A

{A}

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

1. Start with {A}, CRN can reach to stable “yes” state s1.

A

{A} s1

⟹
Y1 Y2

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

1. Start with {A}, CRN can reach to stable “yes” state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s2.

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A}

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

1. Start with {A}, CRN can reach to stable “yes” state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s2.

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A} s2

⟹
N1 N2 N1

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

1. Start with {A}, CRN can reach to stable “yes” state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s2.
3. Add 1 A. The state s2+{A} is reachable from {3A}, so the CRN can reach from there to a stable “yes” state s3.
4. …

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A} s2 + {A}

⟹
N1 N2 N1A

A

+ {A} + {A}

A

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

26

1. Start with {A}, CRN can reach to stable “yes” state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s2.
3. Add 1 A. The state s2+{A} is reachable from {3A}, so the CRN can reach from there to a stable “yes” state s3.
4. …

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A} s2 + {A}

⟹
N1 N2 N1A

A

+ {A} + {A}

s3

⟹
Y1 Y2

Y3 Y2A

…

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

27

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

27

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

27

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

• After some i, the net change in Φ, in going from si to si+{A} to si+1, is
negative.

27

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

• After some i, the net change in Φ, in going from si to si+{A} to si+1, is
negative.

• Since Φ is nonnegative, at some point we cannot continue. QED

27

Are execution bounded CRNs good for any
computation?
• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

28

Are execution bounded CRNs good for any
computation?
• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

• Not all species are required to vote, and

28

Are execution bounded CRNs good for any
computation?
• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

• Not all species are required to vote, and

• We can start with an “initial leader”, e.g., to compute majority (a≥b?), start in initial
state {1 L, a A, b B}… these are execution bounded from such states, but not from
states with multiple leaders.

28

Are execution bounded CRNs good for any
computation?
• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

• Not all species are required to vote, and

• We can start with an “initial leader”, e.g., to compute majority (a≥b?), start in initial
state {1 L, a A, b B}… these are execution bounded from such states, but not from
states with multiple leaders.

• Or if all species are required to vote, but the CRN can be collapsing.

28

Are execution bounded CRNs good for any
computation?
• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

• Not all species are required to vote, and

• We can start with an “initial leader”, e.g., to compute majority (a≥b?), start in initial
state {1 L, a A, b B}… these are execution bounded from such states, but not from
states with multiple leaders.

• Or if all species are required to vote, but the CRN can be collapsing.

• Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded
(and leader-driven) CRNs can stably compute all semilinear predicates in expected time
O(polylog(n)).

28

Are execution bounded CRNs good for any
computation?
• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

• Not all species are required to vote, and

• We can start with an “initial leader”, e.g., to compute majority (a≥b?), start in initial
state {1 L, a A, b B}… these are execution bounded from such states, but not from
states with multiple leaders.

• Or if all species are required to vote, but the CRN can be collapsing.

• Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded
(and leader-driven) CRNs can stably compute all semilinear predicates in expected time
O(polylog(n)).

• Conjecture: Any execution bounded CRN takes at least Ω(n) expected time to stably
compute any non-eventually-constant predicate.

28

Thank you!

Questions?

29

	Slide 1: The computational power of execution bounded chemical reaction networks
	Slide 2: Acknowledgments
	Slide 3: Chemical reaction networks
	Slide 4: Chemical reaction networks
	Slide 5: Chemical reaction networks
	Slide 6: Chemical reaction networks
	Slide 7: Chemical reaction networks
	Slide 8: Theoretical computer science approach
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Key property of reachability: additivity
	Slide 19: Key property of reachability: additivity
	Slide 20: Key property of reachability: additivity
	Slide 21: Key property of reachability: additivity
	Slide 22: Notation
	Slide 23: Notation
	Slide 24
	Slide 25: Execution bounded CRNs
	Slide 26: Execution bounded CRNs
	Slide 27: Self-covering executions
	Slide 28: Self-covering executions
	Slide 29: Self-covering executions
	Slide 30: Self-covering executions
	Slide 31: Self-covering executions
	Slide 32: Self-covering executions
	Slide 33: Self-covering executions
	Slide 34: Self-covering executions
	Slide 35: Self-covering executions
	Slide 36: Self-covering executions
	Slide 37: Self-covering executions
	Slide 38: Self-covering executions
	Slide 39: Self-covering executions
	Slide 40: Self-covering executions
	Slide 41: Self-covering executions
	Slide 42: Self-covering executions
	Slide 43: Self-covering executions
	Slide 44: Linear potential function
	Slide 45: Linear potential function
	Slide 46: Linear potential function
	Slide 47: Linear potential function
	Slide 48: Linear potential functions characterize execution bounded CRNs
	Slide 49: Linear potential functions characterize execution bounded CRNs
	Slide 50: Key technical tool for reverse direction
	Slide 51: Key technical tool for reverse direction
	Slide 52: Key technical tool for reverse direction
	Slide 53: Key technical tool for reverse direction
	Slide 54: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 55: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 56: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 57: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 58
	Slide 59: Defining stable computation
	Slide 60: Defining stable computation
	Slide 61: Defining stable computation
	Slide 62: Defining stable computation
	Slide 63: Defining stable computation
	Slide 64: Definition of predicate (decision problem) computation
	Slide 65: Definition of predicate (decision problem) computation
	Slide 66: Definition of predicate (decision problem) computation
	Slide 67: Definition of predicate (decision problem) computation
	Slide 68: Definition of predicate (decision problem) computation
	Slide 69: Examples of predicate computation
	Slide 70: Examples of predicate computation
	Slide 71: Examples of predicate computation
	Slide 72: Examples of predicate computation
	Slide 73: Examples of predicate computation
	Slide 74: Examples of predicate computation
	Slide 75: Examples of predicate computation
	Slide 76: Examples of predicate computation
	Slide 77: Examples of predicate computation
	Slide 78: Examples of predicate computation
	Slide 79: Examples of predicate computation
	Slide 80: Examples of predicate computation
	Slide 81: Limits of stable computation
	Slide 82
	Slide 83: Noncollapsing CRNs
	Slide 84: Noncollapsing CRNs
	Slide 85: Noncollapsing CRNs
	Slide 86: Noncollapsing CRNs
	Slide 87: Noncollapsing CRNs
	Slide 88: Noncollapsing CRNs
	Slide 89: Noncollapsing CRNs
	Slide 90: Noncollapsing CRNs
	Slide 91: Eventually constant predicates
	Slide 92: Eventually constant predicates
	Slide 93: Limitations of execution bounded CRNs
	Slide 94: Limitations of execution bounded CRNs
	Slide 95: Limitations of execution bounded CRNs
	Slide 96: Limitations of execution bounded CRNs
	Slide 97: Limitations of execution bounded CRNs
	Slide 98: Limitations of execution bounded CRNs
	Slide 99: Limitations of execution bounded CRNs
	Slide 100: Limitations of execution bounded CRNs
	Slide 101: Limitations of execution bounded CRNs
	Slide 102: Limitations of execution bounded CRNs
	Slide 103: Limitations of execution bounded CRNs
	Slide 104: Limitations of execution bounded CRNs
	Slide 105: Limitations of execution bounded CRNs
	Slide 106: Are execution bounded CRNs good for any computation?
	Slide 107: Are execution bounded CRNs good for any computation?
	Slide 108: Are execution bounded CRNs good for any computation?
	Slide 109: Are execution bounded CRNs good for any computation?
	Slide 110: Are execution bounded CRNs good for any computation?
	Slide 111: Are execution bounded CRNs good for any computation?
	Slide 112: Thank you!

