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Chemical reaction networks

reactant(s) R_-P .+ P2 product(s)
monomers I\ﬂ1+l\ﬂ2 D dimer
catalyst C+X - C+Y

Traditionally a descriptive modeling language...
Let’s instead use it as a prescriptive programming language



What computation is possible and what is not?



Outline

® Formal definition of chemical reaction networks

® Execution bounded chemical reaction networks and linear potential functions
® What is “computation” with chemical reactions?

® Limitations of computation with execution bounded chemical reaction networks



Chemical Reaction Network (CRN)

® finite set of d species A={A,B,C, D, ... }

® finite set of reactions: e.qg. A+B - A+C

C - A+A
C+B-C

® state XENY: molecular counts of each species
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B: C-A+A x=(2, 2, 0)
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Key property of reachability: additivity

If we can reach from state x to y, written x = vy, then for all ¢ € N¢,
X+C = y+cC

The presence of extra molecules (represented by ¢) cannot prevent
reactions from occurring.
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Key property of reachability: additivity

If we can reach from state x to y, written x = vy, then for all ¢ € N¢,
X+C = y+cC

The presence of extra molecules (represented by ¢) cannot prevent
reactions from occurring. .
C=0@0

X+C V+C
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Notation

* For vectors x,y € N¢
ex=vy: x(i)<sy(i)forl1<i<d (1,2) = (1,2)
eX<y: X=yandxzy (1,2) < (1,4)
ex<y: X(i)<y(ijforl<i<d (1,2) < (3,4)



Notation

* For vectors x,y € N¢

ex=vy: x(i)<sy(i)forl1<i<d

*X<y: X=Syandxzy

ex<y: X(i)<y(i)forl<i<d

fx 2 0, x is nonnegative.
fx >0, xis semipositive.

f x>0, xis positive.

(1,2) = (1,2)
(1,2) < (1,4)
(1,2) < (3,4)
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Execution bounded CRNSs

e Definition: A CRN Cis execution bounded from state x if all executions
starting at x are finite.
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Execution bounded CRNSs

e Definition: A CRN Cis execution bounded from state x if all executions
starting at x are finite.

* Why prefer execution bounded CRNs?

* Wet lab implementations of CRNs use up “fuel” to execute reactions; execution
bounded CRNs limit the amount of fuel needed

» Easier to reason about: as long as reactions keep happening, they make “progress”
towards reaching a final state.



Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.
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Linear potential function

* Definition: ®: N9 R, is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.
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Linear potential function

* Definition: ®: N9 R, is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

* Example:
* A+A - B+C
* B+B- A
* Alinear potential function ®(x) = v,-x(A) + vg-X(B) + v~Xx(C) must satisfy
2v, >vgtv.and 2vgp >v, ... Vv,=v,=1 and v.=0 works.

* A coefficient v assigns a nhonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

* By clearing denominators, we can assume each v. is an integer, so each
reaction decreases @© by at least 1.



Linear potential functions characterize
execution bounded CRNSs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.




Linear potential functions characterize
execution bounded CRNSs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

Forward direction is easy: Since each reaction reduces @ by at least 1, at most
d(x) reactions are possible from any state x.



Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u > 0 such that Mu = 0. [David Gale. The Theory of Linear Economic
2. Thereis a vector v > 0 such that vM < 0. Models. University of Chicago press, 1960.]
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Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u > 0 such that Mu = 0. [David Gale. The Theory of Linear Economic
2. Thereis a vector v > 0 such that vM < 0. Models. University of Chicago press, 1960.]

2. Or it doesn’t, and then some hyperplane (dashed line)

1. Either the cone of M’s column vectors _
separates that cone from the nonnegative orthant:

intersects the nonnegative orthant:

X u=(2,1,0) v=(1,3)
: Mu=2x,+x, I=F vM<0=
> A (Vi) v-x;<0
=

X3 M - [Xl x2 X3] X3 X,
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it has a linear potential function

Let M be the stoichiometric matrix, e.g. al E A
a: A-B+2C M = 1 _9 B
B: 3B+C->A+B+C 2 0/C
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vector Mu = (-1,0,4) indicates how species counts change.
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Let M be the stoichiometric matrix, e.g. a B

. ASB+2C —1 1)\A
B: 3B+C—-A+B+C 2 0/C
If u=1(2,1) is a vector indicating “do reaction o twice and reaction B once”, then the
vector Mu = (-1,0,4) indicates how species counts change.

Claim: There is no u > 0 such that Mu = 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from xtoy = x + Mu,
where y 2 x, i.e., a self-covering execution, not possible since the CRN is execution

bounded from x.




CRN is execution bounded from every state =
it has a linear potential function

Let M be the stoichiometric matrix, e.g. a B
o: A-B+2C

-1 1)\A
M= (1 —Z)B
B: 3B+C—-A+B+C 2 0/C

If u=1(2,1) is a vector indicating “do reaction o twice and reaction B once”, then the
vector Mu = (-1,0,4) indicates how species counts change.

Claim: There is no u > 0 such that Mu = 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from xtoy = x + Mu,
where y 2 x, i.e., a self-covering execution, not possible since the CRN is execution
bounded from x.

Then there is a vector v 2 0 such that vM < 0. Let v be the coefficients of a linear
function ®(x) = v-x. Then vMM < 0 means each reaction decreases @: it is a linear
potential function. QED
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® Formal definition of chemical reaction networks
® Execution bounded chemical reaction networks and linear potential functions

® What is “computation” with chemical reactions?
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Defining stable computation

o is stable

i m X reactions (0 m

initial any reachable “correct”
state state

(assuming finite set of reachable states) equivalent to:
The system will reach the correct output with probability 1.

OI

correct
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Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19



Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

* input specification: designate subset X € A as “input” species
* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19



Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

* input specification: designate subset X € A as “input” species
* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19



Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b
* input specification: designate subset X € A as “input” species

* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
* Y(o) =Y (state o outputs “yes”) if vote is unanimously yes: o(S5)>0 & SEA,
* Y(0) = N (state o outputs “no”) if vote is unanimously no: 0(S5)>0 & SEA,
* state o has undefined output otherwise: (3 SEA,, S'€A,) 0(5)>0 and o(5’)>0

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19
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 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

* input specification: designate subset X € A as “input” species
* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
* Y(o) =Y (state o outputs “yes”) if vote is unanimously yes: o(S5)>0 & SEA,
* Y(0) = N (state o outputs “no”) if vote is unanimously no: 0(S5)>0 & SEA,
* state o has undefined output otherwise: (3 SEA,, S'€A,) 0(5)>0 and o(5’)>0

e 0 is stable if (o) = P(0’) for all o’ reachable from o

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
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Detection: ¢(a,b) =Y &S b >0
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Examples of predicate computation

Parity: ¢(a)=Y & ais odd
input SpECiES AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

er+Ao_’ Ae+ae
Ae+Ae - Ae+ae
LA0+Ae - Ao+ao

two leaders XOR their parity,
and one becomes follower

~\

Ao+ae - Ao+ao
Ata, —» Ata,

leader overwrites
bit of follower

[ Not execution bounded! }
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Limits of stable computation

Theorem: ¢: Nk {Y,N} is stably computable by a CRN if and only if ¢ is semilinear.

semilinear = Boolean combination of threshold and mod predicates:

take weighted sum s = w;-a; + ... w,-a, of inputs and ask if
s > constant c?

s = ¢ mod m for constants ¢,m?

a>b? a=b? a is odd? a>17? a>1 and b is odd?

NOT a=b?? aisapowerof2? aisprime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]
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Outline

® Formal definition of chemical reaction networks
® Execution bounded chemical reaction networks and linear potential functions
® What is “computation” with chemical reactions?

® Limitations of computation with execution bounded chemical reaction networks
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Eventually constant predicates

Definition: A ¢: N¥ - {Y,N} is eventually constant if, for some c € N,
¢(x) is constant on all inputs x = (c,c,...,c).
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Eventually constant predicates

Definition: A ¢: N¥ - {Y,N} is eventually constant if, for some c € N,
¢(x) is constant on all inputs x = (c,c,...,c).

Example of eventually constant predicate:
a<2andbisodd, orb<3anda+bis odd

Non-eventually constant predicates: y—

. . > ? 8-
ma J.orlty ga_b. ) 10 ® =
parlty (a is Odd?) 6 1 all have output “no”
. B b5‘. @
equality (a=b?) 41
and most anything interesting. 2:': ® © o
11900 @O O O
o1 @ @ @ @

llllllllll

O 1 2 3 4 5 6 7 8 9
a
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Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

0o - 00
A @

{A} +1{A} s; +1{A}
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Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

o _ OO 00
o o

{A} +{A} S; + 1A} S,

=
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Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.
Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

Add 1 A. The state s,+{A} is reachable from {3A}, so the CRN can reach from there to a stable “yes” state s,.
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o 00 o
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Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.
Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

Add 1 A. The state s,+{A} is reachable from {3A}, so the CRN can reach from there to a stable “yes” state s,.

00_ 00 _ 000 _ 0O
o 00 o 00

{A} +{A} s, +{A} s, +{A} S3
+ {A} + {A}
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Limitations of execution bounded CRNs

* Since CRN is execution bounded from all states, it has a linear potential
function O.

* Adding {A} to s; increases @ by the constant O({A}).
* To get from s+{A}tos

i+1

since lim |s;| = oo (nhoncollapsing), we must
l— 00

execute increasingly more reactions as i » o, which all decrease .
* Key reason: all species vote, so all molecules in s, must be removed to switch the output.

* After some i, the net change in @, in going from s, tos+{A}tos,,,, is
hegative.

* Since @ is nonnegative, at some point we cannot continue. QED
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Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:
* Not all species are required to vote, and

* We can start with an “initial leader”, e.g., to compute majority (a=b?), start in initial
state {1 L, a A, b B}... these are execution bounded from such states, but not from
states with multiple leaders.

e Orif all species are required to vote, but the CRN can be collapsing.

 Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded
(and leader-driven) CRNs can stably compute all semilinear predicates in expected time

O(polylog(n)).

* Conjecture: Any execution bounded CRN takes at least Q(n) expected time to stably
compute any non-eventually-constant predicate.




Thank youl!

Questions?
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