The computational power of execution bounded chemical reaction networks

David Doty, Ben Heckmann

May 2024 Seminar on the Mathematics of Reaction Networks

Acknowledgments

Ben Heckmann Undergraduate student Technische Universität München, UC Davis

Matthias Köppe Professor UC Davis

For teaching us about "Theorems of the Alternative"

Chemical reaction networks

Chemical reaction networks reactant(s) $R \rightarrow P_1 + P_2$ product(s)

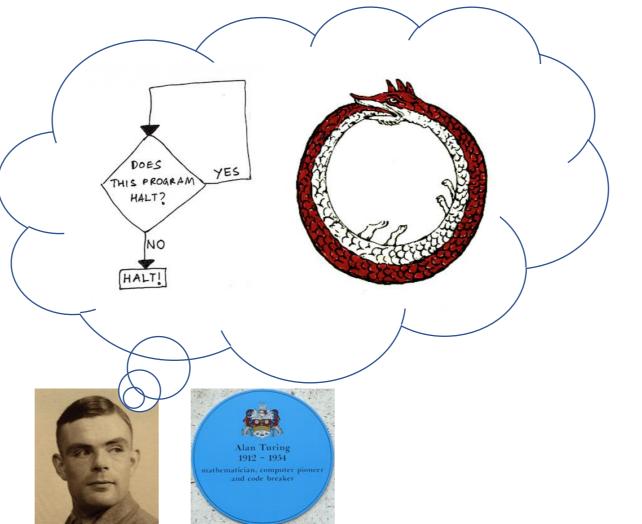
$\begin{array}{ll} \mbox{Chemical reaction networks} \\ \mbox{reactant(s)} & R \rightarrow P_1 + P_2 & \mbox{product(s)} \\ \mbox{monomers} & M_1 + M_2 \rightarrow D & \mbox{dimer} \end{array}$

Chemical reaction networksreactant(s) $R \rightarrow P_1 + P_2$ product(s)monomers $M_1 + M_2 \rightarrow D$ dimercatalyst $C + X \rightarrow C + Y$

Chemical reaction networksreactant(s) $R \rightarrow P_1 + P_2$ product(s)monomers $M_1 + M_2 \rightarrow D$ dimercatalyst $C + X \rightarrow C + Y$

Traditionally a descriptive modeling language... Let's instead use it as a prescriptive programming language

Theoretical computer science approach



What computation is possible and what is not?

Outline

• Formal definition of chemical reaction networks

- Execution bounded chemical reaction networks and linear potential functions
- What is "computation" with chemical reactions?
- Limitations of computation with execution bounded chemical reaction networks

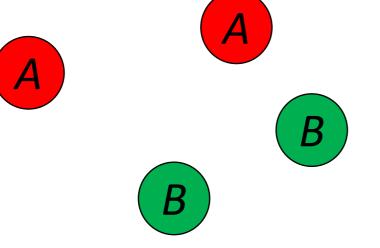
Chemical Reaction Network (CRN)

• finite set of d <u>species</u> $\Lambda = \{A, B, C, D, ...\}$

• finite set of <u>reactions</u>: e.g. $A+B \rightarrow A+C$ $C \rightarrow A+A$ $C+B \rightarrow C$

What is **possible**: Example execution (reaction sequence) A B C $A+B \rightarrow A+C$ α: $C \rightarrow A + A$

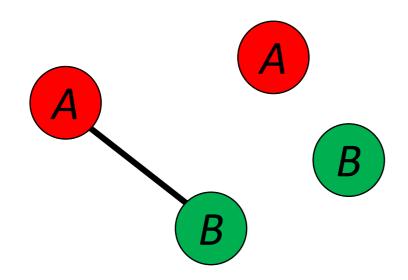
β: A x = (2, 2, 0)



What is **possible**: Example execution (reaction sequence) A = B = C

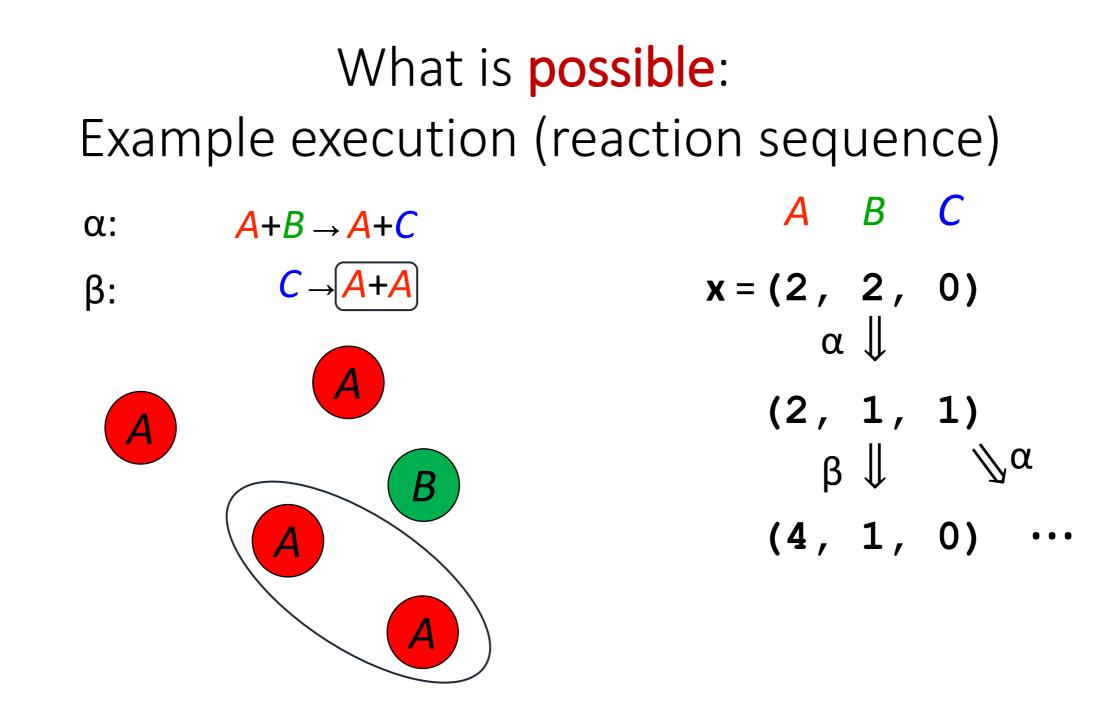
 $\alpha: \qquad \boxed{A+B} \rightarrow A+C$ $\beta: \qquad C \rightarrow A+A$

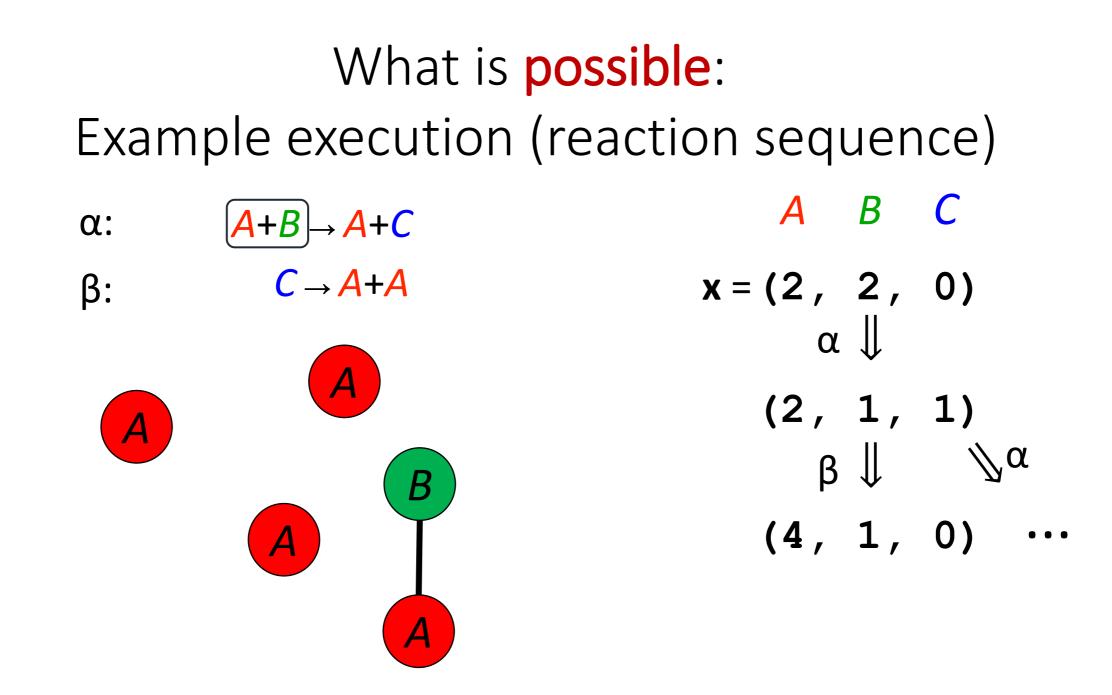
x = (2, 2, 0)

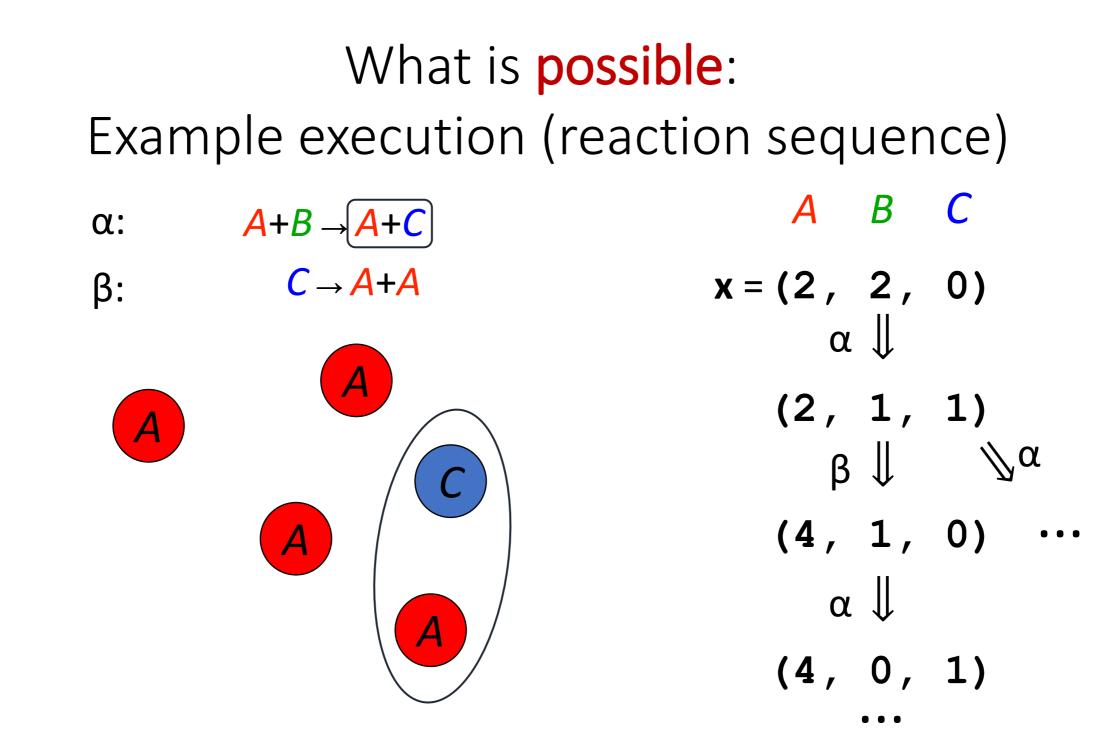


What is **possible**: Example execution (reaction sequence) A B C $A+B \rightarrow A+C$ α: $C \rightarrow A + A$ x = (2, 2, 0)β: α ↓ A (2, 1, 1) В

What is **possible**: Example execution (reaction sequence) A B C $A+B \rightarrow A+C$ α: $C \rightarrow A + A$ x = (2, 2, 0)β: α ↓ A (2, 1, 1) A B





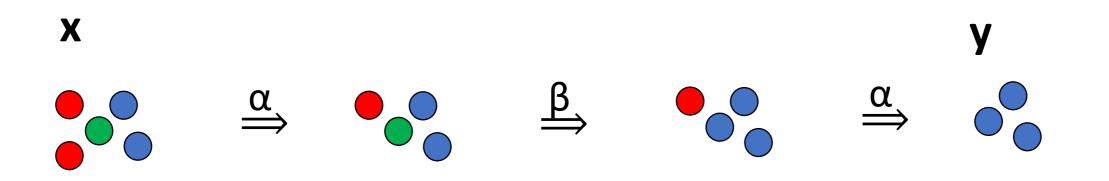


If we can reach from state **x** to **y**, written $\mathbf{x} \Rightarrow \mathbf{y}$, then for all $\mathbf{c} \in \mathbb{N}^d$, $\mathbf{x}+\mathbf{c} \Rightarrow \mathbf{y}+\mathbf{c}$

The presence of extra molecules (represented by **c**) cannot *prevent* reactions from occurring.

If we can reach from state **x** to **y**, written $\mathbf{x} \Rightarrow \mathbf{y}$, then for all $\mathbf{c} \in \mathbb{N}^d$, $\mathbf{x}+\mathbf{c} \Rightarrow \mathbf{y}+\mathbf{c}$

The presence of extra molecules (represented by **c**) cannot *prevent* reactions from occurring.

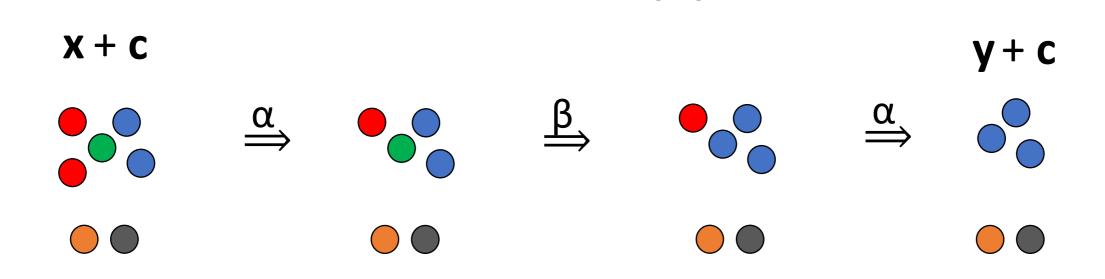


If we can reach from state **x** to **y**, written $\mathbf{x} \Rightarrow \mathbf{y}$, then for all $\mathbf{c} \in \mathbb{N}^d$, $\mathbf{x}+\mathbf{c} \Rightarrow \mathbf{y}+\mathbf{c}$

The presence of extra molecules (represented by **c**) cannot *prevent* reactions from occurring. $\mathbf{C} = \mathbf{O}$

If we can reach from state **x** to **y**, written $\mathbf{x} \Rightarrow \mathbf{y}$, then for all $\mathbf{c} \in \mathbb{N}^d$, $\mathbf{x}+\mathbf{c} \Rightarrow \mathbf{y}+\mathbf{c}$

The presence of extra molecules (represented by **c**) cannot *prevent* reactions from occurring. $\mathbf{C} = \mathbf{O}$



Notation

• For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$

Notation

- For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$
 - $\mathbf{x} \leq \mathbf{y}$: $\mathbf{x}(i) \leq \mathbf{y}(i)$ for $1 \leq i \leq d$
 - $\mathbf{x} \leq \mathbf{y}$: $\mathbf{x} \leq \mathbf{y}$ and $\mathbf{x} \neq \mathbf{y}$
 - $\mathbf{x} < \mathbf{y}$: $\mathbf{x}(i) < \mathbf{y}(i)$ for $1 \le i \le d$
 - If $\mathbf{x} \ge \mathbf{0}$, \mathbf{x} is **nonnegative**.
 - If $x \ge 0$, x is semipositive.
 - If **x** > **0**, **x** is **positive**.

 $(1,2) \leq (1,2)$ $(1,2) \leq (1,4)$ (1,2) < (3,4)

Outline

- Formal definition of chemical reaction networks
- Execution bounded chemical reaction networks and linear potential functions
- What is "computation" with chemical reactions?
- Limitations of computation with execution bounded chemical reaction networks

Execution bounded CRNs

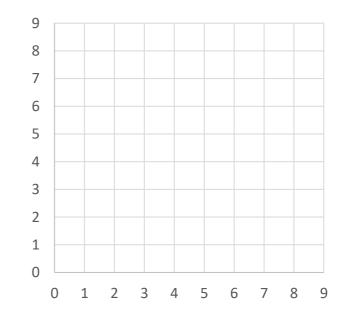
• <u>Definition</u>: A CRN *C* is **execution bounded** from state **x** if all executions starting at **x** are finite.

Execution bounded CRNs

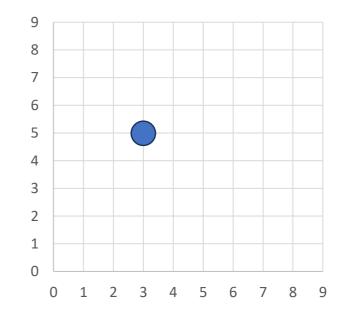
- <u>Definition</u>: A CRN C is execution bounded from state x if all executions starting at x are finite.
- Why prefer execution bounded CRNs?
 - Wet lab implementations of CRNs use up "fuel" to execute reactions; execution bounded CRNs limit the amount of fuel needed
 - Easier to reason about: as long as reactions keep happening, they make "progress" towards reaching a final state.

<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.

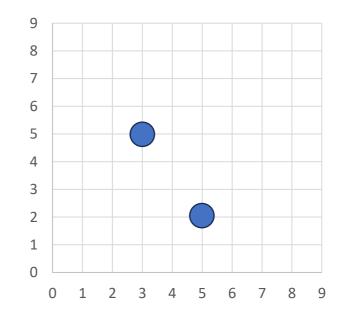
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.



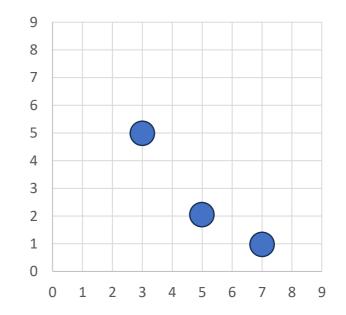
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.



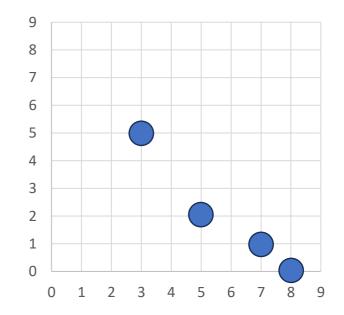
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.



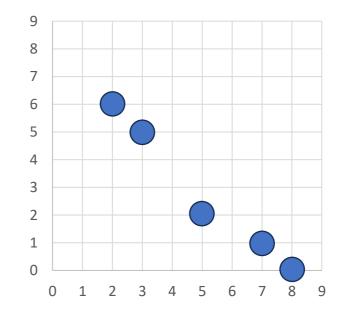
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.



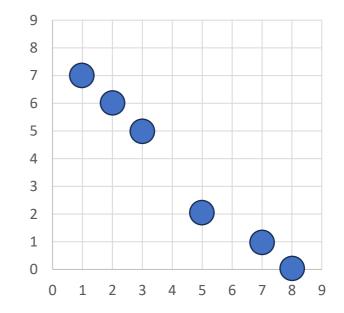
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.



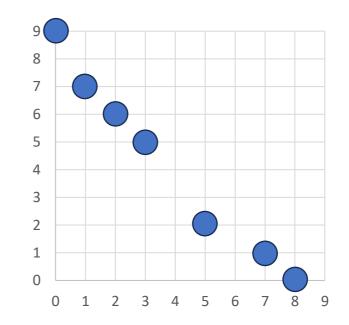
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.



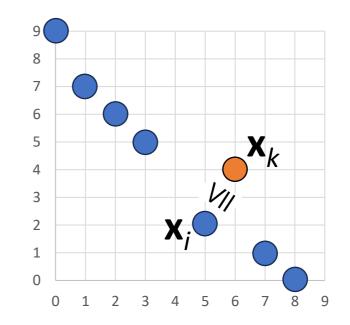
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.



<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.

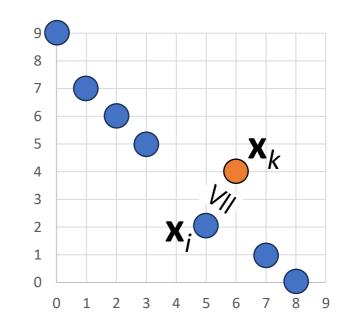


<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some i < k.



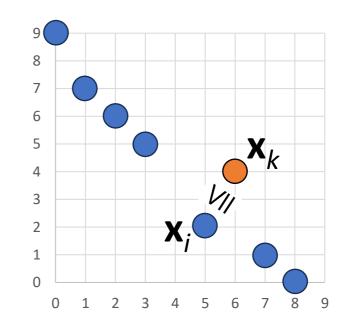
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

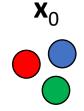
⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.



<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

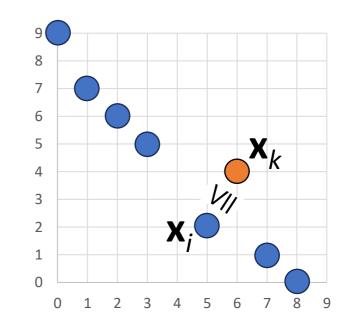
⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.





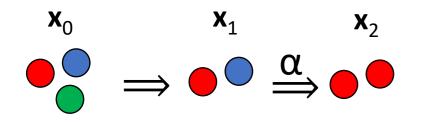
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

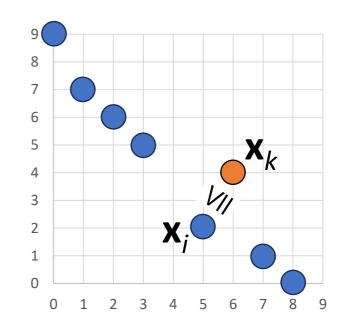
⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.



<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

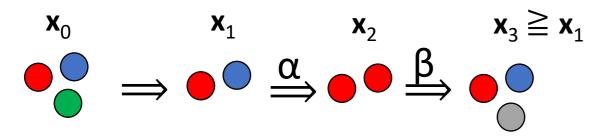
⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.

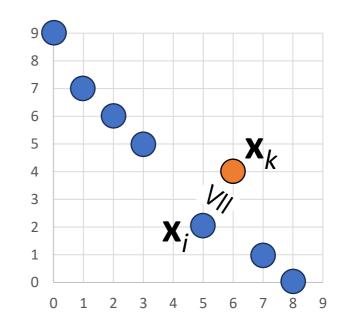




<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

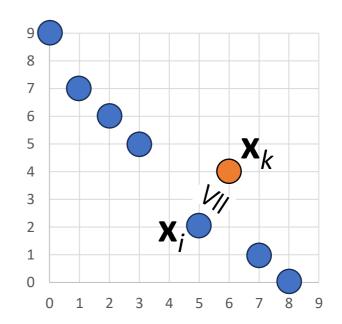
⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.





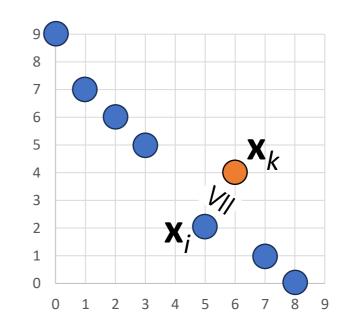
<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.



<u>Easy Lemma</u>: CRN *C* is <u>not</u> execution bounded from \mathbf{x}_0 if and only if there <u>is</u> an execution ($\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...$) that is **self-covering**: $\mathbf{x}_i \leq \mathbf{x}_k$ for some *i* < *k*.

⇒: Dickson's Lemma: If $(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ...)$ is any infinite sequence of vectors from \mathbb{N}^d , then for some i < k, $\mathbf{x}_i \leq \mathbf{x}_k$. (easy to show by induction on dimension d) So if C has an infinite execution, it is self-covering.



$$\overset{\mathbf{x}_{0}}{\overset{\mathbf{x}_{1}}{\overset{\mathbf{x}_{2}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}{\overset{\mathbf{x}_{3}}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}{\overset{\mathbf{x}_{3}}}}}}}} \\$$

• <u>Definition</u>: $\Phi: \mathbb{N}^d \to \mathbb{R}_{\geq 0}$ is a **linear potential function** for a CRN if it is a nonnegative linear function of states that every reaction strictly decreases.

- <u>Definition</u>: $\Phi: \mathbb{N}^d \to \mathbb{R}_{\geq 0}$ is a **linear potential function** for a CRN if it is a nonnegative linear function of states that every reaction strictly decreases.
- Example:
 - $A+A \rightarrow B+C$
 - $B+B \rightarrow A$
 - A linear potential function $\Phi(\mathbf{x}) = v_A \cdot \mathbf{x}(A) + v_B \cdot \mathbf{x}(B) + v_C \cdot \mathbf{x}(C)$ must satisfy $2v_A > v_B + v_C$ and $2v_B > v_A$... $v_A = v_B = 1$ and $v_C = 0$ works.

- <u>Definition</u>: $\Phi: \mathbb{N}^d \to \mathbb{R}_{\geq 0}$ is a **linear potential function** for a CRN if it is a nonnegative linear function of states that every reaction strictly decreases.
- Example:
 - $A+A \rightarrow B+C$
 - $B+B \rightarrow A$
 - A linear potential function $\Phi(\mathbf{x}) = v_A \cdot \mathbf{x}(A) + v_B \cdot \mathbf{x}(B) + v_C \cdot \mathbf{x}(C)$ must satisfy $2v_A > v_B + v_C$ and $2v_B > v_A$... $v_A = v_B = 1$ and $v_C = 0$ works.
- A coefficient v_s assigns a nonnegative "mass" to species S, and every reaction removes a positive amount of mass from the system.

- <u>Definition</u>: $\Phi: \mathbb{N}^d \to \mathbb{R}_{\geq 0}$ is a **linear potential function** for a CRN if it is a nonnegative linear function of states that every reaction strictly decreases.
- Example:
 - $A+A \rightarrow B+C$
 - $B+B \rightarrow A$
 - A linear potential function $\Phi(\mathbf{x}) = v_A \cdot \mathbf{x}(A) + v_B \cdot \mathbf{x}(B) + v_C \cdot \mathbf{x}(C)$ must satisfy $2v_A > v_B + v_C$ and $2v_B > v_A$... $v_A = v_B = 1$ and $v_C = 0$ works.
- A coefficient v_s assigns a nonnegative "mass" to species S, and every reaction removes a positive amount of mass from the system.
- By clearing denominators, we can assume each v_s is an integer, so each reaction decreases Φ by at least 1.

Linear potential functions characterize execution bounded CRNs

<u>Theorem</u>: A CRN has a linear potential function if and only if it is execution bounded from every state.

Linear potential functions characterize execution bounded CRNs

<u>Theorem</u>: A CRN has a linear potential function if and only if it is execution bounded from every state.

Forward direction is easy: Since each reaction reduces Φ by at least 1, at most $\Phi(\mathbf{x})$ reactions are possible from any state \mathbf{x} .

<u>Theorem:</u> (Gale 1960) *"Theorem of the Alternative"* (similar to Farkas' Lemma): Let **M** be a matrix. Then exactly one of the following statements is true:

- 1. There is a vector $\mathbf{u} \ge \mathbf{0}$ such that $\mathbf{Mu} \ge \mathbf{0}$.
- 2. There is a vector $\mathbf{v} \ge \mathbf{0}$ such that $\mathbf{vM} < \mathbf{0}$.

[David Gale. <u>The Theory of Linear Economic</u> <u>Models</u>. University of Chicago press, 1960.]

<u>Theorem:</u> (Gale 1960) *"Theorem of the Alternative"* (similar to Farkas' Lemma): Let **M** be a matrix. Then exactly one of the following statements is true:

- 1. There is a vector $\mathbf{u} \ge \mathbf{0}$ such that $\mathbf{Mu} \ge \mathbf{0}$.
- 2. There is a vector $\mathbf{v} \ge \mathbf{0}$ such that $\mathbf{vM} < \mathbf{0}$.

[David Gale. <u>The Theory of Linear Economic</u> <u>Models</u>. University of Chicago press, 1960.]

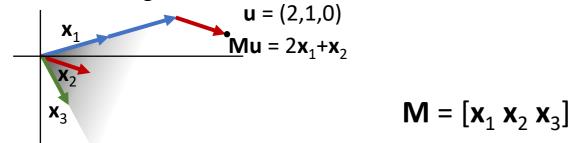
1. Either the cone of **M**'s column vectors intersects the nonnegative orthant:

<u>Theorem:</u> (Gale 1960) *"Theorem of the Alternative"* (similar to Farkas' Lemma): Let **M** be a matrix. Then exactly one of the following statements is true:

- 1. There is a vector $\mathbf{u} \ge \mathbf{0}$ such that $\mathbf{Mu} \ge \mathbf{0}$.
- 2. There is a vector $\mathbf{v} \ge \mathbf{0}$ such that $\mathbf{vM} < \mathbf{0}$.

[David Gale. <u>The Theory of Linear Economic</u> <u>Models</u>. University of Chicago press, 1960.]

1. Either the cone of **M**'s column vectors intersects the nonnegative orthant:

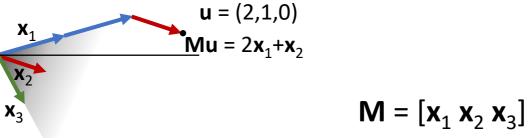


<u>Theorem:</u> (Gale 1960) *"Theorem of the Alternative"* (similar to Farkas' Lemma): Let **M** be a matrix. Then exactly one of the following statements is true:

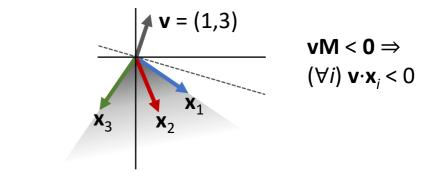
- 1. There is a vector $\mathbf{u} \ge \mathbf{0}$ such that $\mathbf{Mu} \ge \mathbf{0}$.
- 2. There is a vector $\mathbf{v} \ge \mathbf{0}$ such that $\mathbf{vM} < \mathbf{0}$.

[David Gale. <u>The Theory of Linear Economic</u> <u>Models</u>. University of Chicago press, 1960.]

1. Either the cone of **M**'s column vectors intersects the nonnegative orthant:



2. Or it doesn't, and then some hyperplane (dashed line) separates that cone from the nonnegative orthant:



Let **M** be the stoichiometric matrix, e.g. $\alpha \quad \beta$ $\alpha: A \rightarrow B + 2C$ $\beta: 3B + C \rightarrow A + B + C$ $M = \begin{pmatrix} -1 & 1 \\ 1 & -2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$

Let **M** be the stoichiometric matrix, e.g. $\alpha: A \rightarrow B + 2C$ $\beta: 3B + C \rightarrow A + B + C$ $M = \begin{pmatrix} \alpha & \beta \\ -1 & 1 \\ 1 & -2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$

If $\mathbf{u} = (2,1)$ is a vector indicating "do reaction α twice and reaction β once", then the vector $\mathbf{Mu} = (-1,0,4)$ indicates how species counts change.

Let **M** be the stoichiometric matrix, e.g.

 $\alpha: A \rightarrow B + 2C$ $\beta: 3B + C \rightarrow A + B + C$ $M = \begin{pmatrix} -1 & 1 \\ 1 & -2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$

If $\mathbf{u} = (2,1)$ is a vector indicating "do reaction α twice and reaction β once", then the vector $\mathbf{Mu} = (-1,0,4)$ indicates how species counts change.

<u>Claim</u>: There is <u>no</u> $\mathbf{u} \ge \mathbf{0}$ such that $\mathbf{Mu} \ge \mathbf{0}$; suppose otherwise. Then from any sufficiently large state \mathbf{x} , we can execute reactions in \mathbf{u} , reaching from \mathbf{x} to $\mathbf{y} = \mathbf{x} + \mathbf{Mu}$, where $\mathbf{y} \ge \mathbf{x}$, i.e., a self-covering execution, not possible since the CRN is execution bounded from \mathbf{x} .

Let **M** be the stoichiometric matrix, e.g.

 $\alpha: A \to B + 2C$ $\beta: 3B + C \to A + B + C$ $M = \begin{pmatrix} -1 & 1 \\ 1 & -2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$

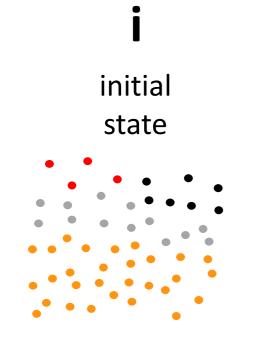
If $\mathbf{u} = (2,1)$ is a vector indicating "do reaction α twice and reaction β once", then the vector $\mathbf{Mu} = (-1,0,4)$ indicates how species counts change.

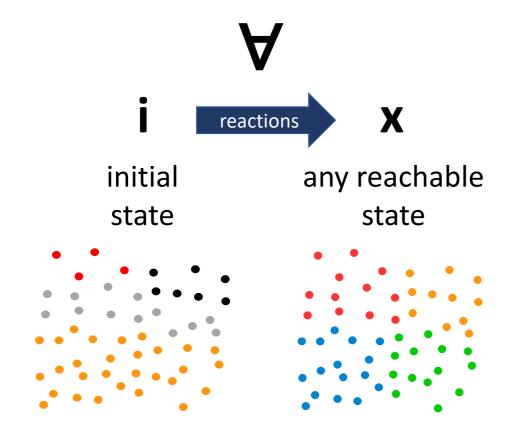
<u>Claim</u>: There is <u>no</u> $\mathbf{u} \ge \mathbf{0}$ such that $\mathbf{Mu} \ge \mathbf{0}$; suppose otherwise. Then from any sufficiently large state \mathbf{x} , we can execute reactions in \mathbf{u} , reaching from \mathbf{x} to $\mathbf{y} = \mathbf{x} + \mathbf{Mu}$, where $\mathbf{y} \ge \mathbf{x}$, i.e., a self-covering execution, not possible since the CRN is execution bounded from \mathbf{x} .

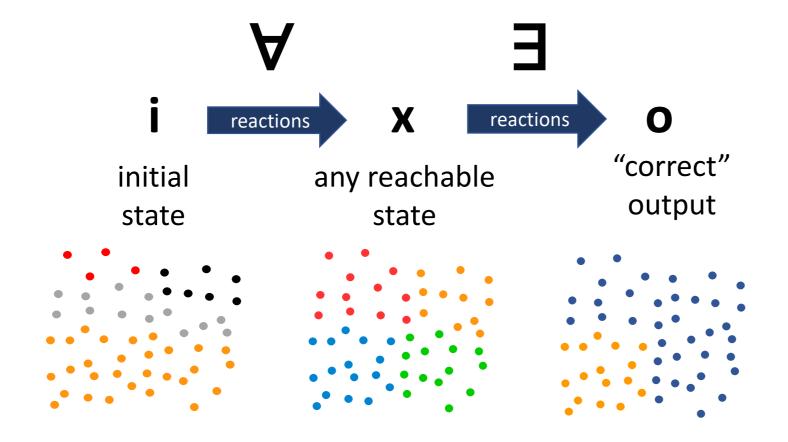
Then there <u>is</u> a vector $\mathbf{v} \ge \mathbf{0}$ such that $\mathbf{vM} < \mathbf{0}$. Let \mathbf{v} be the coefficients of a linear function $\Phi(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$. Then $\mathbf{vM} < \mathbf{0}$ means each reaction decreases Φ : it is a linear potential function. QED

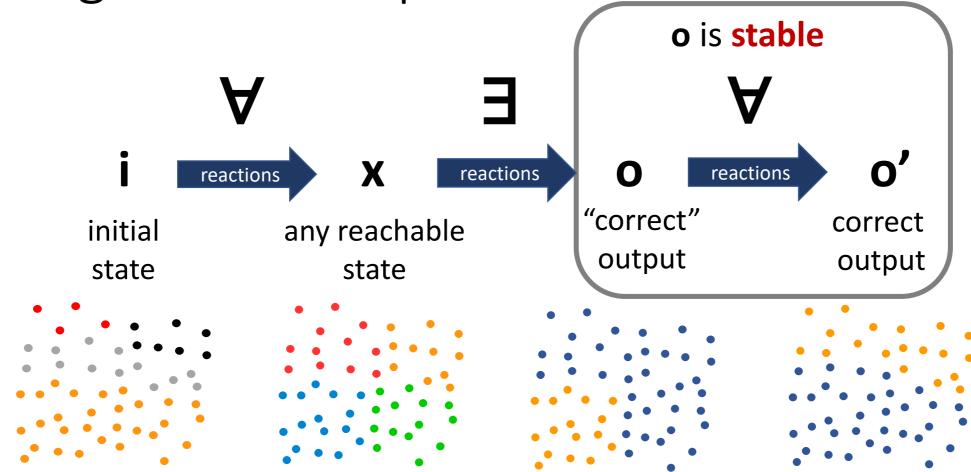
Outline

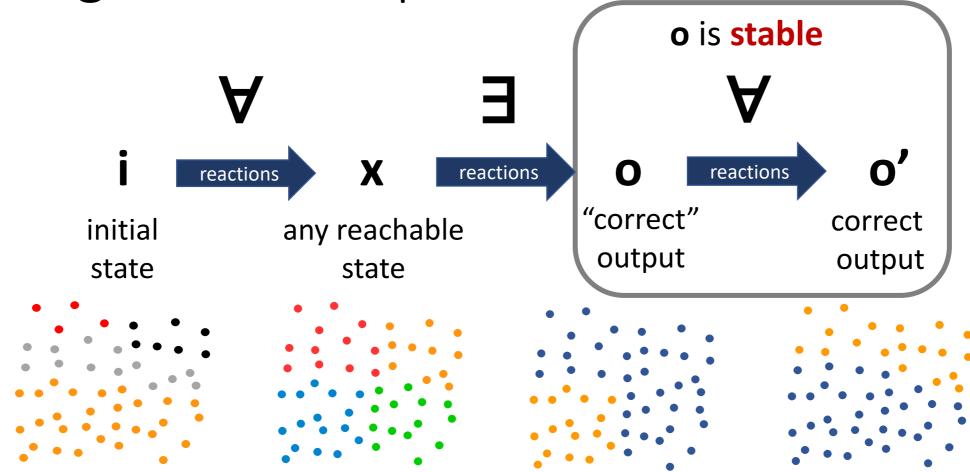
- Formal definition of chemical reaction networks
- Execution bounded chemical reaction networks and linear potential functions
- What is "computation" with chemical reactions?
- Limitations of computation with execution bounded chemical reaction networks











(assuming finite set of reachable states) equivalent to: The system <u>will</u> reach the correct output with probability 1.

• goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a \ge b$

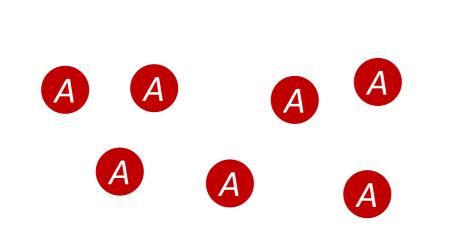
- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a \ge b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial states all molecules are from Σ , e.g., {100 A, 55 B}

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a \ge b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial states all molecules are from Σ , e.g., {100 A, 55 B}
- output specification: partition species Λ into "yes" voters Λ_{Y} and "no" voters Λ_{N}

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a \ge b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial states all molecules are from Σ , e.g., {100 A, 55 B}
- output specification: partition species Λ into "yes" voters $\Lambda_{\rm Y}$ and "no" voters $\Lambda_{\rm N}$
 - $\psi(\mathbf{o}) = Y$ (state \mathbf{o} outputs "yes") if vote is unanimously yes: $\mathbf{o}(S) > 0 \Leftrightarrow S \in \Lambda_{Y}$
 - $\psi(\mathbf{o}) = N$ (state \mathbf{o} outputs "no") if vote is unanimously no: $\mathbf{o}(S) > 0 \Leftrightarrow S \in \Lambda_N$
 - state **o** has undefined output otherwise: $(\exists S \in \Lambda_N, S' \in \Lambda_Y) \mathbf{o}(S) > 0$ and $\mathbf{o}(S') > 0$

- goal: compute predicate $\varphi \colon \mathbb{N}^k \to \{Y, N\}$, e.g., $\varphi(a, b) = Y \iff a \ge b$
- input specification: designate subset $\Sigma \subseteq \Lambda$ as "input" species
 - in valid initial states all molecules are from Σ , e.g., {100 A, 55 B}
- output specification: partition species Λ into "yes" voters $\Lambda_{\rm Y}$ and "no" voters $\Lambda_{\rm N}$
 - $\psi(\mathbf{o}) = Y$ (state \mathbf{o} outputs "yes") if vote is unanimously yes: $\mathbf{o}(S) > 0 \Leftrightarrow S \in \Lambda_{\gamma}$
 - $\psi(\mathbf{o}) = N$ (state \mathbf{o} outputs "no") if vote is unanimously no: $\mathbf{o}(S) > 0 \Leftrightarrow S \in \Lambda_N$
 - state **o** has undefined output otherwise: $(\exists S \in \Lambda_N, S' \in \Lambda_Y) \mathbf{o}(S) > 0$ and $\mathbf{o}(S') > 0$
- **o** is stable if $\psi(\mathbf{o}) = \psi(\mathbf{o'})$ for all **o'** reachable from **o**

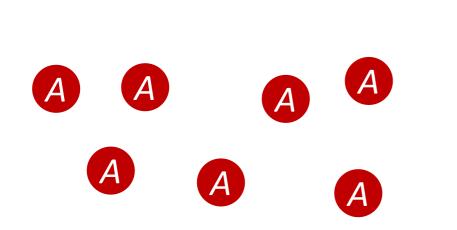
Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$



Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $B+A \rightarrow B+B$

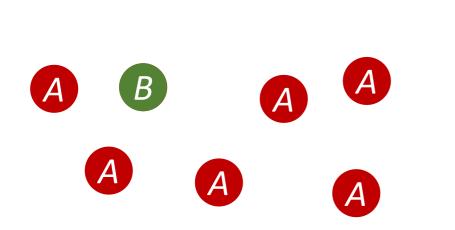
A votes no; B votes yes



Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $B+A \rightarrow B+B$

A votes no; B votes yes



Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $B+A \rightarrow B+B$

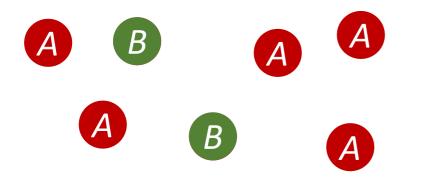
A votes no; B votes yes



Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $B+A \rightarrow B+B$

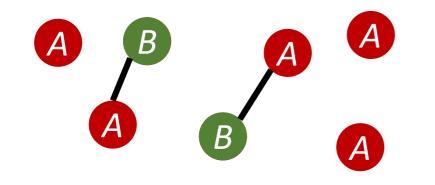
A votes no; B votes yes



Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $B+A \rightarrow B+B$

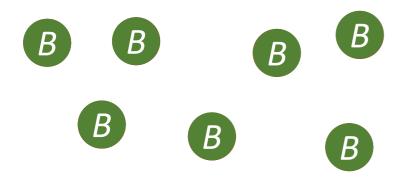
A votes no; B votes yes



Detection: $\varphi(a,b) = Y \Leftrightarrow b > 0$

 $B+A \rightarrow B+B$

A votes no; B votes yes



Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

input species A_o (subscript o/e means ODD/EVEN, and capital A means it is leader)

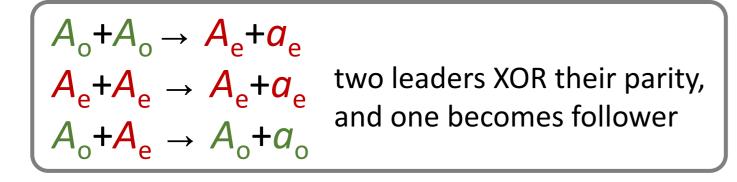
Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

input species A_o (subscript o/e means ODD/EVEN, and capital A means it is leader)

 $\begin{array}{l} A_{\rm o} + A_{\rm o} \rightarrow A_{\rm e} + a_{\rm e} \\ A_{\rm e} + A_{\rm e} \rightarrow A_{\rm e} + a_{\rm e} \\ A_{\rm o} + A_{\rm e} \rightarrow A_{\rm o} + a_{\rm o} \end{array} \quad \begin{array}{l} \text{two leaders XOR their parity,} \\ \text{and one becomes follower} \end{array}$

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

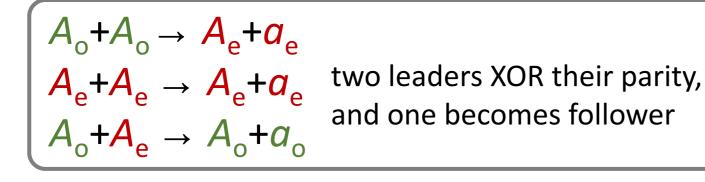
input species A_o (subscript o/e means ODD/EVEN, and capital A means it is leader)



 $A_{o}+a_{e} \rightarrow A_{o}+a_{o}$ leader overwrites $A_{e}+a_{o} \rightarrow A_{e}+a_{e}$ bit of follower

Parity: $\varphi(a)$ =Y $\Leftrightarrow a$ is odd

input species A_o (subscript o/e means ODD/EVEN, and capital A means it is leader)



$$\begin{array}{l} A_{\rm o} + a_{\rm e} \rightarrow A_{\rm o} + a_{\rm o} \\ A_{\rm e} + a_{\rm o} \rightarrow A_{\rm e} + a_{\rm e} \end{array} \text{ leader overwrites} \\ \text{bit of follower} \end{array}$$

Not execution bounded!

Limits of stable computation

<u>Theorem</u>: φ : $\mathbb{N}^k \rightarrow \{Y, N\}$ is stably computable by a CRN if and only if φ is *semilinear*. semilinear = Boolean combination of <u>threshold</u> and <u>mod</u> predicates:

```
take weighted sum s = w_1 \cdot a_1 + \dots + w_k \cdot a_k of inputs and ask if
```

- *s* > constant *c*?
- $s \equiv c \mod m$ for constants c,m?

a>b?) a	=b?	<i>a</i> is odd?	a>1?	<i>a</i> >1 and <i>b</i> is	odd?
	NOT	$a=b^2$?	a is a po	wer of 2?	a is prime?	

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, *PODC* 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, *PODC* 2006]

Outline

- Formal definition of chemical reaction networks
- Execution bounded chemical reaction networks and linear potential functions
- What is "computation" with chemical reactions?
- Limitations of computation with execution bounded chemical reaction networks

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n.

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as



<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as

<u>Definition</u>: A CRN is **noncollapsing** if $\lim_{n\to\infty} s(n) = \infty$, where s(n) = size of smallest stable state reachable from any initial state of size n. Rules out CRNs such as

$$A_{o} + A_{o} \rightarrow A_{e}$$
$$A_{e} + A_{e} \rightarrow A_{e}$$
$$A_{o} + A_{e} \rightarrow A_{o}$$

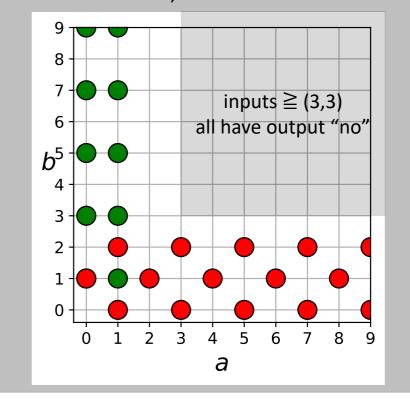
Eventually constant predicates

<u>Definition</u>: A φ : $\mathbb{N}^k \to \{Y, N\}$ is **eventually constant** if, for some $c \in \mathbb{N}$, $\varphi(\mathbf{x})$ is constant on all inputs $\mathbf{x} \ge (c, c, ..., c)$.

Eventually constant predicates

<u>Definition</u>: A φ : $\mathbb{N}^k \to \{Y, N\}$ is **eventually constant** if, for some $c \in \mathbb{N}$, $\varphi(\mathbf{x})$ is constant on all inputs $\mathbf{x} \ge (c, c, ..., c)$.

Non-eventually constant predicates: majority (a≥b?) parity (a is odd?) equality (a=b?) and most anything interesting. Example of eventually constant predicate: a < 2 and b is odd, or b < 3 and a+b is odd



<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

Proof that such CRNs cannot compute parity (*a* is odd?):

1. Start with {A}, CRN can reach to stable "yes" state s_1 .

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

Proof that such CRNs cannot compute parity (*a* is odd?):

1. Start with {A}, CRN can reach to stable "yes" state s_1 .

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

- 1. Start with {*A*}, CRN can reach to stable "yes" state \mathbf{s}_1 .
- 2. Add 1 *A*. The state $s_1 + \{A\}$ is reachable from $\{2A\}$, so the CRN can reach from there to a stable "no" state s_2 .

$$\begin{array}{c} A \\ A \end{array} \implies \begin{array}{c} Y_1 \\ Y_2 \end{array} \\ A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} A \end{array} \end{array} \\ \end{array} \\ \end{array}$$

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

- 1. Start with {*A*}, CRN can reach to stable "yes" state \mathbf{s}_1 .
- 2. Add 1 *A*. The state $s_1 + \{A\}$ is reachable from $\{2A\}$, so the CRN can reach from there to a stable "no" state s_2 .

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

- 1. Start with {A}, CRN can reach to stable "yes" state s_1 .
- 2. Add 1 A. The state $s_1 + \{A\}$ is reachable from $\{2A\}$, so the CRN can reach from there to a stable "no" state s_2 .
- Add 1 A. The state s₂+{A} is reachable from {3A}, so the CRN can reach from there to a stable "yes" state s₃.
 ...

<u>Theorem</u>: If a CRN stably computing φ is noncollapsing and execution bounded from every input state, then φ is eventually constant.

<u>Proof</u>: complex.

- 1. Start with {A}, CRN can reach to stable "yes" state s_1 .
- 2. Add 1 A. The state $s_1 + \{A\}$ is reachable from $\{2A\}$, so the CRN can reach from there to a stable "no" state s_2 .
- Add 1 A. The state s₂+{A} is reachable from {3A}, so the CRN can reach from there to a stable "yes" state s₃.
 ...

• Since CRN is execution bounded from all states, it has a linear potential function Φ .

- Since CRN is execution bounded from all states, it has a linear potential function Φ .
- Adding {A} to \mathbf{s}_i increases Φ by the constant $\Phi({A})$.

- Since CRN is execution bounded from all states, it has a linear potential function Φ .
- Adding {A} to \mathbf{s}_i increases Φ by the constant $\Phi(\{A\})$.
- To get from $\mathbf{s}_i + \{A\}$ to \mathbf{s}_{i+1} , since $\lim_{i \to \infty} |\mathbf{s}_i| = \infty$ (noncollapsing), we must execute increasingly more reactions as $i \to \infty$, which all <u>decrease</u> Φ .
 - Key reason: all species vote, so all molecules in **s**_i must be removed to switch the output.

- Since CRN is execution bounded from all states, it has a linear potential function Φ .
- Adding {A} to \mathbf{s}_i increases Φ by the constant $\Phi(\{A\})$.
- To get from $\mathbf{s}_i + \{A\}$ to \mathbf{s}_{i+1} , since $\lim_{i \to \infty} |\mathbf{s}_i| = \infty$ (noncollapsing), we must execute increasingly more reactions as $i \to \infty$, which all <u>decrease</u> Φ .
 - Key reason: all species vote, so all molecules in **s**_i must be removed to switch the output.
- After some *i*, the net change in Φ, in going from s_i to s_i+{A} to s_{i+1}, is <u>negative</u>.

- Since CRN is execution bounded from all states, it has a linear potential function Φ .
- Adding {A} to \mathbf{s}_i increases Φ by the constant $\Phi(\{A\})$.
- To get from $\mathbf{s}_i + \{A\}$ to \mathbf{s}_{i+1} , since $\lim_{i \to \infty} |\mathbf{s}_i| = \infty$ (noncollapsing), we must execute increasingly more reactions as $i \to \infty$, which all <u>decrease</u> Φ .
 - Key reason: all species vote, so all molecules in **s**_i must be removed to switch the output.
- After some *i*, the net change in Φ, in going from s_i to s_i+{A} to s_{i+1}, is <u>negative</u>.
- Since Φ is nonnegative, at some point we cannot continue. QED

• Yes! Execution bounded CRNs *can* stably compute all semilinear predicates if:

- Yes! Execution bounded CRNs *can* stably compute all semilinear predicates if:
 - Not all species are required to vote, and

- Yes! Execution bounded CRNs *can* stably compute all semilinear predicates if:
 - Not all species are required to vote, and
 - We can start with an "initial leader", e.g., to compute majority (a≥b?), start in initial state {1 L, a A, b B}... these are execution bounded from such states, but not from states with multiple leaders.

- Yes! Execution bounded CRNs *can* stably compute all semilinear predicates if:
 - Not all species are required to vote, and
 - We can start with an "initial leader", e.g., to compute majority (a≥b?), start in initial state {1 L, a A, b B}... these are execution bounded from such states, but not from states with multiple leaders.
 - Or if all species are required to vote, but the CRN can be collapsing.

- Yes! Execution bounded CRNs *can* stably compute all semilinear predicates if:
 - Not all species are required to vote, and
 - We can start with an "initial leader", e.g., to compute majority (a≥b?), start in initial state {1 L, a A, b B}... these are execution bounded from such states, but not from states with multiple leaders.
 - Or if all species are required to vote, but the CRN can be collapsing.
- Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded (and leader-driven) CRNs can stably compute all semilinear predicates in expected time O(polylog(n)).

- Yes! Execution bounded CRNs *can* stably compute all semilinear predicates if:
 - Not all species are required to vote, and
 - We can start with an "initial leader", e.g., to compute majority (a≥b?), start in initial state {1 L, a A, b B}... these are execution bounded from such states, but not from states with multiple leaders.
 - Or if all species are required to vote, but the CRN can be collapsing.
- Those CRNs take expected time O(n log n) to converge, whereas non-execution bounded (and leader-driven) CRNs can stably compute all semilinear predicates in expected time O(polylog(n)).
- <u>Conjecture</u>: Any execution bounded CRN takes at least Ω(n) expected time to stably compute any non-eventually-constant predicate.

Thank you!

Questions?