The computational power of execution
bounded chemical reaction networks

David Doty, Ben Heckmann

May 2024
Seminar on the Mathematics of Reaction Networks

UCDAVIS

v/ COMPUTER SCIENCE

Acknowledgments

Ben Heckmann Matthias Koppe
Undergraduate student Professor
Technische Universitat Miinchen, UC Davis UC Davis

For teaching us about
“Theorems of the Alternative”

2

Chemical reaction networks

Chemical reaction networks

reactant(s) R_-P .+ P2 product(s)

Chemical reaction networks

reactant(s) R_-P .+ P2 product(s)

monomers I\ﬂ1+l\ﬂ2 =D dimer

Chemical reaction networks

reactant(s) R_-P .+ P2 product(s)
monomers I\ﬂ1+l\ﬂ2 =D dimer

catalyst C+X - C+Y

Chemical reaction networks

reactant(s) R_-P .+ P2 product(s)
monomers I\ﬂ1+l\ﬂ2 D dimer
catalyst C+X - C+Y

Traditionally a descriptive modeling language...
Let’s instead use it as a prescriptive programming language

What computation is possible and what is not?

Outline

® Formal definition of chemical reaction networks

® Execution bounded chemical reaction networks and linear potential functions
® What is “computation” with chemical reactions?

® Limitations of computation with execution bounded chemical reaction networks

Chemical Reaction Network (CRN)

® finite set of d species A={A,B,C, D, ... }

® finite set of reactions: e.qg. A+B - A+C

C - A+A
C+B-C

® state XENY: molecular counts of each species

What is possible:
Example execution (reaction sequence)

o A+B - A+C A B C
B: C-A+A x=(2, 2, 0)

What is possible:
Example execution (reaction sequence)

Q: A+B)- A+C A B C
B: C- A+A x=(2, 2, 0)

"~

What is possible:
Example execution (reaction sequence)

a: A+B A B C
B: C- A+A x=(2, 2, 0)

o
J
A 2, 1, 1

What is possible:
Example execution (reaction sequence)

a: A+B - A+C A B C
B: C} A+A x=(2, 2, 0)
a |

P ol
s

®

What is possible:
Example execution (reaction sequence)

o A+B - A+C A B C

B: C{A+A x=(2, 2, 0)
a |

o © o1

Bl N\
(4, 1, 0) -

What is possible:
Example execution (reaction sequence)

a: A+BJ] A+C A B C
B: C— A+A x=(2, 2, 0)
a |
P o5
pl @
. (4, 1, 0)

What is possible:
Example execution (reaction sequence)

a: A+B A B C
B: C- A+A x=(2, 2, 0)
a |
L S
pl Y
. (4’ 1’ O) cee
o |

(4, 0, 1)

Key property of reachability: additivity

If we can reach from state x to y, written x = vy, then for all ¢ € N¢,
X+C = y+cC

The presence of extra molecules (represented by ¢) cannot prevent
reactions from occurring.

Key property of reachability: additivity

If we can reach from state x to y, written x = vy, then for all ¢ € N¢,
X+C = y+cC

The presence of extra molecules (represented by ¢) cannot prevent
reactions from occurring.

X

@0 a2, 0@ B ee@ a O
p— p—

“0 ¢ e

Key property of reachability: additivity

If we can reach from state x to y, written x = vy, then for all ¢ € N¢,
X+C = y+cC

The presence of extra molecules (represented by ¢) cannot prevent
reactions from occurring. .
C=0@0

X

@0 a2, 0@ B ee@ a O
p— p—

“0 ¢ e

Key property of reachability: additivity

If we can reach from state x to y, written x = vy, then for all ¢ € N¢,
X+C = y+cC

The presence of extra molecules (represented by ¢) cannot prevent
reactions from occurring. .
C=0@0

X+C V+C

@0 a2, 0@ B ee@ a O
— — ‘
L ¢ e @

OF _ OX O _ O _

Notation

* For vectors x,y € N¢
ex=vy: x(i)<sy(i)forl1<i<d (1,2) = (1,2)
eX<y: X=yandxzy (1,2) < (1,4)
ex<y: X(i)<y(ijforl<i<d (1,2) < (3,4)

Notation

* For vectors x,y € N¢

ex=vy: x(i)<sy(i)forl1<i<d

*X<y: X=Syandxzy

ex<y: X(i)<y(i)forl<i<d

fx 2 0, x is nonnegative.
fx >0, xis semipositive.

f x>0, xis positive.

(1,2) = (1,2)
(1,2) < (1,4)
(1,2) < (3,4)

Outline

® Formal definition of chemical reaction networks

® Execution bounded chemical reaction networks and linear potential functions

® What is “computation” with chemical reactions?

® Limitations of computation with execution bounded chemical reaction networks

10

Execution bounded CRNSs

e Definition: A CRN Cis execution bounded from state x if all executions
starting at x are finite.

11

Execution bounded CRNSs

e Definition: A CRN Cis execution bounded from state x if all executions
starting at x are finite.

* Why prefer execution bounded CRNs?

* Wet lab implementations of CRNs use up “fuel” to execute reactions; execution
bounded CRNs limit the amount of fuel needed

» Easier to reason about: as long as reactions keep happening, they make “progress”
towards reaching a final state.

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

O B N W H~» U1 O N 0 ©

o 1 2 3 4 5 6 7 8 9

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

O B N W H~» U1 O N 0 ©

o 1 2 3 4 5 6 7 8 9

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

O B N W H~» U1 O N 0 ©

o 1 2 3 4 5 6 7 8 9

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

o 1 2 3 4 5 6 7 8 9

O B N W H~» U1 O N 0 ©

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

o 1 2 3 4 5 6 7 8 9

O B N W H~» U1 O N 0 ©

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

o 1 2 3 4 5 6 7 8 9

O B N W H~» U1 O N 0 ©

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

o 1 2 3 4 5 6 7 8 9

O B N W H~» U1 O N 0 ©

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

o 1 2 3 4 5 6 7 8 9

O B N W H~ U1 O N O

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

O
by
X®
QO

o 1 2 3 4 5 6 7 8 9

O B N W H~ U1 O N O

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.

8
7
(easy to show by induction on dimension d) So if C has an 6 O
infinite execution, it is self-covering. i @ ka
: 2
<: If an execution is self-covering, by additivity we can 2 x.©
repeat indefinitely the reactions leading from x; to x,, ; I @

so Cis not execution bounded from x,,. 0 1 2 3 4 5 6 7 8 9

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

@ R
<: If an execution is self-covering, by additivity we can xi‘
repeat indefinitely the reactions leading from x; to x,, @

so Cis not execution bounded from x,,. 0 1 2 3 4 5 6 7 8 9

O B N W H~ U1 O N O

Xo
e©
O

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

@ R
<: If an execution is self-covering, by additivity we can xi‘
repeat indefinitely the reactions leading from x; to x,, @

so Cis not execution bounded from x,,. 0 1 2 3 4 5 6 7 8 9

O B N W H~ U1 O N O

X X,

0
0: — 0®

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

@ R
<: If an execution is self-covering, by additivity we can xi‘
repeat indefinitely the reactions leading from x; to x,, @

so Cis not execution bounded from x,,. 0 1 2 3 4 5 6 7 8 9

O B N W H~ U1 O N O

X X, X,

0
a

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

<: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from x; to x,,
so Cis not execution bounded from x,,. 01 2 3 456 7 8 9

X®

O B N W H» U1 O N
SO

>

0: — 00 &, 0'% °®

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

<: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from x; to x,,
so Cis not execution bounded from x,,. 01 2 3 456 7 8 9

X®

O B N W H» U1 O N
SO

>

‘: 00 %0k g6 NPy JNPY
O O 00O

12

Self-covering executions

Easy Lemma: CRN C is not execution bounded from x, if and only if there is an
execution (X, X4, X,, ...) that is self-covering: x. = x, for some i < k.

Vo]

=: Dickson’s Lemma: If (x,, X, X,, ...) is any infinite
sequence of vectors from N¢, then for some i< k, x; = x,.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

<: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from x; to x,,
so Cis not execution bounded from x,,. 01 2 3 456 7 8 9

X®

O B N W H» U1 O N
SO

Xo X1 X, X; = X,

0® _. g0 & ,0&.0 %L e® B 00 L o0 o ..
O O @ 00 3o QSQO

12

Linear potential function

* Definition: ®: N9 R, is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

13

Linear potential function

* Definition: ®: N9 R, is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

* Example:
e A+A - B+C
* B+B- A

* Alinear potential function ®(x) = v,-x(A) + vg-X(B) + v~Xx(C) must satisfy
2v, >vgtv.and 2vgp >v, ... Vv,=v,=1 and v.=0 works.

Linear potential function

* Definition: ®: N9 R, is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

* Example:
* A+A - B+C
* B+B- A
* Alinear potential function ®(x) = v,-x(A) + vg-X(B) + v~Xx(C) must satisfy
2v, >vgtv.and 2vgp >v, ... Vv,=v,=1 and v.=0 works.

* A coefficient v assigns a nhonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

Linear potential function

* Definition: ®: N9 R, is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

* Example:
* A+A - B+C
* B+B- A
* Alinear potential function ®(x) = v,-x(A) + vg-X(B) + v~Xx(C) must satisfy
2v, >vgtv.and 2vgp >v, ... Vv,=v,=1 and v.=0 works.

* A coefficient v assigns a nhonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

* By clearing denominators, we can assume each v. is an integer, so each
reaction decreases @© by at least 1.

Linear potential functions characterize
execution bounded CRNSs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

Linear potential functions characterize
execution bounded CRNSs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

Forward direction is easy: Since each reaction reduces @ by at least 1, at most
d(x) reactions are possible from any state x.

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u > 0 such that Mu = 0. [David Gale. The Theory of Linear Economic
2. Thereis a vector v > 0 such that vM < 0. Models. University of Chicago press, 1960.]

15

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u > 0 such that Mu = 0. [David Gale. The Theory of Linear Economic
2. Thereis a vector v > 0 such that vM < 0. Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

X

1
‘,;'

X3 M = [x; X, X;]

15

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u > 0 such that Mu = 0. [David Gale. The Theory of Linear Economic
2. Thereis a vector v > 0 such that vM < 0. Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

u=(2,1,0)

X,
Mu = 2x,+x,

X,

X3 M = [x; X, X;]

15

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u > 0 such that Mu = 0. [David Gale. The Theory of Linear Economic
2. Thereis a vector v > 0 such that vM < 0. Models. University of Chicago press, 1960.]

2. Or it doesn’t, and then some hyperplane (dashed line)

1. Either the cone of M’s column vectors _
separates that cone from the nonnegative orthant:

intersects the nonnegative orthant:

X u=(2,1,0) v=(1,3)
: Mu=2x,+x, I=F vM<0=
> A (Vi) v-x;<0
=

X3 M - [Xl x2 X3] X3 X,

15

CRN is execution bounded from every state =
it has a linear potential function

Let M be the stoichiometric matrix, e.g. al E A
a: A-B+2C M = 1 _9 B
B: 3B+C->A+B+C 2 0/C

CRN is execution bounded from every state =
it has a linear potential function

Let M be the stoichiometric matrix, e.g. al E A
a: A-B+2C M = 1 _9 B
B: 3B+C->A+B+C 2 0/C

If u=1(2,1) is a vector indicating “do reaction o twice and reaction B once”, then the
vector Mu = (-1,0,4) indicates how species counts change.

CRN is execution bounded from every state =
it has a linear potential function

Let M be the stoichiometric matrix, e.g. a B

. ASB+2C —1 1)\A
B: 3B+C—-A+B+C 2 0/C
If u=1(2,1) is a vector indicating “do reaction o twice and reaction B once”, then the
vector Mu = (-1,0,4) indicates how species counts change.

Claim: There is no u > 0 such that Mu = 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from xtoy = x + Mu,
where y 2 x, i.e., a self-covering execution, not possible since the CRN is execution

bounded from x.

CRN is execution bounded from every state =
it has a linear potential function

Let M be the stoichiometric matrix, e.g. a B
o: A-B+2C

-1 1)\A
M= (1 —Z)B
B: 3B+C—-A+B+C 2 0/C

If u=1(2,1) is a vector indicating “do reaction o twice and reaction B once”, then the
vector Mu = (-1,0,4) indicates how species counts change.

Claim: There is no u > 0 such that Mu = 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from xtoy = x + Mu,
where y 2 x, i.e., a self-covering execution, not possible since the CRN is execution
bounded from x.

Then there is a vector v 2 0 such that vM < 0. Let v be the coefficients of a linear
function ®(x) = v-x. Then vMM < 0 means each reaction decreases @: it is a linear
potential function. QED

Outline

® Formal definition of chemical reaction networks
® Execution bounded chemical reaction networks and linear potential functions

® What is “computation” with chemical reactions?

® Limitations of computation with execution bounded chemical reaction networks

17

Defining stable computation

|
initial
state

Defining stable computation

|4
i) X

initial any reachable
state state

18

Defining stable computation

\/ =
i mmmm) x EEEE) O

initial any reachable

state state output

“correct”

18

Defining stable computation

o is stable

i mmm) x Emmm) o mmmm) O

“correct”
output

initial any reachable
state state

correct
output

18

Defining stable computation

o is stable

i m X reactions (0 m

initial any reachable “correct”
state state

(assuming finite set of reachable states) equivalent to:
The system will reach the correct output with probability 1.

OI

correct

18

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

* input specification: designate subset X € A as “input” species
* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

* input specification: designate subset X € A as “input” species
* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b
* input specification: designate subset X € A as “input” species

* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
* Y(o) =Y (state o outputs “yes”) if vote is unanimously yes: o(S5)>0 & SEA,
* Y(0) = N (state o outputs “no”) if vote is unanimously no: 0(S5)>0 & SEA,
* state o has undefined output otherwise: (3 SEA,, S'€A,) 0(5)>0 and o(5’)>0

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: Nk {YN}, e.g., o(a,b)=Y & a>b

* input specification: designate subset X € A as “input” species
* in valid initial states all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
* Y(o) =Y (state o outputs “yes”) if vote is unanimously yes: o(S5)>0 & SEA,
* Y(0) = N (state o outputs “no”) if vote is unanimously no: 0(S5)>0 & SEA,
* state o has undefined output otherwise: (3 SEA,, S'€A,) 0(5)>0 and o(5’)>0

e 0 is stable if (o) = P(0’) for all o’ reachable from o

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

19

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0

20

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0
B+A — B+B

A votes no; B votes yes

20

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0
B+A — B+B

A votes no; B votes yes

OO0 9O
9@ A

20

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0
B+A — B+B

A votes no; B votes yes

an@:

20

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0
B+A — B+B

A votes no; B votes yes

OO0 9O
99 A

20

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0
B+A — B+B

A votes no; B votes yes

fo:

20

Examples of predicate computation

Detection: ¢(a,b) =Y &S b >0
B+A — B+B

A votes no; B votes yes

00 ¢©
99 B

20

Examples of predicate computation

Parity: ¢(a)=Y & ais odd

Examples of predicate computation

Parity: ¢(a)=Y © ais odd
input species AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

Examples of predicate computation

Parity: ¢(a)=Y & ais odd
input SpECiES AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

r 1
A0+Ao - Ae+ae

A+A, - A+a, two leaders XOR their parity,
and one becomes follower
LA0+Ae - Ao+ao

21

Examples of predicate computation

Parity: ¢(a)=Y & ais odd
input SpECiES AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

r “
A0+Ao - Ae+ae

A+A, - A+a, two leaders XOR their parity,
and one becomes follower
LA0+Ae - Ao+ao

Ao+ae - Ao+ao leader overwrites
Ae+ao —> Ae+(Je bit of follower

\ J

Examples of predicate computation

Parity: ¢(a)=Y & ais odd
input SpECiES AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

er+Ao_’ Ae+ae
Ae+Ae - Ae+ae
LA0+Ae - Ao+ao

two leaders XOR their parity,
and one becomes follower

~\

Ao+ae - Ao+ao
Ata, —» Ata,

leader overwrites
bit of follower

[Not execution bounded! }

21

Limits of stable computation

Theorem: ¢: Nk {Y,N} is stably computable by a CRN if and only if ¢ is semilinear.

semilinear = Boolean combination of threshold and mod predicates:

take weighted sum s = w;-a; + ... w,-a, of inputs and ask if
s > constant c?

s = ¢ mod m for constants ¢,m?

a>b? a=b? a is odd? a>17? a>1 and b is odd?

NOT a=b?? aisapowerof2? aisprime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

22

Outline

® Formal definition of chemical reaction networks
® Execution bounded chemical reaction networks and linear potential functions
® What is “computation” with chemical reactions?

® Limitations of computation with execution bounded chemical reaction networks

23

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.

which computes parity but always ends up with a single voter.

Rules out CRNs such as

A0+Ao_’ Ae
A+A, - A,
AFA, - A,

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.
Rules out CRNs such as
A0+Ao - Ae

A+A, - A,
AFA, - A,

which computes parity but always ends up with a single voter.

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.
A0+Ao - Ae

o O
Ae+Ae - Ae
A+A, > A 0

which computes parity but always ends up with a single voter.

Rules out CRNs such as

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

A0+Ao_’ Ae
A+A, - A,
AtA, - A,

which computes parity but always ends up with a single voter.

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

A0+Ao_’ Ae
A+A, - A,

A0+Ae — Ao @

which computes parity but always ends up with a single voter.

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

A0+Ao_’ Ae
A+A, - A,
AtA, - A,

which computes parity but always ends up with a single voter.

24

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim s(n) = oo, where s(n) = size

n—>00

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

A0+Ao_’ Ae
A+A, - A,

A0+Ae — Ao @

which computes parity but always ends up with a single voter.

24

Eventually constant predicates

Definition: A ¢: N¥ - {Y,N} is eventually constant if, for some c € N,
¢(x) is constant on all inputs x = (c,c,...,c).

25

Eventually constant predicates

Definition: A ¢: N¥ - {Y,N} is eventually constant if, for some c € N,
¢(x) is constant on all inputs x = (c,c,...,c).

Example of eventually constant predicate:
a<2andbisodd, orb<3anda+bis odd

Non-eventually constant predicates: y—

. . > ? 8-
ma J.orlty ga_b.) 10 ® =
parlty (a is Odd?) 6 1 all have output “no”
. B b5‘. @
equality (a=b?) 41
and most anything interesting. 2:': ® © o
11900 @O O O
o1 @ @ @ @

llllllllll

O 1 2 3 4 5 6 7 8 9
a

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

1. Start with {A}, CRN can reach to stable “yes” state s,.

{A}

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

1. Start with {A}, CRN can reach to stable “yes” state s,.

(A =

{A} S

1.
2.

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

0o - 00
A @

{A} +1{A} s; +1{A}

26

1.
2.

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

o _ OO 00
o o

{A} +{A} S; + 1A} S,

=

26

W e

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.
Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

Add 1 A. The state s,+{A} is reachable from {3A}, so the CRN can reach from there to a stable “yes” state s,.

o0 - 00 _ 000
o 00 o

{A} + {A} s, + {A} s, + {A}
+{A} +{A}

26

W e

Limitations of execution bounded CRNs

Theorem: If a CRN stably computing ¢ is noncollapsing and execution bounded
from every input state, then ¢ is eventually constant.

Proof: complex.
Proof that such CRNs cannot compute parity (a is odd?):

Start with {A}, CRN can reach to stable “yes” state s,.
Add 1 A. The state s,+{A} is reachable from {2A}, so the CRN can reach from there to a stable “no” state s,

Add 1 A. The state s,+{A} is reachable from {3A}, so the CRN can reach from there to a stable “yes” state s,.

00_ 00 _ 000 _ 0O
o 00 o 00

{A} +{A} s, +{A} s, +{A} S3
+ {A} + {A}

26

Limitations of execution bounded CRNs

* Since CRN is execution bounded from all states, it has a linear potential
function O.

Limitations of execution bounded CRNs

* Since CRN is execution bounded from all states, it has a linear potential
function O.

* Adding {A} to s; increases @ by the constant O({A}).

Limitations of execution bounded CRNs

* Since CRN is execution bounded from all states, it has a linear potential
function O.

* Adding {A} to s; increases @ by the constant O({A}).
* To get from s+{A}tos

w1, Since lim |s;| = oo (noncollapsing), we must
l— 00

execute increasingly more reactions as i » o, which all decrease .
* Key reason: all species vote, so all molecules in s, must be removed to switch the output.

Limitations of execution bounded CRNs

* Since CRN is execution bounded from all states, it has a linear potential
function O.

* Adding {A} to s; increases @ by the constant O({A}).
* To get from s+{A}tos

i+1

since lim |s;| = oo (nhoncollapsing), we must
l— 00

execute increasingly more reactions as i » o, which all decrease .
* Key reason: all species vote, so all molecules in s, must be removed to switch the output.

* After some i, the net change in @, in going from s, tos+{A}tos,,,, is
hegative.

Limitations of execution bounded CRNs

* Since CRN is execution bounded from all states, it has a linear potential
function O.

* Adding {A} to s; increases @ by the constant O({A}).
* To get from s+{A}tos

i+1

since lim |s;| = oo (nhoncollapsing), we must
l— 00

execute increasingly more reactions as i » o, which all decrease .
* Key reason: all species vote, so all molecules in s, must be removed to switch the output.

* After some i, the net change in @, in going from s, tos+{A}tos,,,, is
hegative.

* Since @ is nonnegative, at some point we cannot continue. QED

Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:
* Not all species are required to vote, and

Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

* Not all species are required to vote, and

* We can start with an “initial leader”, e.g., to compute majority (a=b?), start in initial
state {1 L, a A, b B}... these are execution bounded from such states, but not from

states with multiple leaders.

Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

* Not all species are required to vote, and

* We can start with an “initial leader”, e.g., to compute majority (a=b?), start in initial
state {1 L, a A, b B}... these are execution bounded from such states, but not from

states with multiple leaders.
e Orif all species are required to vote, but the CRN can be collapsing.

Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:
* Not all species are required to vote, and

* We can start with an “initial leader”, e.g., to compute majority (a=b?), start in initial
state {1 L, a A, b B}... these are execution bounded from such states, but not from
states with multiple leaders.

e Orif all species are required to vote, but the CRN can be collapsing.
 Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded
(and leader-driven) CRNs can stably compute all semilinear predicates in expected time
O(polylog(n)).

Are execution bounded CRNs good for any
computation?

* Yes! Execution bounded CRNs can stably compute all semilinear predicates if:
* Not all species are required to vote, and

* We can start with an “initial leader”, e.g., to compute majority (a=b?), start in initial
state {1 L, a A, b B}... these are execution bounded from such states, but not from
states with multiple leaders.

e Orif all species are required to vote, but the CRN can be collapsing.

 Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded
(and leader-driven) CRNs can stably compute all semilinear predicates in expected time

O(polylog(n)).

* Conjecture: Any execution bounded CRN takes at least Q(n) expected time to stably
compute any non-eventually-constant predicate.

Thank youl!

Questions?

	Slide 1: The computational power of execution bounded chemical reaction networks
	Slide 2: Acknowledgments
	Slide 3: Chemical reaction networks
	Slide 4: Chemical reaction networks
	Slide 5: Chemical reaction networks
	Slide 6: Chemical reaction networks
	Slide 7: Chemical reaction networks
	Slide 8: Theoretical computer science approach
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Key property of reachability: additivity
	Slide 19: Key property of reachability: additivity
	Slide 20: Key property of reachability: additivity
	Slide 21: Key property of reachability: additivity
	Slide 22: Notation
	Slide 23: Notation
	Slide 24
	Slide 25: Execution bounded CRNs
	Slide 26: Execution bounded CRNs
	Slide 27: Self-covering executions
	Slide 28: Self-covering executions
	Slide 29: Self-covering executions
	Slide 30: Self-covering executions
	Slide 31: Self-covering executions
	Slide 32: Self-covering executions
	Slide 33: Self-covering executions
	Slide 34: Self-covering executions
	Slide 35: Self-covering executions
	Slide 36: Self-covering executions
	Slide 37: Self-covering executions
	Slide 38: Self-covering executions
	Slide 39: Self-covering executions
	Slide 40: Self-covering executions
	Slide 41: Self-covering executions
	Slide 42: Self-covering executions
	Slide 43: Self-covering executions
	Slide 44: Linear potential function
	Slide 45: Linear potential function
	Slide 46: Linear potential function
	Slide 47: Linear potential function
	Slide 48: Linear potential functions characterize execution bounded CRNs
	Slide 49: Linear potential functions characterize execution bounded CRNs
	Slide 50: Key technical tool for reverse direction
	Slide 51: Key technical tool for reverse direction
	Slide 52: Key technical tool for reverse direction
	Slide 53: Key technical tool for reverse direction
	Slide 54: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 55: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 56: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 57: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 58
	Slide 59: Defining stable computation
	Slide 60: Defining stable computation
	Slide 61: Defining stable computation
	Slide 62: Defining stable computation
	Slide 63: Defining stable computation
	Slide 64: Definition of predicate (decision problem) computation
	Slide 65: Definition of predicate (decision problem) computation
	Slide 66: Definition of predicate (decision problem) computation
	Slide 67: Definition of predicate (decision problem) computation
	Slide 68: Definition of predicate (decision problem) computation
	Slide 69: Examples of predicate computation
	Slide 70: Examples of predicate computation
	Slide 71: Examples of predicate computation
	Slide 72: Examples of predicate computation
	Slide 73: Examples of predicate computation
	Slide 74: Examples of predicate computation
	Slide 75: Examples of predicate computation
	Slide 76: Examples of predicate computation
	Slide 77: Examples of predicate computation
	Slide 78: Examples of predicate computation
	Slide 79: Examples of predicate computation
	Slide 80: Examples of predicate computation
	Slide 81: Limits of stable computation
	Slide 82
	Slide 83: Noncollapsing CRNs
	Slide 84: Noncollapsing CRNs
	Slide 85: Noncollapsing CRNs
	Slide 86: Noncollapsing CRNs
	Slide 87: Noncollapsing CRNs
	Slide 88: Noncollapsing CRNs
	Slide 89: Noncollapsing CRNs
	Slide 90: Noncollapsing CRNs
	Slide 91: Eventually constant predicates
	Slide 92: Eventually constant predicates
	Slide 93: Limitations of execution bounded CRNs
	Slide 94: Limitations of execution bounded CRNs
	Slide 95: Limitations of execution bounded CRNs
	Slide 96: Limitations of execution bounded CRNs
	Slide 97: Limitations of execution bounded CRNs
	Slide 98: Limitations of execution bounded CRNs
	Slide 99: Limitations of execution bounded CRNs
	Slide 100: Limitations of execution bounded CRNs
	Slide 101: Limitations of execution bounded CRNs
	Slide 102: Limitations of execution bounded CRNs
	Slide 103: Limitations of execution bounded CRNs
	Slide 104: Limitations of execution bounded CRNs
	Slide 105: Limitations of execution bounded CRNs
	Slide 106: Are execution bounded CRNs good for any computation?
	Slide 107: Are execution bounded CRNs good for any computation?
	Slide 108: Are execution bounded CRNs good for any computation?
	Slide 109: Are execution bounded CRNs good for any computation?
	Slide 110: Are execution bounded CRNs good for any computation?
	Slide 111: Are execution bounded CRNs good for any computation?
	Slide 112: Thank you!

