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Chemical reaction networks

3

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language… 
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst



Theoretical Computer Science Approach
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What computations necessarily take a 
long time and what can be done quickly?
(Computational complexity theory) 

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks



Chemical Reaction Network (CRN)

• finite set of reactions:   e.g. 

• finite set of d species Λ = { A, B, C, D, ... }

• state x∈ℕd: molecular counts of each species  
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C→A+A

What is possible: 
Example execution (reaction sequence)

α:

β: (2, 2, 0)

A B C

⟹
α

(2, 1, 1)⟹

β

(4, 1, 0)

α

⟹

α

(4, 0, 1)
...

x =

7
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A
A

A

A
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Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd, 
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent 
reactions from occurring.
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Key property of reachability: additivity

If we can reach from state x to y, written x ⇒ y, then for all c ∈ ℕd, 
x+c ⇒ y+c

The presence of extra molecules (represented by c) cannot prevent 
reactions from occurring.
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Notation

• For vectors x,y ∈ ℕd 

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)
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Notation

• For vectors x,y ∈ ℕd 

• x ≦ y: x(i) ≤ y(i) for 1 ≤ i ≤ d (1,2) ≦ (1,2)

• x ≤ y: x ≦ y and x ≠ y (1,2) ≤ (1,4)

• x < y: x(i) < y(i) for 1 ≤ i ≤ d (1,2) < (3,4)

• If x ≧ 0, x is nonnegative. (0,0) 

• If x ≥ 0, x is semipositive. (0,1)

• If x > 0, x is positive. (1,1)
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks



Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions 

starting at x are finite.
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Execution bounded CRNs
• Definition: A CRN C is execution bounded from state x if all executions 

starting at x are finite.

• Why prefer execution bounded CRNs?
• Wet lab implementations of CRNs use up “fuel” to execute reactions; execution 

bounded CRNs limit the amount of fuel needed

• Easier to reason about: as long as reactions keep happening, they make “progress” 
towards reaching a final state.

11



Self-covering executions
Easy Lemma: CRN C is not execution bounded from x0 if and only if there is an 
execution (x0, x1, x2, …) that is self-covering: xi ≦ xk for some i < k.
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⇒: Dickson’s Lemma: If (x0, x1, x2, …) is any infinite 
sequence of vectors from ℕd, then for some i < k , xi ≦ xk. 
(easy to show by induction on dimension d) So if C has an 
infinite execution, it is self-covering.
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Linear potential function

• Definition: Φ: ℕd→ℝ≥0 is a linear potential function for a CRN if it is a 
nonnegative linear function of states that every reaction strictly decreases.
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• Example:
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• B+B→A

• A linear potential function Φ(x) = vA∙x(A) + vB∙x(B) + vC∙x(C) must satisfy                  
2vA > vB+vC and 2vB > vA  …    vA=vB=1  and  vC=0  works.

• A coefficient vS assigns a nonnegative “mass” to species S, and every reaction 
removes a positive amount of mass from the system.

• By clearing denominators, we can assume each vS is an integer, so each 
reaction decreases Φ by at least 1.
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Linear potential functions characterize 
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution 
bounded from every state.
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Linear potential functions characterize 
execution bounded CRNs

Theorem: A CRN has a linear potential function if and only if it is execution 
bounded from every state.

Forward direction is easy: Since each reaction reduces Φ by at least 1, from 
any state x, at most Φ(x) reactions are possible.
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Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma): 
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

[David Gale. The Theory of Linear Economic 
Models. University of Chicago press, 1960.]
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Key technical tool for reverse direction

Theorem: (Gale 1960) “Theorem of the Alternative” (similar to Farkas’ Lemma): 
Let M be a matrix. Then exactly one of the following statements is true:

1. There is a vector u ≥ 0 such that Mu ≧ 0.

2. There is a vector v ≥ 0 such that vM < 0.

15

M = [x1 x2 x3]
x1

x2x3

v = (1,3)
x1

x2

x3

[David Gale. The Theory of Linear Economic 
Models. University of Chicago press, 1960.]

1. Either the cone of M’s column vectors 
intersects the nonnegative orthant:

2. Or it doesn’t, and then some hyperplane (dashed line) 
separates that cone from the nonnegative orthant:

Mu = 2x1+x2

u = (2,1,0)
vM < 0 ⇒ 
(∀i) v∙xi < 0



CRN is execution bounded from every state ⇒ 
it has a linear potential function
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it has a linear potential function
Let M be the stoichiometric matrix, e.g.

   α:   A→B + 2C 

   β:   3B + C→A + B + C

If u = (2,1) is a vector indicating “do reaction α twice and reaction β once”, then the 
vector Mu = (–1,0,4) indicates how species counts change.

Claim: There is no u ≥ 0 such that Mu ≧ 0; suppose otherwise. Then from any 
sufficiently large state x, we can execute reactions in u, reaching from x to y = x + Mu, 
where y ≧ x, i.e., a self-covering execution, not possible since the CRN is execution 
bounded from x.

Then there is a vector v ≥ 0 such that vM < 0. Let v be the coefficients of a linear 
function Φ(x) = v∙x. Then vM < 0 means each reaction decreases Φ: it is a linear 
potential function.      QED
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions
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[Soloveichik, Seelig, Winfree, DNA as a Universal Substrate for Chemical Kinetics, PNAS 2010] 
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DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge



Experimental implementations of synthetic 
chemical reaction networks with DNA

20

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas, 
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas, 
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator
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i x o o’reactions reactions reactions

∀ ∃

any reachable
state

initial
state

“correct”
output

correct 
output

∀
o is stable

(assuming finite set of reachable states) equivalent to:
The system will reach the correct output with probability 1.
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• ψ(o) = Y (state o outputs “yes”) if vote is unanimously yes: o(S)>0 ⇔ S∈ΛY

• ψ(o) = N (state o outputs “no”) if vote is unanimously no: o(S)>0 ⇔ S∈ΛN

• state o has undefined output otherwise:    (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0 

• o is stable if ψ(o) = ψ(o’) for all o’ reachable from o

22

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
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Majority: φ(a,b) = Y ⇔ a≥b

A+B → a+b      (both become “followers” but preserve difference between A’s and B’s)

A+b → A+a  (leader changes vote of follower)

B+a → B+b (leader changes vote of follower)
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25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization, 
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and 
very Small Local Memory, Distributed Computing 2015]

Not execution bounded!



Limits of stable computation

Theorem: φ: ℕk→{Y,N} is stably computable by a CRN if and only if φ is semilinear.

semilinear = Boolean combination of threshold and mod predicates: 

take weighted sum s = w1∙x1 + … wk∙xk of inputs x1 … xk and ask if

s ≤ constant c?

s ≡ c mod m for constants c,m?

26

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

a>b?        a=b?        a is odd?        a>1?        a>1 and b is odd?

NOT    a=b2?       a is a power of 2?      a is prime?
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Definition: A predicate φ: ℕk→{Y,N} is eventually constant if, for 
some c ∈ ℕ, φ(x) is constant on all inputs x ≧ (c,c,…,c).

29

Example of eventually constant predicate: 
a < 2 and b is odd, or b < 3 and a+b is odd

Non-eventually constant predicates: 
majority (a≥b?)
parity (a is odd?)
equality (a=b?)

and most anything interesting.

inputs ≧ (3,3)
all have output “no”
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Proof: complex.
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Limitations of execution bounded CRNs

• Since CRN is execution bounded from all states, it has a linear potential 
function Φ.

• Adding {A} to si increases Φ by the constant Φ({A}).

• To get from si+{A} to si+1, since lim
𝑖→∞

|𝐬𝑖| = ∞ (noncollapsing), we must 

execute increasingly more reactions as i→∞, which all decrease Φ.
• Key reason: all species vote, so all molecules in si must be removed to switch the output.

• After some i, the net change in Φ, in going from si to si+{A} to si+1, is 
negative.

• Since Φ is nonnegative, at some point we cannot continue.    QED
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Outline

• Formal definition of chemical reaction networks

• Execution bounded chemical reaction networks and linear potential functions

• What is “computation” with chemical reactions?

• Limitations of computation with execution bounded chemical reaction networks

• Possibilities of computation with execution bounded chemical reaction networks



Are execution bounded CRNs good for any 
computation?
Yes! Execution bounded CRNs can stably compute all semilinear predicates if 
the CRN is leader-driven: it starts with an “initial leader”, e.g., to compute 
majority (a≥b?), start in initial state {1 L, a A, b B}… these are execution 
bounded from such states, but not from states with multiple leaders.

We also relax the voting requirement and allow only the leader to vote. 
(though this requirement can be relaxed; not shown in slides)
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Single-voting CRNs

Definition: A CRN computing a predicate φ: ℕk→{Y,N} is single-voting if 
all states reachable from the input have a single voter.

Such CRNs are leader-driven: valid initial configurations have a single 
leader/voter molecule, and only the leader votes.
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Semilinear predicates are Boolean combinations of 
threshold and mod predicates

Recall: Theorem: φ: ℕk→{Y,N} is stably computable by a CRN if and only if φ is 
semilinear. (= Boolean combination of threshold and mod predicates)

To show execution bounded CRNs can compute all semilinear predicates, it 
suffices to show:

• They can compute all threshold predicates.

• They can compute all mod predicates.

• They can be composed to compute AND, OR, and NOT of other CRNs.
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Execution bounded CRNs can compute 
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably 
computed by a single-voting execution bounded CRN.
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Execution bounded CRNs can compute 
threshold predicates
Theorem: Every threshold predicate [w1x1 + … + wkxk ≤ c?] can be stably 
computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 – 5x3 ≤ 4?], in addition to 
inputs X1, X2, X3, start with 1 LY (yes voter/leader) and 4 N, and have 
reactions:

36

X1→2P
X2→3P
X3→5N

LY+P→ LN

LN+N→ LY

P will have count = 
weighted sum of inputs 
with positive weights

N will have count = 
weighted sum of inputs 
with negative weights 
(including constant –4)

Now we compute majority [P ≤ N?]



Execution bounded CRNs can compute       
mod predicates
Theorem: Every mod predicate [w1x1 + … + wkxk ≡ c  mod m?] can be 
stably computed by a single-voting execution bounded CRN.
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Execution bounded CRNs can compute       
mod predicates
Theorem: Every mod predicate [w1x1 + … + wkxk ≡ c  mod m?] can be 
stably computed by a single-voting execution bounded CRN.

Proof by example: To compute [2x1 + 3x2 ≡ 4  mod 5?], in addition to 
inputs X1, X2, start with 1 L0, and have reactions:

37

Li + X1→Li+2  mod 5

Li + X2→Li+3  mod 5

for i = 0,1,2,3,4

L4 votes yes,    L0, L1, L2, L3 vote no



Composing CRNs to compute Boolean 
combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates      

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs 
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].
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Proof : To compute [not φ1], swap votes of voting species.
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combinations of predicates

Theorem: If single-voting, execution bounded CRNs C1 and C2 stably compute predicates      

φ1: ℕk→{Y,N} and φ2: ℕk→{Y,N}, then there are single-voting, execution bounded CRNs 
stably computing [φ1 and φ2], [φ1 or φ2], and [not φ1].

Proof : To compute [not φ1], swap votes of voting species.

To compute [φ1 and φ2] and [φ1 or φ2], “split” each input X via reaction X→X1 + X2, so C1 
operates on X1 and C2 operates on X2.
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“global” voters of composed CRN:
VNN, VNY, VYN, VYY; start with 1 VNN

Let SY, SN be yes and no voters of C1

Let TY, TN be yes and no voters of C2

Voters of C1 and C2 influence global voters:

SY + VNN→ SY + VYN

SY + VNY→ SY + VYY

SN + VYN→ SN + VNN

SN + VYY→ SN + VNY

TY + VNN→ TY + VNY

TY + VYN→ TY + VYY

TN + VNY→ TN + VNN

TN + VYY→ TN + VYN

C1 is execution bounded, so can only switch 
between SY and SN a finite number of times, 
limiting how many times we can flip between 
VN? and VY?, so full CRN is execution bounded.



Open question

• Using standard stochastic model of chemical kinetics (not shown), the 
execution bounded CRNs stably computing semilinear predicates can be 
shown to take expected time O(n log n) to converge.
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Open question

• Using standard stochastic model of chemical kinetics (not shown), the 
execution bounded CRNs stably computing semilinear predicates can be 
shown to take expected time O(n log n) to converge.

• Without the execution bounded constraint, it is known they can be 
computed exponentially faster: polylog(n). [Angluin, Aspnes, Eisenstat,    
Fast computation by population protocols with a leader, DISC 2006]

• Conjecture: Execution bounded CRNs require Ω(n) time to stably 
compute any non-eventually constant predicate (e.g., majority or parity).
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Thank you!

Questions?
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