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Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language… 
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst



Theoretical computer science approach
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What computation is possible and what is not?
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks



Chemical Reaction Network (CRN)

• finite set of reactions:   e.g. 

• finite set of d species Λ = { A, B, C, D, ... }

• state x∈ℕd: molecular counts of each species  
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What is possible: 
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α
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(4, 1, 0)

α
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Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd, 
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent 
reactions from occurring.
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Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd, 
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent 
reactions from occurring.
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Notation

• For vectors x,y ∈ ℕd 

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)
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Notation

• For vectors x,y ∈ ℕd 

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)

• If x ≧ 0, x is nonnegative.

• If x ≥ 0, x is semipositive.

• If x > 0, x is positive.
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks



Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions 

starting at x are finite.
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Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions 

starting at x are finite.

• Why prefer execution bounded CRNs?
• Wet lab implementations of CRNs use up “fuel” to execute reactions; execution 

bounded CRNs limit the amount of fuel needed

• Easier to reason about: as long as reactions keep happening, they make “progress” 
towards reaching a final state.
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Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an 
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.
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⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite 
sequence of vectors from ℕd, then for some i < k , xi ≦ xk. 
(easy to show by induction on dimension d) So if C has an 
infinite execution, it is self-covering.
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Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a 
nonnegative linear function of states that every reaction strictly decreases.
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nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy                  
2vA > vB+vC and 2vB > vA  …    vA=vB=1  and  vC=0  works.

• A coefficient vS assigns a nonnegative “mass” to species S, and every reaction 
removes a positive amount of mass from the system.

• By clearing denominators, we can assume each vS is an integer, so each 
reaction decreases Φ by at least 1.
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Linear potential functions characterize 
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution 
bounded from every state.
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Linear potential functions characterize 
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution 
bounded from every state.

Forward direction is easy: Since each reaction reduces Φ by at least 1, at most 
Φ(x) reactions are possible from any state x.

14



Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma): 
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

[David Gale. The Theory of Linear Economic 
Models. University of Chicago press, 1960.]
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Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma): 
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]
x1

x2x3

v = (1,3)
x1

x2

x3

[David Gale. The Theory of Linear Economic 
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors 
intersects the nonnegative orthant:

2. Or it doesn’t, and then some hyperplane (dashed line) 
separates that cone from the nonnegative orthant:

Mu = 2x1+x2

u = (2,1,0)
vM < 0 ⇒ 
(∀i) v∙xi < 0



CRN is execution bounded from every state ⇒ 
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

   α:   A→B + 2C 

   β:   3B + C→A + B + C
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If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the 
vector Mu = (–1,0,4) indicates how species counts change.

Claim: There is no u ≥ 0 such that Mu ≧ 0; suppose otherwise. Then from any 
sufficiently large state x, we can execute reactions in u, reaching from x to y = x + Mu, 
where y ≧ x, i.e., a self-covering execution, not possible since the CRN is execution 
bounded from x.

Then there is a vector v ≥ 0 such that vM < 0. Let v be the coefficients of a linear 
function Φ(x) = v∙x. Then vM < 0 means each reaction decreases Φ: it is a linear 
potential function.      QED
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks



Defining stable computation

18

i
initial
state



Defining stable computation

18

i xreactions

∀

any reachable
state

initial
state



Defining stable computation

18

i x oreactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output



Defining stable computation

18

i x o o’reactions reactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

correct 
output

∀
o is stable
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(assuming finite set of reachable states) equivalent to:
The system will reach the correct output with probability 1.



Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N},     e.g.,    φ(a,b)=Y   ⇔   a≥b
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• ψ(o) = Y (state o outputs “yes”) if vote is unanimously yes: o(S)>0 ⇔ S∈ΛY

• ψ(o) = N (state o outputs “no”) if vote is unanimously no: o(S)>0 ⇔ S∈ΛN

• state o has undefined output otherwise:    (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0 

• o is stable if ψ(o) = ψ(o’) for all o’ reachable from o
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input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

21

two leaders XOR their parity, 
and one becomes follower

leader overwrites 
bit of follower

Ao+Ao→ Ae+ae 
Ae+Ae → Ae+ae 

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

Not execution bounded!



Limits of stable computation

Theorem: φ: ℕk→{Y,N} is stably computable by a CRN if and only if φ is semilinear.

semilinear = Boolean combination of threshold and mod predicates: 

take weighted sum s = w1∙a1 + … wk∙ak of inputs and ask if

s > constant c?

s ≡ c mod m for constants c,m?

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

a>b?        a=b?        a is odd?        a>1?        a>1 and b is odd?

NOT    a=b2?       a is a power of 2?      a is prime?
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks



Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size 

of smallest stable state reachable from any initial state of size n.
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Example of eventually constant predicate: 
a < 2 and b is odd, or b < 3 and a+b is odd

Non-eventually constant predicates: 
majority (a≥b?)
parity (a is odd?)
equality (a=b?)

and most anything interesting.

inputs ≧ (3,3)
all have output “no”



Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded 
from every input state, then φ is eventually constant.
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• Since CRN is execution bounded from all states, it has a linear potential 
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must 

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

• After some i, the net change in Φ, in going from si to si+{A} to si+1, is 
negative.

• Since Φ is nonnegative, at some point we cannot continue.    QED
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• Yes! Execution bounded CRNs can stably compute all semilinear predicates if:

• Not all species are required to vote, and

• We can start with an “initial leader”, e.g., to compute majority (a≥b?), start in initial 
state {1 L, a A, b B}… these are execution bounded from such states, but not from 
states with multiple leaders.

• Or if all species are required to vote, but the CRN can be collapsing.

• Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded 
(and leader-driven) CRNs can stably compute all semilinear predicates in expected time 
O(polylog(n)).

• Conjecture: Any execution bounded CRN takes at least Ω(n) expected time to stably 
compute any non-eventually-constant predicate.
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Thank you!

Questions?
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