
The computational power of execution
bounded chemical reaction networks

David Doty, Ben Heckmann

June 2024
UC Santa Cruz Applied Mathematics Department Seminar

Acknowledgments

2

Ben Heckmann
Undergraduate student

Technische Universität München, UC Davis

Matthias Köppe
Professor
UC Davis

For teaching us about

“Theorems of the Alternative”

Chemical reaction networks

3

Chemical reaction networks

3

R→P1+P2
reactant(s) product(s)

Chemical reaction networks

3

R→P1+P2

M1+M2→D

reactant(s) product(s)

dimermonomers

Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

reactant(s) product(s)

dimermonomers

catalyst

Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language…
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst

Theoretical Computer Science Approach

4

What computations necessarily take a
long time and what can be done quickly?
(Computational complexity theory)

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring

5

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks

Chemical Reaction Network (CRN)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• state x∈ℕd: molecular counts of each species

6

A+B→A+C

C+B→C

C→A+A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

x =

7

A

B

A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

x =

7

A

B

A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)

x =

7

A
A

C

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)

x =

7

A
A

C

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

x =

7

...

A
A

A

A

A+B→A+C

C→A+A

B

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

x =

7

...

A
A

A

A

A+B→A+C

C→A+A

What is possible:
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

⟹

α

(4, 0, 1)
...

x =

7

...

A
A

A

A

C

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

x

⟹
α

⟹
β ⟹

α

y

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

x

⟹
α

⟹
β ⟹

α

y

c =

Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd,
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent
reactions from occurring.

8

x

⟹
α

⟹
β ⟹

α

y

c =

+ c + c

Notation

• For vectors x,y ∈ ℕd

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)

9

Notation

• For vectors x,y ∈ ℕd

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)

• If x ≧ 0, x is nonnegative. (0,0)

• If x ≥ 0, x is semipositive. (0,1)

• If x > 0, x is positive. (1,1)

9

10

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks

Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions

starting at x are finite.

11

Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions

starting at x are finite.

• Why prefer execution bounded CRNs?
• Wet lab implementations of CRNs use up “fuel” to execute reactions; execution

bounded CRNs limit the amount of fuel needed

• Easier to reason about: as long as reactions keep happening, they make “progress”
towards reaching a final state.

11

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

⟹
β

x3 ≧ x1

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

⟹
β

x3 ≧ x1

⟹
α

⟹
β

Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.

12

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

xi

xk

⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite
sequence of vectors from ℕd, then for some i < k , xi ≦ xk.
(easy to show by induction on dimension d) So if C has an
infinite execution, it is self-covering.

⇐: If an execution is self-covering, by additivity we can
repeat indefinitely the reactions leading from xi to xk,
so C is not execution bounded from x0.

x0

⟹

x1

⟹
α

x2

⟹
β

x3 ≧ x1

⟹
α

⟹
β

⟹
α

⟹
β …

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

13

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy
2vA > vB+vC and 2vB > vA … vA=vB=1 and vC=0 works.

13

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy
2vA > vB+vC and 2vB > vA … vA=vB=1 and vC=0 works.

• A coefficient vS assigns a nonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

13

Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a
nonnegative linear function of states that every reaction strictly decreases.

• Example:

• A+A→B+C

• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy
2vA > vB+vC and 2vB > vA … vA=vB=1 and vC=0 works.

• A coefficient vS assigns a nonnegative “mass” to species S, and every reaction
removes a positive amount of mass from the system.

• By clearing denominators, we can assume each vS is an integer, so each
reaction decreases Φ by at least 1.

13

Linear potential functions characterize
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

14

Linear potential functions characterize
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution
bounded from every state.

Forward direction is easy: Since each reaction reduces Φ by at least 1, from
any state x, at most Φ(x) reactions are possible.

14

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]

x1

x2

x3

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]

x1

x2

x3

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

Mu = 2x1+x2

u = (2,1,0)

Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma):
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]
x1

x2x3

v = (1,3)
x1

x2

x3

[David Gale. The Theory of Linear Economic
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors
intersects the nonnegative orthant:

2. Or it doesn’t, and then some hyperplane (dashed line)
separates that cone from the nonnegative orthant:

Mu = 2x1+x2

u = (2,1,0)
vM < 0 ⇒
(∀i) v∙xi < 0

CRN is execution bounded from every state ⇒
it has a linear potential function

16

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

16

−1 1
1 −2
2 0

α β
A
B
C

M =

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the
vector Mu = (–1,0,4) indicates how species counts change.

16

−1 1
1 −2
2 0

α β
A
B
C

M =

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the
vector Mu = (–1,0,4) indicates how species counts change.

Claim: There is no u ≥ 0 such that Mu ≧ 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from x to y = x + Mu,
where y ≧ x, i.e., a self-covering execution, not possible since the CRN is execution
bounded from x.

16

−1 1
1 −2
2 0

α β
A
B
C

M =

CRN is execution bounded from every state ⇒
it has a linear potential function
Let M be the stoichiometric matrix, e.g.

 α: A→B + 2C

 β: 3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the
vector Mu = (–1,0,4) indicates how species counts change.

Claim: There is no u ≥ 0 such that Mu ≧ 0; suppose otherwise. Then from any
sufficiently large state x, we can execute reactions in u, reaching from x to y = x + Mu,
where y ≧ x, i.e., a self-covering execution, not possible since the CRN is execution
bounded from x.

Then there is a vector v ≥ 0 such that vM < 0. Let v be the coefficients of a linear
function Φ(x) = v∙x. Then vM < 0 means each reaction decreases Φ: it is a linear
potential function. QED

16

−1 1
1 −2
2 0

α β
A
B
C

M =

17

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks

Can we compute with chemistry?

18

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Can we compute with chemistry?

18

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. showed how to physically implement any chemical
reaction network using DNA strand displacement

[Soloveichik, Seelig, Winfree, DNA as a Universal Substrate for Chemical Kinetics, PNAS 2010]

Can we compute with chemistry?

18

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. showed how to physically implement any chemical
reaction network using DNA strand displacement

X1+X2→X3

[Soloveichik, Seelig, Winfree, DNA as a Universal Substrate for Chemical Kinetics, PNAS 2010]

Can we compute with chemistry?

18

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. showed how to physically implement any chemical
reaction network using DNA strand displacement

X1+X2→X3

[Soloveichik, Seelig, Winfree, DNA as a Universal Substrate for Chemical Kinetics, PNAS 2010]

Can we compute with chemistry?

18

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. showed how to physically implement any chemical
reaction network using DNA strand displacement

X1+X2→X3

[Soloveichik, Seelig, Winfree, DNA as a Universal Substrate for Chemical Kinetics, PNAS 2010]

Can we compute with chemistry?

18

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. showed how to physically implement any chemical
reaction network using DNA strand displacement

X1+X2→X3

+

+

+

+

+

+

→

→

[Soloveichik, Seelig, Winfree, DNA as a Universal Substrate for Chemical Kinetics, PNAS 2010]

19

DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge

Experimental implementations of synthetic
chemical reaction networks with DNA

20

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas,
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator

X+Y→B+B

X+B→X+X

Y+B→Y+Y

A+B→B+B

B+C→C+C

C+A→A+A
time (hours)

re
la

ti
ve

 a
m

o
u

n
t

(%
)

co
n

c.
 d

e
ri

v.
 (

n
M

/h
r)

1

2

15 30 45 60

time (hours)

Defining stable computation

21

i
initial
state

Defining stable computation

21

i xreactions

∀

any reachable
state

initial
state

Defining stable computation

21

i x oreactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

Defining stable computation

21

i x o o’reactions reactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

correct
output

∀
o is stable

Defining stable computation

21

i x o o’reactions reactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

correct
output

∀
o is stable

(assuming finite set of reachable states) equivalent to:
The system will reach the correct output with probability 1.

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (state o outputs “yes”) if vote is unanimously yes: o(S)>0 ⇔ S∈ΛY

• ψ(o) = N (state o outputs “no”) if vote is unanimously no: o(S)>0 ⇔ S∈ΛN

• state o has undefined output otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a≥b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial states all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (state o outputs “yes”) if vote is unanimously yes: o(S)>0 ⇔ S∈ΛY

• ψ(o) = N (state o outputs “no”) if vote is unanimously no: o(S)>0 ⇔ S∈ΛN

• state o has undefined output otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

• o is stable if ψ(o) = ψ(o’) for all o’ reachable from o

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

23

A

A A

A

A

A A

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

23

A votes no; B votes yes

A

A A

A

A

A A

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

23

A votes no; B votes yes

A

A A

A

A

A AB

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

23

A votes no; B votes yes

A

A A

A

A

A AB

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

23

A votes no; B votes yes

A

A A

A

A

A AB

B

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

23

A votes no; B votes yes

A

A A

A

A

A AB

B

Examples of predicate computation

Detection: φ(a,b) = Y ⇔ b > 0

B+A → B+B

23

A votes no; B votes yes

A

A A

A

A

A AB

B

B

B

B B

B

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

24

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao

Ao

Ao

Ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao

Ao

Ao

Ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao

Aoae

Ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao

Aoae

Ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao

Aoae

ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao

Aoae

ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

ae

ao

ae

Ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

ae

ao

ae

Ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

ae

ao

ae

Ae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

ae ae

Aeae

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

input species Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

24

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae
Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

Not execution bounded!

ae ae

Aeae

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a≥b

25

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a≥b

A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a≥b

A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a≥b

A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)

a+b → a+a (tiebreaker if a=b)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = Y ⇔ a≥b

A+B → a+b (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)

a+b → a+a (tiebreaker if a=b)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Not execution bounded!

Limits of stable computation

Theorem: φ: ℕk→{Y,N} is stably computable by a CRN if and only if φ is semilinear.

semilinear = Boolean combination of threshold and mod predicates:

take weighted sum s = w1∙x1 + … wk∙xk of inputs x1 … xk and ask if

s ≤ constant c?

s ≡ c mod m for constants c,m?

26

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

a>b? a=b? a is odd? a>1? a>1 and b is odd?

NOT a=b2? a is a power of 2? a is prime?

27

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

28

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao Ao

AoAo

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao Ao

AoAo

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao

Ao

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ao

Ao

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

AoAe

Ae

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

AoAe

Noncollapsing CRNs

Definition: A CRN is noncollapsing if lim
𝑛→∞

𝑠 𝑛 = ∞, where s(n) = size

of smallest stable state reachable from any initial state of size n.

Rules out CRNs such as

28

Ao+Ao→ Ae

Ae+Ae → Ae

Ao+Ae → Ao

which computes parity but always ends up with a single voter.

Ae

Eventually constant predicates

Definition: A predicate φ: ℕk→{Y,N} is eventually constant if, for
some c ∈ ℕ, φ(x) is constant on all inputs x ≧ (c,c,…,c).

29

Eventually constant predicates

Definition: A predicate φ: ℕk→{Y,N} is eventually constant if, for
some c ∈ ℕ, φ(x) is constant on all inputs x ≧ (c,c,…,c).

29

Example of eventually constant predicate:
a < 2 and b is odd, or b < 3 and a+b is odd

Non-eventually constant predicates:
majority (a≥b?)
parity (a is odd?)
equality (a=b?)

and most anything interesting.

inputs ≧ (3,3)
all have output “no”

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

30

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

1. Start with {A}, CRN can reach to stable YES state s1.

A

{A}

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

1. Start with {A}, CRN can reach to stable YES state s1.

A

{A} s1

⟹
Y1 Y2

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

1. Start with {A}, CRN can reach to stable YES state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable NO state s2.

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A}

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

1. Start with {A}, CRN can reach to stable YES state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable NO state s2.

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A} s2

⟹
N1 N2 N1

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

1. Start with {A}, CRN can reach to stable YES state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable NO state s2.
3. Add 1 A. The state s2+{A} is reachable from {3A}, so the CRN can reach from there to a stable YES state s3.
4. …

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A} s2 + {A}

⟹
N1 N2 N1A

A

+ {A} + {A}

A

Limitations of execution bounded CRNs
Theorem: If a CRN stably computing φ is noncollapsing and execution bounded
from every input state, then φ is eventually constant.

Proof: complex.

Proof that such CRNs cannot compute parity (a is odd?):

30

1. Start with {A}, CRN can reach to stable YES state s1.
2. Add 1 A. The state s1+{A} is reachable from {2A}, so the CRN can reach from there to a stable NO state s2.
3. Add 1 A. The state s2+{A} is reachable from {3A}, so the CRN can reach from there to a stable YES state s3.
4. …

A

{A} s1

⟹
Y1 Y2

A

+ {A}

A

+ {A} s2 + {A}

⟹
N1 N2 N1A

A

+ {A} + {A}

s3

⟹
Y1 Y2

Y3 Y2A

…

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

31

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

31

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

31

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

• After some i, the net change in Φ, in going from si to si+{A} to si+1, is
negative.

31

Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

• After some i, the net change in Φ, in going from si to si+{A} to si+1, is
negative.

• Since Φ is nonnegative, at some point we cannot continue. QED

31

32

Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks

Are execution bounded CRNs good for any
computation?
Yes! Execution bounded CRNs can stably compute all semilinear predicates if
the CRN is leader-driven: it starts with an “initial leader”, e.g., to compute
majority (a≥b?), start in initial state {1 L, a A, b B}… these are execution
bounded from such states, but not from states with multiple leaders.

We also relax the voting requirement and allow only the leader to vote.
(though this requirement can be relaxed; not shown in slides)

33

Single-voting CRNs

Definition: A CRN computing a predicate φ: ℕk→{Y,N} is single-voting if
all states reachable from the input have a single voter.

Such CRNs are leader-driven: valid initial configurations have a single
leader/voter molecule, and only the leader votes.

34

Semilinear predicates are Boolean combinations of
threshold and mod predicates

Recall: Theorem: φ: ℕk→{Y,N} is stably computable by a CRN if and only if φ is
semilinear. (= Boolean combination of threshold and mod predicates)

To show execution bounded CRNs can compute all semilinear predicates, it
suffices to show:

• They can compute all threshold predicates.

• They can compute all mod predicates.

• They can be composed to compute AND, OR, and NOT of other CRNs.

35

Execution bounded CRNs can compute
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably
computed by a single-voting execution bounded CRN.

36

Execution bounded CRNs can compute
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably
computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 – 5x3 ≤ 4?], in addition to
inputs X1, X2, X3, start with 1 LY (yes voter/leader) and 4 N, and have
reactions:

36

Execution bounded CRNs can compute
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably
computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 – 5x3 ≤ 4?], in addition to
inputs X1, X2, X3, start with 1 LY (yes voter/leader) and 4 N, and have
reactions:

36

X1→2P
X2→3P
X3→5N

Execution bounded CRNs can compute
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably
computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 – 5x3 ≤ 4?], in addition to
inputs X1, X2, X3, start with 1 LY (yes voter/leader) and 4 N, and have
reactions:

36

X1→2P
X2→3P
X3→5N

P will have count =
weighted sum of inputs
with positive weights

N will have count =
weighted sum of inputs
with negative weights
(including constant –4)

Execution bounded CRNs can compute
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably
computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 – 5x3 ≤ 4?], in addition to
inputs X1, X2, X3, start with 1 LY (yes voter/leader) and 4 N, and have
reactions:

36

X1→2P
X2→3P
X3→5N

LY+P→ LN

LN+N→ LY

P will have count =
weighted sum of inputs
with positive weights

N will have count =
weighted sum of inputs
with negative weights
(including constant –4)

Now we compute majority [P ≤ N?]

Execution bounded CRNs can compute
mod predicates
Theorem: Every mod predicate [w1x1 + … + wkxk ≡ c mod m?] can be
stably computed by a single-voting execution bounded CRN.

37

Execution bounded CRNs can compute
mod predicates
Theorem: Every mod predicate [w1x1 + … + wkxk ≡ c mod m?] can be
stably computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 ≡ 4 mod 5?], in addition to
inputs X1, X2, start with 1 L0, and have reactions:

37

Li + X1→Li+2 mod 5

Li + X2→Li+3 mod 5

for i = 0,1,2,3,4

L4 votes yes, L0, L1, L2, L3 vote no

Composing CRNs to compute Boolean
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

38

Composing CRNs to compute Boolean
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

Proof : To compute [not φ1], swap votes of voting species.

38

Composing CRNs to compute Boolean
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

Proof : To compute [not φ1], swap votes of voting species.

To compute [φ1 and φ2] and [φ1 or φ2], “split” each input X via reaction X→X1 + X2, so C1
operates on X1 and C2 operates on X2.

38

Composing CRNs to compute Boolean
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

Proof : To compute [not φ1], swap votes of voting species.

To compute [φ1 and φ2] and [φ1 or φ2], “split” each input X via reaction X→X1 + X2, so C1
operates on X1 and C2 operates on X2.

38

“global” voters of composed CRN:
VNN, VNY, VYN, VYY; start with 1 VNN

Let SY, SN be yes and no voters of C1

Let TY, TN be yes and no voters of C2

Composing CRNs to compute Boolean
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

Proof : To compute [not φ1], swap votes of voting species.

To compute [φ1 and φ2] and [φ1 or φ2], “split” each input X via reaction X→X1 + X2, so C1
operates on X1 and C2 operates on X2.

38

“global” voters of composed CRN:
VNN, VNY, VYN, VYY; start with 1 VNN

Let SY, SN be yes and no voters of C1

Let TY, TN be yes and no voters of C2

Voters of C1 and C2 influence global voters:

SY + VNN→ SY + VYN

SY + VNY→ SY + VYY

SN + VYN→ SN + VNN

SN + VYY→ SN + VNY

TY + VNN→ TY + VNY

TY + VYN→ TY + VYY

TN + VNY→ TN + VNN

TN + VYY→ TN + VYN

Composing CRNs to compute Boolean
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

Proof : To compute [not φ1], swap votes of voting species.

To compute [φ1 and φ2] and [φ1 or φ2], “split” each input X via reaction X→X1 + X2, so C1
operates on X1 and C2 operates on X2.

38

“global” voters of composed CRN:
VNN, VNY, VYN, VYY; start with 1 VNN

Let SY, SN be yes and no voters of C1

Let TY, TN be yes and no voters of C2

Voters of C1 and C2 influence global voters:

SY + VNN→ SY + VYN

SY + VNY→ SY + VYY

SN + VYN→ SN + VNN

SN + VYY→ SN + VNY

TY + VNN→ TY + VNY

TY + VYN→ TY + VYY

TN + VNY→ TN + VNN

TN + VYY→ TN + VYN

C1 is execution bounded, so can only switch
between SY and SN a finite number of times,
limiting how many times we can flip between
VN? and VY?, so full CRN is execution bounded.

Open question

• Using standard stochastic model of chemical kinetics (not shown), the
execution bounded CRNs stably computing semilinear predicates can be
shown to take expected time O(n log n) to converge.

39

Open question

• Using standard stochastic model of chemical kinetics (not shown), the
execution bounded CRNs stably computing semilinear predicates can be
shown to take expected time O(n log n) to converge.

• Without the execution bounded constraint, it is known they can be
computed exponentially faster: polylog(n). [Angluin, Aspnes, Eisenstat,
Fast computation by population protocols with a leader, DISC 2006]

39

Open question

• Using standard stochastic model of chemical kinetics (not shown), the
execution bounded CRNs stably computing semilinear predicates can be
shown to take expected time O(n log n) to converge.

• Without the execution bounded constraint, it is known they can be
computed exponentially faster: polylog(n). [Angluin, Aspnes, Eisenstat,
Fast computation by population protocols with a leader, DISC 2006]

• Conjecture: Execution bounded CRNs require Ω(n) time to stably
compute any non-eventually constant predicate (e.g., majority or parity).

39

Thank you!

Questions?

40

	Slide 1: The computational power of execution bounded chemical reaction networks
	Slide 2: Acknowledgments
	Slide 3: Chemical reaction networks
	Slide 4: Chemical reaction networks
	Slide 5: Chemical reaction networks
	Slide 6: Chemical reaction networks
	Slide 7: Chemical reaction networks
	Slide 8: Theoretical Computer Science Approach
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Key property of reachability: additivity
	Slide 19: Key property of reachability: additivity
	Slide 20: Key property of reachability: additivity
	Slide 21: Key property of reachability: additivity
	Slide 22: Notation
	Slide 23: Notation
	Slide 24
	Slide 25: Execution bounded CRNs
	Slide 26: Execution bounded CRNs
	Slide 27: Self-covering executions
	Slide 28: Self-covering executions
	Slide 29: Self-covering executions
	Slide 30: Self-covering executions
	Slide 31: Self-covering executions
	Slide 32: Self-covering executions
	Slide 33: Self-covering executions
	Slide 34: Self-covering executions
	Slide 35: Self-covering executions
	Slide 36: Self-covering executions
	Slide 37: Self-covering executions
	Slide 38: Self-covering executions
	Slide 39: Self-covering executions
	Slide 40: Self-covering executions
	Slide 41: Self-covering executions
	Slide 42: Self-covering executions
	Slide 43: Self-covering executions
	Slide 44: Linear potential function
	Slide 45: Linear potential function
	Slide 46: Linear potential function
	Slide 47: Linear potential function
	Slide 48: Linear potential functions characterize execution bounded CRNs
	Slide 49: Linear potential functions characterize execution bounded CRNs
	Slide 50: Key technical tool for reverse direction
	Slide 51: Key technical tool for reverse direction
	Slide 52: Key technical tool for reverse direction
	Slide 53: Key technical tool for reverse direction
	Slide 54: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 55: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 56: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 57: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 58: CRN is execution bounded from every state ⇒ it has a linear potential function
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Experimental implementations of synthetic chemical reaction networks with DNA
	Slide 68: Defining stable computation
	Slide 69: Defining stable computation
	Slide 70: Defining stable computation
	Slide 71: Defining stable computation
	Slide 72: Defining stable computation
	Slide 73: Definition of predicate (decision problem) computation
	Slide 74: Definition of predicate (decision problem) computation
	Slide 75: Definition of predicate (decision problem) computation
	Slide 76: Definition of predicate (decision problem) computation
	Slide 77: Definition of predicate (decision problem) computation
	Slide 78: Examples of predicate computation
	Slide 79: Examples of predicate computation
	Slide 80: Examples of predicate computation
	Slide 81: Examples of predicate computation
	Slide 82: Examples of predicate computation
	Slide 83: Examples of predicate computation
	Slide 84: Examples of predicate computation
	Slide 85: Examples of predicate computation
	Slide 86: Examples of predicate computation
	Slide 87: Examples of predicate computation
	Slide 88: Examples of predicate computation
	Slide 89: Examples of predicate computation
	Slide 90: Examples of predicate computation
	Slide 91: Examples of predicate computation
	Slide 92: Examples of predicate computation
	Slide 93: Examples of predicate computation
	Slide 94: Examples of predicate computation
	Slide 95: Examples of predicate computation
	Slide 96: Examples of predicate computation
	Slide 97: Examples of predicate computation
	Slide 98: Examples of predicate computation
	Slide 99: Examples of predicate computation
	Slide 100: Examples of predicate computation
	Slide 101: Examples of predicate computation
	Slide 102: Examples of predicate computation
	Slide 103: Examples of predicate computation
	Slide 104: Limits of stable computation
	Slide 105
	Slide 106: Noncollapsing CRNs
	Slide 107: Noncollapsing CRNs
	Slide 108: Noncollapsing CRNs
	Slide 109: Noncollapsing CRNs
	Slide 110: Noncollapsing CRNs
	Slide 111: Noncollapsing CRNs
	Slide 112: Noncollapsing CRNs
	Slide 113: Noncollapsing CRNs
	Slide 114: Eventually constant predicates
	Slide 115: Eventually constant predicates
	Slide 116: Limitations of execution bounded CRNs
	Slide 117: Limitations of execution bounded CRNs
	Slide 118: Limitations of execution bounded CRNs
	Slide 119: Limitations of execution bounded CRNs
	Slide 120: Limitations of execution bounded CRNs
	Slide 121: Limitations of execution bounded CRNs
	Slide 122: Limitations of execution bounded CRNs
	Slide 123: Limitations of execution bounded CRNs
	Slide 124: Limitations of execution bounded CRNs
	Slide 125: Limitations of execution bounded CRNs
	Slide 126: Limitations of execution bounded CRNs
	Slide 127: Limitations of execution bounded CRNs
	Slide 128: Limitations of execution bounded CRNs
	Slide 129
	Slide 130: Are execution bounded CRNs good for any computation?
	Slide 131: Single-voting CRNs
	Slide 132: Semilinear predicates are Boolean combinations of threshold and mod predicates
	Slide 133: Execution bounded CRNs can compute threshold predicates
	Slide 134: Execution bounded CRNs can compute threshold predicates
	Slide 135: Execution bounded CRNs can compute threshold predicates
	Slide 136: Execution bounded CRNs can compute threshold predicates
	Slide 137: Execution bounded CRNs can compute threshold predicates
	Slide 138: Execution bounded CRNs can compute mod predicates
	Slide 139: Execution bounded CRNs can compute mod predicates
	Slide 140: Composing CRNs to compute Boolean combinations of predicates
	Slide 141: Composing CRNs to compute Boolean combinations of predicates
	Slide 142: Composing CRNs to compute Boolean combinations of predicates
	Slide 143: Composing CRNs to compute Boolean combinations of predicates
	Slide 144: Composing CRNs to compute Boolean combinations of predicates
	Slide 145: Composing CRNs to compute Boolean combinations of predicates
	Slide 146: Open question
	Slide 147: Open question
	Slide 148: Open question
	Slide 149: Thank you!

