
Fast algorithmic self-assembly of simple shapes

using random agitation

Ho-Lin Chen∗ David Doty† Dhiraj Holden‡

Chris Thachuk§ Damien Woods¶ Chun-Tao Yang‖

Abstract

We study the power of uncontrolled random molecular movement in the nubot
model of self-assembly. The nubot model is an asynchronous nondeterministic cellular
automaton augmented with rigid-body movement rules (push/pull, deterministically
and programmatically applied to specific monomers) and random agitations (nonde-
terministically applied to every monomer and direction with equal probability all of
the time). Previous work on the nubot model showed how to build simple shapes such
as lines and squares quickly—in expected time that is merely logarithmic of their size.
These results crucially make use of the programmable rigid-body movement rule: the
ability for a single monomer to control the movement of a large objects quickly, and only
at a time and place of the programmers’ choosing. However, in engineered molecular
systems, molecular motion is largely uncontrolled and fundamentally random. This
raises the question of whether similar results can be achieved in a more restrictive, and
perhaps easier to justify, model where uncontrolled random movements, or agitations,
are happening throughout the self-assembly process and are the only form of rigid-body
movement. We show that this is indeed the case: we give a polylogarithmic expected
time construction for squares using agitation, and a sublinear expected time construction
to build a line. Such results are impossible in an agitation-free (and movement-free)
setting and thus show the benefits of exploiting uncontrolled random movement.

∗National Taiwan University. holinchen@ntu.edu.tw. Supported by NSC grant 101-2221-E-002-122-
MY3.
†California Institute of Technology. ddoty@caltech.edu. Supported by National Science Foundation

grants 0832824 & 1317694 (The Molecular Programming Project), CCF-1219274, CCF-1162589.
‡California Institute of Technology. dholden@caltech.edu. Supported by NSF grant CCF-1219274.
§California Institute of Technology. thachuk@caltech.edu. Supported by NSF grant CCF/HCC-1213127

& a Banting Fellowship.
¶California Institute of Technology. woods@caltech.edu. Supported by National Science Foundation

grants 0832824 & 1317694 (The Molecular Programming Project), CCF-1219274, CCF-1162589.
‖National Taiwan University. havachoice@gmail.com. Supported by NSC grant 101-2221-E-002-122-

MY3.

1

ar
X

iv
:1

40
9.

48
28

v1
 [

cs
.D

S]
 1

6
Se

p
20

14

holinchen@ntu.edu.tw
ddoty@caltech.edu
dholden@caltech.edu
thachuk@caltech.edu
woods@caltech.edu
havachoice@gmail.com

1 Introduction

Every molecular structure that has been self-assembled in nature or in the lab was assembled
in conditions (above absolute zero) where molecules are vibrating relative to each other,
randomly bumping into each other via Brownian motion, and often experiencing rapid
uncontrolled fluid flows. It makes sense then to study a model of self-assembly that includes,
and indeed allows us to exploit and program, such phenomena. It is a primary goal of this
paper to show the power of self-assembly under such conditions.

In the theory of molecular-scale self-assembly, millions of simple interacting components
are designed to autonomously stick together to build complicated shapes and patterns.
Many models of self-assembly are cellular automata-like crystal growth models, such as
the abstract tile assembly model [9]. Indeed this and other such models have given rise
to a rich theory of self-assembly [5, 8, 10]. In biological systems we frequently see much
more sophisticated growth processes, where self-assembly is combined with active molecular
motors that have the ability to push and pull large structures around. For example, during
the gastrulation phase of the embryonic development of the model organism Drosophila
melanogaster (a fly) large-scale (100s of micrometers) rearrangements of the embryo are
effected by thousands of (nanoscale) molecular motors working together to rapidly push
and pull the embryo into a final desired shape [4, 7]. We wish to understand, at a high level
of abstraction, the ultimate computational capabilities and limitations of such molecular
scale rearrangement and growth.

The nubot model of self-assembly, put forward in [11], is an asynchronous nondeter-
ministic cellular automaton augmented with non-local rigid-body movement. Unit-sized
monomers are placed on a 2D hexagonal grid. Monomers can undergo state changes, appear,
and disappear, using local cellular-automata style rules. However, there is also a non-local
aspect to the model, a kind of rigid body movement that comes in two forms: movement
rules and random agitations. A movement rule r, consisting of a pair of monomer states
A,B and two unit vectors, is a programatic way to specific unit-distance translation of a
set of monomers in one step. If A and B are in a prescribed orientation, one is nondeter-
ministically chosen to move unit distance in a prescribed direction. The rule r is applied
in a rigid-body fashion: if A is to move right, it pushes anything immediately to its right
and pulls any monomers that are bound to its left (roughly speaking) which in turn push
and pull other monomers, all in one step. The rule may not be applicable if it is blocked
(i.e. if movement of A would force B to also move), which is analogous to the fact that an
arm can not push its own shoulder. The other form of movement in the model is called
agitation: at every point in time, every monomer on the grid may move unit distance in any
of the six directions, at unit rate for each (monomer, direction) pair. An agitating monomer
will push or pull any monomers that it is adjacent to, in a way that preserves rigid-body
structure, all in one step. Unlike movement, agitations are never blocked. Rules are applied
asynchronously and in parallel in the model. Taking its time model from stochastic chemical
kinetics, a nubot system evolves as a continuous time Markov process.

2

In summary, there are two kinds of one-step parallel movement in the model: (a)
a movement rule is applied only to a pair of monomers with the prescribed states and
orientation, and then causes the movement of one of these monomers along with other
pushed/pulled monomers, whereas (b) agitations are always applicable at every time instant,
in every direction and to every monomer throughout the grid and an agitating monomer
may push/pull other monomers.

In previous work, the movement rule was exploited to show that nubots are very efficient
in terms of their computational ability to quickly build complicated shapes and patterns.
Agitation was treated as something to be robust against (i.e. the constructions in [11, 2]
work both with and without agitation), which seems like a natural requirement when
building structures in a molecular-scale environment. However, it was left open as to
whether the kind of results achieved with movement could be achieved without movement,
but by exploiting agitation [2]. In other words, it was left open as to whether augmenting
a cellular automaton with an uncontrolled form of random rigid-body movement would
facilitate functionality that is impossible without it. Here we show this is the case.

Agitation, and the movement rule, are defined in such a way that larger objects move
faster, and this is justified by imagining that we are self-assembling rigid-body objects
in a nanoscale environment where there is not only diffusion and Brownian motion but
also convection, turbulent flow, cytoplasmic streaming and other uncontrolled inputs of
energy interacting with each monomer in all directions. It remains as an interesting open
research direction to look at the nubot model but with a slower rate model for agitation
and movement, specifically where we hold on to the notion of rigid body movement and/or
agitation but where bigger things move slower, as seen in Brownian motion for example.
Independent of the choice of rate model, one of our main motivations here is to understand
what can be done with asynchronous, distributed and parallel self-assembly with rigid body
motion: the fact that our systems work in a parallel fashion is actually more important to
us than the fact they are fast. It is precisely this engineering of distributed asynchronous
molecular systems that interests us.

The nubot model is related to, but distinct from, a number of other self-assembly
and robotics models as described in [11]. Besides the fact that biological systems make
extensive use of molecular-scale movements and rearrangements, in recent years we have
seen the design and fabrication of a number of molecular-scale DNA motors [1] and active
self-assembly systems which also serve to motivate our work, details of which can be found
in previous papers on nubots [11, 2].

1.1 Results and future work

Let the agitation nubot model denote the nubot model without the movement rule and with
agitation (see Section 2 for formal definitions). The first of our two main results shows that
agitation can be exploited to build a large object exponentially quickly:

3

Theorem 1. There is a set of nubot rules Nsquare, such that for all n ∈ N, starting from a
line of blog2 nc+ 1 monomers, each in state 0 or 1, Nsquare in the agitation nubot model
assembles an n × n square in O(log2 n) expected time, n × n space and O(1) monomer
states.

The proof is in Section 4. Our second main result shows that we can achieve sublinear
expected time growth of a length n line in only O(n) space:

Theorem 2. There is a set of nubot rules Nline, such that for any ε > 0, for sufficiently
large n ∈ N, starting from a line of blog2 nc+ 1 monomers, each in state 0 or 1, Nline in the
agitation nubot model assembles an n× 1 line in O(n1/3 log n) expected time, n× 5 space
and O(1) monomer states.

The proof is in Section 5. Lines and squares are examples of fundamental components for
the self-assembly of arbitrary computable shapes and patterns in the nubot model [11, 2, 3]
and other self-assembly models [5, 8].

Our work here suggests that random agitations applied in an uncontrolled fashion
throughout the grid are a powerful resource. However, are random agitations as powerful
as the programable and more deterministic movement rule used in previous work on the
nubot model [11, 2]? In other words can agitation simulate movement? More formally,
is it the case that for each nubot program N , there is an agitation nubot program AN ,
that acts just like N but with some m×m scale-up in space, and a k factor slowdown in
time, where m and k are (constants) independent of N and its input? This question is
inspired by the use of simulations in tile assembly as a method to classify and separate the
power of self-assembly systems, for more details see [6, 10]. It would also be interesting to
know whether the full nubot model, and indeed the agitation nubot model, are intrinsically
universal [6, 10]. That is, is there a single set of nubot rules that simulate any nubot
system? Is there a single set of agitation nubot rules that simulate any agitation nubot
system? Here the scale factor m would be a function of the number of monomer states of
the simulated system N . As noted in the introduction, it remains as an interesting open
research direction to look at the nubot model but with a slower rate model for agitation
and movement, as seen in Brownian motion, for example.

2 The nubot model

In this section we formally define the nubot model. Figure 1 gives an overview of the model
and rules, and Figure 2 gives examples of agitation. Figure 3 shows a simple example
construction using only local rules.

The model uses a two-dimensional triangular grid with a coordinate system using axes
x and y as shown in Figure 1(a). A third axis, w, is defined as running through the origin
and through −→w = −−→x +−→y = (−1, 1), but we use only the x and y coordinates to define
position. The axial directions D = {±−→x ,±−→y ,±−→w } are the unit vectors along axes x, y, w.

4

1 1

(0,0) x

y

w

(1,0) (2,0)

(0,1)

(0,2)

(1,1)

p

p + yp + w

p + xp - x

p - wp - y

a b

Change states

1 1 2 3

Make a flexible bond

1 1

1 11 1

Break a rigid bond

2 31 1

Change a rigid bond to a flexible bond
and change states

1

2

1 1

Position change in the w direction

w

Base Arm

1 1

Appearance

b

1 a

Disappearance

1

AB

A

B

1

21 1

Position change in the -w direction

-w
BaseArm

A B

A

B

 r1

 r2

 r3

 r4

 r5

 r6

 r7

 r7

Figure 1: Overview of nubot model. (a) A nubot configuration showing a single nubot
monomer on the triangular grid. (b) Examples of nubot monomer rules. Rules r1-r6 are
local cellular automaton-like rules, whereas r7 effects a non-local movement. A flexible
bond is depicted as an empty red circle and a rigid bond is depicted as a solid red disk.
Rules and bonds are described more formally in Section 2. Figure 2 describes agitation.

A grid point −→p ∈ Z2 has the set of six neighbors {−→p +−→u | −→u ∈ D}. Let S be a finite set
of monomer states. A nubot monomer is a pair X = (si, p(X)) where si ∈ S is a state and
p(X) ∈ Z2 is a grid point. Two monomers on neighboring grid points are either connected
by a flexible or rigid bond, or else have no bond (called a null bond). Bonds are described
in more detail below. A configuration C is a finite set of monomers along with all of the
bonds between them (unless otherwise stated a configuration consists of all of the monomers
on the grid and their bonds).

One configuration transitions to another either via the application of a rule that acts on
one or two monomers, or by an agitation. For a rule r = (s1, s2, b,−→u)→ (s1′, s2′, b′,−→u ′),
the left and right sides of the arrow respectively represent the contents of the two monomer
positions before and after the application of r. Specifically, s1, s2, s1′, s2′ ∈ S ∪ {empty}
are monomer states where empty denotes lack of a monomer, b, b′ ∈ {flexible, rigid, null}
are bond types, and −→u ,−→u ′ ∈ D are unit vectors. b is a bond type between monomers
with state s1 and s2, and −→u ∈ D is the relative position of a monomer with state s2 to
a monomer with state s1 (likewise for b′, s1′, s2′,−→u ′). At most one of s1, s2 is empty (we
disallow spontaneous generation of monomers from empty space). If empty ∈ {s1, s2} then
b = null, likewise if empty ∈ {s1′, s2′} then b′ = null (monomers can not be bonded to empty
space).

A rule either does not or does involve movement (translation). First, in the case of
no movement we have −→u = −→u ′. Thus we have a rule of the form r = (s1, s2, b,−→u) →
(s1′, s2′, b′,−→u), where the monomer pair may change state (s1 6= s1′ and/or s2 6= s2′)
and/or change bond (b 6= b′), examples are shown in Figure 1(b). If si ∈ {s1, s2} is empty
and s′i is not, then the rule is said to induce the appearance of a new monomer at the empty
location. If one or both monomer states go from non-empty to empty, the rule induces the
disappearance of one or both monomers. Second, in the case of a movement rule, the rule
has a specific form as defined in Appendix A. Movement rules are not used in the agitation
nubot model studied in this paper, and so their definition may be skipped by the reader. A

5

1

2

(0,0)(0,0)

2
(0,0)

2

1

1

1 2

1

2

Figure 2: Top: Example agitations. Starting from the centre configuration, there are 48
possible agitations (8 monomers, 6 directions each), any one of which is chosen with
equal probability 1/48. The right configuration results from the agitation of the monomer
at position (1, 2) in the direction →, starting from the centre configuration. The left
configuration results from the agitation of the monomer at position (2, 1) in the direction←,
starting from the centre configuration. The shaded monomers are the agitation set—the set
of monomers that are moved by the agitation—when beginning from the centre configuration.
Bottom: simplified ball-and-stick representation of the monomers and their bonds, which is
used in a number of other figures.

rule is only applicable in the orientation specified by −→u .
To define agitation we introduce some notions. Let −→v ∈ D be a unit vector. The

−→v -boundary of a set of monomers S is defined to be the set of grid points outside of S that
are unit distance in the −→v direction from monomers in S.

Definition 3 (Agitation set). Let C be a configuration containing monomer A, and let
−→v ∈ D be a unit vector. The agitation set A(C,A,−→v) is defined to be the smallest monomer
set in C containing A that can be translated by −→v such that: (a) monomer pairs in C that
are joined by rigid bonds do not change their relative position to each other, (b) monomer
pairs in C that are joined by flexible bonds stay within each other’s neighborhood, and (c)
the −→v -boundary of A(C,A,−→v) contains no monomers.

We now define agitation. An agitation step acts on an entire configuration C as follows.
A monomer A and unit vector −→v are selected uniformly at random from the configuration
of monomers C and the set of six unit vectors D respectively. Then, the agitation set
A(C,A,−→v) of monomers (Definition 3) moves by vector −→v .

Figure 2 gives two examples of agitation. Some remarks on agitation: It can be seen that
for any non-empty configuration the agitation set is always non-empty. During agitation,
the only change in the system configuration is in the positions of the constituent monomers
in the agitation set, and all of the monomers’ states and bond types remain unchanged. We
let the agitation nubot model be the nubot model without the movement rule. Agitation is
intended to model movement that is not a direct consequence of a rule application, but

6

rather results from diffusion, Brownian motion, turbulent flow or other uncontrolled inputs
of energy.

A nubot system N = (C0,R) is a pair where C0 is the initial configuration, and R is the
set of rules. If configuration Ci transitions to Cj by some rule r ∈ R, or by an agitation step,
we write Ci ` Cj . A trajectory is a finite sequence of configurations C1, C2, . . . , C` where
Ci ` Ci+1 and 1 ≤ i ≤ `− 1. A nubot system is said to assemble a target configuration Ct
if, starting from the initial configuration C0, every trajectory evolves to a translation of Ct.

A nubot system evolves as a continuous time Markov process. The rate for each rule
application, and for each agitation step, is 1. If there are k applicable transitions for a
configuration Ci (i.e. k is the sum of the number of rule and agitation steps that can be
applied to all monomers), then the probability of any given transition being applied is 1/k,
and the time until the next transition is applied is an exponential random variable with
rate k (i.e. the expected time is 1/k). The probability of a trajectory is then the product of
the probabilities of each of the transitions along the trajectory, and the expected time of
a trajectory is the sum of the expected times of each transition in the trajectory. Thus,∑

t∈T Pr[t] · time(t) is the expected time for the system to evolve from configuration Ci
to configuration Cj , where T is the set of all trajectories from Ci to any configuration
isomorphic (up to translation and agitation) to Cj , that do not pass through any other
configuration isomorphic to Cj , and time(t) is the expected time for trajectory t.

The complexity measure number of monomers is the maximum number of monomers
that appears in any configuration. The number of states is the total number of distinct
monomer states that appear in the rule set. Space is the maximum area, over the set of all
reachable configurations, of the minimum area l×w rectangle (on the triangular grid) that,
up to translation, contains all monomers in the configuration.

2.1 Example: A simple, but slow, method to build a line

Figure 3, taken from [11], shows a simple method to build a length n line in expected
time n, using O(n) monomer states. Here, the program is acting as an asynchronous cellular
automata and is not exploiting the ability of a large set of monomers to quickly move via
agitation. Our results show that by using agitation we can do much better than this very
slow and expensive (many states) method to grow a line.

3 Synchronization via agitation

In this section we describe a fast method that uses agitation to synchronize the states of a
line of monomers, or in other words, to reach consensus. Specifically, the synchronization
problem is: given a length-m line of monomers that are in a variety of states but that
all eventually reach some target state s, then after all m monomers have reached state s,
communicate this fact to all m monomers in O(logm) expected time.

7

i 0 i-1

a b

n
r_n-1

0 0 0 0 000 n-1 n-2
r_n-2 r_n-3 r_0r_i-1

where n > i > 0

System evolutionRules

length n line

Figure 3: A nubot system that slowly grows a length n line in O(n) time, n monomer
states, and using space n × 1. (a) Rule set: Rslow line

n = {ri | ri = (i, empty, null, ~x) →
(0, i− 1, rigid, ~x), where n > i > 0}. (b) Starting from an initial configuration with a single
monomer in state n, the system generates a length n line. Taken from [11].

Lemma 4 (Synchronization). A line of monomers of length m ∈ N can be synchronized (all
monomers put into the same state) in O(logm) expected time, m× 2 space and O(1) states.

The proof is described in Figure 4 and its caption. The figure gives a synchronization rou-
tine that is used throughout our constructions. This is a modification of the synchronization
routine in [11], made to work with agitation instead of the movement rule.

4 Building squares via agitation

This section contains the proof of our first main result, Theorem 1, which we restate here:

Theorem 1. There is a set of nubot rules Nsquare, such that for all n ∈ N, starting from a
line of blog2 nc+ 1 monomers, each in state 0 or 1, Nsquare in the agitation nubot model
assembles an n × n square in O(log2 n) expected time, n × n space and O(1) monomer
states.

Proof. Overview of construction. Figure 5 gives an overview of our construction. A
binary string that represents n ∈ N in the standard way is encoded as a string x, of length
` = blog2 nc+ 1, of adjacent rigidly bound binary nubot monomers (each in state 0 or 1)
placed somewhere on the hexagonal grid.

The leftmost of these monomers begins an iterated square-doubling process, that happens
exactly ` times. Each iteration of this square-doubling process: reads the current most
significant bit xi of x, where 0 ≤ i ≤ `, stores it in the state of a monomer in the top-left
of the square and then deletes xi. Then, if xi = 0 it takes an m×m comb structure and
doubles its size to give a 2m× 2m comb structure, or if xi = 1 it gives a (2m+ 1)× (2m+ 1)
structure. We will prove that each square-doubling step takes O(logm) time. There are `
rounds of square-doubling, i.e. the number of input monomers ` act as a counter to control
the number of iterations, and since m ≤ n throughout, the process completes in the claimed
expected time of O(log2 n). The main part of the construction, detailed below, lies in the
details of how each doubling step works and an expected time analysis, and constitutes the
remainder of the proof.

8

Rigid bond

Flexible bond

Monomer added

Agitate right

(7)

(5)(6)

(12)

(13)

Build ynchronization row

Agitate left

Unsynchronized

(8)

(9)

(10)

(11)

(14)

(15)

Synchronized

Unsynchronized
(1)

(2)

(3)

(4)

(5)

Stable structure

Unstable structure

Stable structure

Agitate

Agitate

Agitate
Synchronized

Figure 4: Synchronization via agitation: a nubot construction to synchronize (or send a
signal, or reach consensus) between n monomers in O(log n) expected time. Steps (1)–(6):
build a row of monomers called the synchronization row. Rigid bonds are converted to
flexible bonds in such a way that agitations do not change the relative position of monomers.
A structure with this property is said to be stable. Specifically, monomers are added using
rigid vertical bonds; new monomers join to left-right neighbours using rigid horizontal
bonds; when a monomer is bound horizontally to both neighbours it makes its vertical bond
flexible; monomers on the extreme left and right of the synchronization row are treated
differently—their vertical bonds become flexible after joining any horizontal neighbour. This
enforces that the entire structure is stable up until the final horizontal bond is added, and
then the structure becomes unstable in such a way that the synchronization row can agitate
left-right relative to the backbone row. Steps (7)–(10), the structure is not stable, and the
synchronization row is free to agitate left and right relative to the backbone row. While
agitating, the synchronization row spends half the time to the left, and half to the right, of
the backbone row. However, whenever the synchronization row is to the right a rigid bond
may form between any synchronization row monomer and the backbone monomer directly
above, hence the first such bond forms in expected time 1/m, where m is the length of
the backbone. Then all bonds become rigid in O(logm) expected time, during which time
(12)–(15) the backbone monomers change their state to the final synchronized state.

9

(1) (2) (3) (5)

(6) (7) (9)

(4)

(8)

Figure 5: An overview of the square doubling algorithm that grows an m×m zig-zag “comb”
to a 2m× 2m comb. (1) An initial m×m comb with vertical teeth, is (2) “half-doubled” to
give a b1.5mc ×m comb, which is (3) again half-doubled to give a 2m×m comb. (4)–(5)
The internal bond structure is reconfigured to give a comb with horizontal teeth. (6)–(7)
this comb is vertically doubled in size and then (8)–(9) reconfigured to give a 2m × 2m
comb with vertical teeth. The green lines indicate temporary synchronization rows that are
used when reorientating the teeth of the comb.

Square-doubling. A single square-doubling consists of four phases: two horizontal
“half-doublings” and two vertical half-doublings. Figure 5 gives an overview. Figure 6 gives
the details of how we do the first of two horizontal half-doublings; more precisely, the figure
shows how to go from an m×m structure to a structure of size b1.5mc ×m. Assume we
are at a configuration with m vertical comb teeth (Figure 6(1)) each of height m (plus some
additional monomers). Teeth are numbered from the left t1, t2, . . . , tm. Each tooth monomer
undergoes agitation. It can be seen in Figure 6(1)–(4), from the bond structure, that the
only agitations that change the relative position of monomers are left or right agitations
which move the green flexible bonds (depicted as dashed lines)—all other agitations move
the entire structure without changing the relative positions of any monomers. Furthermore,
left-right monomer agitations can create gaps between teeth ti and t1+1 for even i only—for
odd i, teeth ti and t1+1 are rigidly bound. An example of a gap opening between tooth t4
and tooth t5 is shown in Figure 6(2). If a gap appears between teeth ti and t1+1 then each
of the m monomers in tooth ti tries to attach a new purple monomer to its right (with
a rigid bond, and each at rate 1), so attachment for any monomer to tooth i happens at
rate m. (Note that the gap is closing and opening at some rate also—details in the time
analysis.) After the first such purple monomer appears, the gap gi, to the right of tooth ti,
is said to be “initially filled”. For example, in Figure 6(4), gap g2 is initially filled.

When gaps appear between teeth monomers, and then become initially filled, additional
monomers are attached, asynchronously and in parallel. Monomers attaching to tooth ti
initially attach by rigid bonds as shown in Figure 6(4). As new monomers attach to ti,
they then attempt to bind to each other vertically, and after such a binding event they
undergo a sequence of bond changes—see Figure 6(4)-(9). Specifically, let si,j be the jth

monomer on the newly-forming “synchronization row” si adjacent to ti. When the neighbors

10

si
ti

(1) (2) (3) (4)

(5) (6) (7)

(10)(9)(8)

Figure 6: The m×m to b1.5mc ×m horizontal half-doubling algorithm, for m = 8. This
shows the details for step (1) to (2) of Figure 5. Monomer states are denoted using colours
(bonds are also coloured for readability). Rigid bonds are solid, flexile bonds are dotted.
See main text for details.

si,j−1, si,j+1 of monomer si,j appear, then si,j forms rigid bonds with them (at rate 1).
After this, si,j changes its rigid bonds to ti,j to flexible. The top and bottom monomers
si,1, si,m are special cases: their bonds to ti,1, ti,m become flexible after they have joined
to their (single) neighbors si,2, si,m−1. Changing bonds in this order guarantees that only
after all monomers of si have attached, and not before, the synchronization row si is free
to agitate up and down relative to the tooth ti (this is the same technique for building a
synchronization row as described in Section 3). The new vertical synchronization row si is
then free to agitate up and down relative to its left-adjacent tooth ti. When si,j is “down”
relative to ti,j the horizontal bonds between si,j and ti,j become rigid, at rate 1 per bond
(Figure 6(6)–(7)). When the vertical synchronization of si is done, a message is sent from
the top monomer ti,m of ti (after its bond to si,m becomes rigid) to the adjacent monomer
at the top of the comb. This results in the formation of a horizontal synchronization row at
the top of the structure. Using a similar technique, a horizontal synchronization row grows
at the bottom of the structure. After all 2b0.5mc such messages have arrived, and not
before, the horizontal synchronization rows at the top and bottom of the (now) b1.5mc×m
comb change the last of their rigid (vertical) bonds to flexible and those synchronization
rows are free to agitate left/right and then lock into position, signaling to all monomers
along their backbone that the first of the four half-doublings of the comb has finished.

11

The system prepares for the next horizontal half-doubling which will grow the b1.5mc×m
comb to be an 2m×m comb. The bonds at the top and bottom horizontal synchronization
rows reconfigure themselves (preserving connectivity of the overall structure—see the
description of reconfiguration below) in such a way as to build the gadgets needed for
the next half-doubling. (Specifically, we want to now double teeth ti for odd i ≤ m.)
The construction proceeds similarly to the first half-doubling, except for the following
change. After tooth synchronization row s1 has synchronized, tooth t1 grows a vertical
synchronization row to its left, and after sm has synchronized, tooth tm grows a vertical
synchronization row to its right (Figure 5(4)). These two synchronization rows are used to
set-up the bond structure for the next stage of the construction (where we will reconfigure
the entire comb so that the teeth are horizontal).

This covers the case of the input bit being 0. Otherwise, if the input bit is 1, adding
an extra tooth can be done using the single vertical synchronization row on the right—it
reconfigures itself to have the bond structure of a tooth and then grows a new vertical
synchronization row.
Reconfiguration. Next we describe how the comb with vertical teeth is reconfigured to
have horizontal teeth, as in Figure 5(4)–(5). After synchronization row si has synchronized,
each monomer si,j in si already has a rigid horizontal bond to monomer ti,j . After both si
and si+1 have synchronized, for all j, monomers si,j and ti+1,j bond using a horizontal rigid
bond (at rate 1) for each pair (si,j , ti+1,j). Monomers ti and si then delete their vertical rigid
bonds in such a way that preserves the overall connectivity of the structure. (For these bond
reconfigurations we are simply using local—asynchronous cellular automaton style—rules
that preserves connectivity. This trick has been used in previous nubot constructions in
Section 6.5 of [11] and in [2].) This leads to a bond structure similar to that in Figure 6(10)
both with roughly twice the number of horizontal purple bonds: i.e. for each j, 1 ≤ j ≤ m,
there is now a horizontal straight line of purple bonds from the jth monomer on the leftmost
vertical line to the jth monomer on the rightmost vertical line. While this reconfiguration
is taking place, the leftmost and rightmost vertical synchronization rows synchronize and
delete themselves, leaving appropriate gadgets to connect the horizontal teeth: this signals
the beginning of the next two half-doubling steps.
Expected time, space and states analysis. Lemma 5 states that the expected time to
perform a half-doubling is O(logm) for an m×m comb, and since n ≤ m, the slowest half-
doubling takes expected time O(log n). Each doubling involves 2 horizontal half-doubling
phases, and 2 vertical half-doubling phases, and the 4 phases are separated by discrete
synchronization events. Reconfiguration involves O(n2) bond and state change events, that
take place independently and in parallel (O(log n) expected time) as well as a constant
number of synchronizations that each take O(log n) expected time. Hence for 4(blog2 nc+ 1)
such half-doublings, plus blog2 nc + 1 reconfigurations, we get an overall expected time
of O(log2 n).

We’ve sketched how to make an n× n structure in (n+ 2)× (n+ 2) space. To make
the construction work in n × n space, we first subtract 2 from the input, and build an

12

(n − 2) × (n − 2) structure, and then at the final step have the leftmost and rightmost
horizontal, and topmost and bottommost vertical, synchronization rows become rigid and
be the border of the final n× n structure. A final monomer is added on the top left corner
and we are done. By stepping through the construction it can be seen that O(1) monomer
states are sufficient.

Intuitively, the following lemma holds because the long (length m) teeth allow for
rapid, O(1) time per tooth, and parallel insertion of monomers to expand the width of
the comb. This intuition is complicated by the fact that teeth agitating open and closed
may temporarily block other teeth inserting a new monomer. However, after an insertion
actually happens further growth occurs independently and in parallel, taking logarithmic
expected time overall.

Lemma 5. A comb with m teeth where each tooth is of height m, can be horizontally
half-doubled to length b1.5mc in expected time O(logm) in the agitation nubot model.

Proof. Consider tooth i, where 1 ≤ i ≤ m for i even. A tooth can be open, closed or
initially filled (one new monomer inserted). Although the remaining structure can
affect the transition probabilities relevant to tooth i, in any state, the rate at which the
tooth transitions from closed to open is at least m, the rate that it transitions from open

to closed is at least m and at most m2, and the rate at which it transitions from open to
initially filled is exactly m. We define a new simpler Markov process, with states open,
closed, and initially filled and the transition probabilities just described, which is
easier to analyze than the underlying full process. Clearly, the random variable representing
the time for the new simpler process to transition from closed to initially filled upper
bounds the random variable representing the time for the underlying full nubot process
to do the same for a single tooth. We now show that this random variable has expected
value O(1).

Let TCF be the random variable representing the time to go from closed to initially

filled. Let TCO be the random variable representing the time to go from closed to
open. Let TOC be the random variable representing the time to go from open to closed,
conditioned on that transition happening, and define TOF similarly for going from open to
initially filled. Note that E[TCO] ≤ 1

m , 1
m2 ≤ E[TOC] ≤ 1

m , and E[TOF] = 1
m . Let Ei

represent the event that the process revisits state closed exactly i times after being in state
open, and immediately before reaching state initially filled. Let Ti be the random
variable representing the time to take exactly i cycles between the states open and closed.
Let C be the random variable representing the number of cycles taken between the states
open and closed before transitioning to state initially filled. Each time the process
is in state open, independently of how many cycles have happened (memoryless), it has
probability ≥ 1

m to go to state initially filled, so C is upper-bounded by a geometric

13

random variable with E[C] ≤ m. Then

E[TCF] = E[TCO] + E[TOF] +
∞∑
i=0

Pr[Ei] · E[Ti]

≤ 2

m
+
∞∑
i=0

Pr[Ei] · E[Ti]

and since E[TCO] ≤ 1
m and E[TOC] ≤ 1

m we can substitute for E[Ti]

E[TCF] ≤ 2

m
+
∞∑
i=0

Pr[Ei] · i ·
(

1

m
+

1

m

)

=
2

m
+

(
1

m
+

1

m

) ∞∑
i=0

Pr[Ei] · i

=
2

m
+

(
2

m

)
E[C]

=
2

m
+

(
2

m

)
m ≤ 3 = O(1).

By Markov’s inequality, the probability is at most 1
2 that it will take more than time 6

to reach from closed to initially filled. Because of the memoryless property of the
Markov process, conditioned on the fact that time t has elapsed without reaching state
initially filled, the probability is at most 1

2 that it will take more than t+ 6 time to
reach state initially filled. Hence for any t > 0, the probability that it will take more
than 6t time to reach from state closed to initially filled is at most 2−t.

Since this tail probability decreases exponentially, it follows that for m/2 teeth, the
expected time for all of them to reach state initially filled is O(logm).

5 Building lines via agitation

In this section we prove our second main theorem, Theorem 2. We prove this by giving
a line construction that works in merely n × 5 = O(n) space while achieving sublinear
expected time O(n1/3 log n), and O(1) monomer states.

Theorem 2. There is a set of nubot rules Nline, such that for any ε > 0, for sufficiently
large n ∈ N, starting from a line of blog2 nc+ 1 monomers, each in state 0 or 1, Nline in the
agitation nubot model assembles an n× 1 line in O(n1/3 log n) expected time, n× 5 space
and O(1) monomer states.

14

(1)

(2) (3) (4)

(5) (6) (7)

(9)(8)

Figure 7: Line doubling construction. The inner component is called the sword, which
agitates left/right relative to the outer component called the scabbard (both are in black).
The black sword-and-scabbard are doubled from length m = 8 to length 2m = 16. Other
monomers (red, green, blue) serve to both ratchet the movement, and to quickly in parallel
build up the mass of the doubled sword-scabbard.

Proof. Overview of construction. The binary expansion of n ∈ N is encoded as a
horizontal line, denoted x, of ` = blog2 nc + 1 adjacent binary nubot monomers (each
in state 0 or 1) with neighbouring monomers bound by rigid bonds, placed somewhere
on the hexagonal grid. First, the leftmost of these monomers triggers the growth of a
constant sized (length 1) sword and scabbard structure. Then an iterated doubling process
begins, that happens exactly ` times and will result in a sword-and-scabbard of length n
(and height 5). At step i of doubling, 1 ≤ i ≤ `, the leftmost of the input monomers xi
(from x) is “read”, and then deleted. If xi = 0 then there will be a doubling of the length
of the sword-and-scabbard, else if xi = 1 there will be a doubling of the length of the
sword-and-scabbard with the addition of one extra monomer. It is straightforward to check
that this doubling algorithm finishes with a length n object after ` rounds. After the final
doubling step, a synchronization occurs, and then ≤ 4n of the monomers are deleted (in
parallel) in such a way that an n× 1 line remains. All that remains is to show the details
of how each doubling step works.
Construction details. Figure 7 describes the doubling process in detail: at iteration i of
doubling assume that (a) we read an input bit 0, and that (b) we have a sword-and-scabbard
structure of length m (and height 5). Since the input bit is 0 we want to double the length
to 2m. As shown in Figure 7(1), we begin with the sword sheathed in the scabbard. We
next describe a biased (or ratcheted) random walk process that will ultimately result in
the sword being withdrawn all the way to the hook, giving a structure of length 2m. Via
agitation, the sword may be unsheathed by moving out (to the left) of the scabbard, or by
the scabbard moving (to the right) from the sword, although, because of the hook the sword
can never be completely withdrawn and hence the two components will never drift apart.1

The withdrawing of the sword is a random walk process with both the sword and scabbard

1Besides preserving correctness of the construction, the hook is a safety feature, and hence the sword is
merely decorative.

15

agitating left-right. While this is happening, each monomer—at unit rate, conditioned
on that monomer being unsheathed—on the top row of the sword tries to attach a new
monomer above. Any such attachment event that succeeds acts as a ratchet that biases
the random walk process in the forward direction. Also, as the sword is unsheathed each
unsheathed sword monomer at the bottom of the sword attaches—at unit rate, conditioned
on that monomer being unsheathed—a monomer below, and each monomer on the top
(respectively, bottom) horizontal row of the scabbard tries to attach a monomer below
(respectively, above) it. These monomers can also serve as ratchets (although in our time
analysis below we ignore them which serves only to slow down the analysis). Eventually
the sword is completely withdrawn to the hook, and ratcheted at that position, so further
agitations do not change the structure.

At this point we are done with the doubling step, and the sword and scabbard reconfigure
themselves to prepare for the next doubling (or deletion of monomers if we are done).
Figure 7(6)–(9) gives the details. The attachment of new monomers results in 4 new
horizontal line segments, each of length m − 1. Each segment is built in the same way
as used for the synchronization technique shown in Section 3, Figure 4; specifically the
bonds are initially formed as rigid, and then transition to flexible in such a way that the
line segment (or “synchronization” row) is free to agitate relative to its “backbone” row
only when exactly all m bonds have formed. The line agitates left and right and is then
synchronized (or locked into place, see Figure 4) causing all m monomers on the line to
change state to “done”. When the two new line segments that attached to the bottom and
top of the sword are both done their rightmost monomers each bind to the scabbard with
a rigid bond (as shown in Figure 7(8)) and delete their bonds to the sword (Figure 7(9))
(note that the rightmost of the latter kind of bonds is not deleted until after binding to the
scabbard which ensures the entire structure remains connected at all times; also before the
leftmost bond on the bottom is deleted a new hook is formed which prevents the new sword
leaving the new scabbard prematurely). In a similar process, the two new line segments
that are attached to the scabbard form a new hook, bind themselves to the sword, and then
release themselves from the scabbard. We are new ready for the next stage of doubling.

The previous description assumed that the input bit is 0. If the input bit is instead 1
then after doubling both the sword and scabbard are increased in length by 1 monomer
(immediately before forming the hook on the new scabbard).

After the final doubling stage then O(n) monomers need to be deleted to leave an n× 1
line of rigidly bound monomers (the goal is to build a line) without having monomers drift
away (so as not to violate the space bound). This is relatively straightforward to achieve:
After the final doubling step, a synchronization occurs along the sword, and another along
the inside of the scabbard. Then these synchronisation rows signal that the bond structure
of all monomers should change to make fully connected n× 5 rectangle, which then changes
to become a “comb” with a horizontal rigidly connected length n line on top, and 4 “tooth”
monomers—with no horizontal bonds— hanging vertically from each top monomer. Using
monomer deletion rules, each tooth can then delete itself from bottom to top in 4 steps.

16

This comb is composed of the topmost row rigidly binds to the (inside of the scabbard)
below and the sword above, and then ≤ 4n of the monomers are deleted (in parallel) in
such a way that an n× 1 line remains.
Expected time analysis. Lemma 6 states the expected time for a single doubling event:
a length m sword is fully withdrawn to the hook, and locked into place, from a length m
scabbard in expected time O(m1/3 lnm).

Between each doubling event there is a reconfiguration of the sword and scabbard. Each
reconfiguration invokes a constant number of synchronizations which, via Lemma 4, take
expected time O(logm) each. Changing of the bond structure also takes place in O(logm)
expected time since each of the four new line segments change their bonds independently, and
within a line segment all bond changes (expect for a constant number) occur independently
and in parallel.

There are ` = blog2 nc + 1 doubling plus reconfiguration events. By Lemma 6, and
noting that the length of the sword and scabbard structure during the k’th doubling event
is m = Θ(2k), each doubling event takes time at most c(2k)1/3 ln 2k on the k’th event for
some constant c. Then the total expected time is upper bounded by the geometric series

`−1∑
k=0

c(2k)1/3 ln 2k < c `
`−1∑
k=0

(21/3)k

= c `
1− (21/3)`

1− 21/3

= c ` ·O((21/3)`)

= O(n1/3 log n).

5.1 Line length-doubling analysis

The following lemma is used in the proof of Theorem 2 and states that, starting from
length m, one “length-doubling” stage of the line construction completes in expected time
O(m1/3 lnm). Intuitively, the proof shows that the rapid agitation process is a random walk
that quickly exposes a large portion of the sword, to which a monomer quickly attaches.
This attachment irreversibly “ratchets” the random walk forward, preventing it from walking
backwards beyond the attachment position. Eventually the process finishes with the sword
completely withdrawn and locked into the withdrawn position.

Lemma 6. The expected time for one line-doubling stage (doubling the length) of a length m
sword and scabbard is O(m1/3 lnm).

Proof. Each stage of the line construction starts with the sword completely inside the
scabbard. Any monomer of the sword outside of the scabbard creates a “blocking monomer”

17

to its north (top) at constant rate 1, with a rigid bond, so that no part of the sword to the
left of any blocking monomer (in particular, the rightmost blocking monomer) can re-enter
the scabbard. The stage is completed when the sword is completely out of the scabbard
(to the hook) and the rightmost monomer in the sword creates a blocking monomer above
it. The sword and the scabbard are both undergoing agitation, but for simplicity we may
imagine the sword fixed at the origin, and the scabbard agitating relative to the sword at
rate ≥ 2m. We also imagine that the horizontal grid positions on the sword are labeled
from left to right by the integers 1, . . . ,m in that order. In the absence of any blocking
monomers, the scabbard undergoes an unbiased random walk on the sequence 1, . . . ,m,
where the current integer is the position of the left end of the scabbard on the sword. A
blocking monomer at position i on the sword introduces a reflecting barrier in this walk
that from that point on confines the walk to the sequence i, i+ 1, . . . ,m.

At any time in the process, define the “ratchet” to be the rightmost blocking monomer
on the sword. Let p ∈ {1, . . . ,m} be the position of the ratchet on the sword at some time.
Let k = m1/3 lnm. We will show that the expected time for the position of the ratchet to
move to the right to relative position at least p+k (i.e., to move right by at least distance k)

is O(ln
2m

m1/3).

Since this motion of distance m1/3 lnm must happen m2/3/ lnm times for the position of
the ratchet to move by m (after which the process is complete), by linearity of expectation,

the entire process completes in time m2/3

lnm ·O(ln
2m

m1/3) = O(m1/3 lnm).
We first consider the expected time for the 3k positions of the sword immediately to the

right of the ratchet to become unsheathed. We will focus on the three length-k intervals to
the right of the ratchet, referring to them as the left, middle, and right intervals. In the
worst case, they all start out sheathed, and in this case, the expected number of steps for
the random walk to move the scabbard right by 3k distance is at most 2(3k)2. Since the

agitation rate of the scabbard is ≥ 2m, this corresponds to expected time at most (3k)2

m .
We want to upper bound the time at which a new ratchet attaches at least k positions to

the right of the current ratchet. Any monomer attachment in the middle length-k interval
achieves this, so we focus on this event. Let Ta be the random variable representing the time
for an attachment to occur above the middle interval. Our goal is to show E[Ta] = O(ln

2m
m1/3).

We can bound this expected time by the expected time for a slower “bounding” process,
in which no attachments are allowed until all three intervals are unsheathed, and in which
only attachments on the top of the middle (length k) interval are allowed. During the time
that the entire middle interval is unsheathed, the rate of attachments to the top of this
length-k interval is k. Hence the expected time for an attachment, conditioned on the entire
middle interval being unsheathed, is 1

k . The middle interval remains completely unsheathed
so long as the agitation has not re-sheathed the entirety of the rightmost interval. This
re-sheathing, conditioned on sword being already unsheathed to exactly position 3k, takes
expected time ≤ k2

m .
If part of the middle interval becomes re-sheathed, then in our bounding process,

18

(1) attachments are disallowed until again the entire rightmost interval is unsheathed, and
(2) the entire sword is instantaneously sheathed (the scabbard is immediately moved as
far left as it can go, lining up the ratchet against the scabbard). (Note that the time
to unsheath all the intervals from any position is upper bounded by the worst case of
unsheathing the entire sword.)

We can therefore break this bounding process up into epochs, summarized as follows.
In each epoch, the sword starts with all three intervals completely sheathed. The system
then undergoes random agitation until the point immediately after unsheathing all three
intervals. Then attachments in the middle interval are allowed, until agitation re-sheaths the
rightmost monomer of the middle interval, at which point all three intervals are immediately
re-sheathed, and the next epoch begins. The process halts upon the first attachment in the
middle interval. We write Ei for the event that the attachment happens during the i’th
epoch.

We derive upper bounds on E[Ta|Ei]. Note that for event Ei to occur, we have precisely i
random walks of length 3k (to expose all three intervals i times) and i− 1 random walks of
length k (to re-sheath the entire right interval i− 1 times, interleaved between the random
walks of length 3k), and one attachment event to a length k interval. Therefore

E[Ta|Ei] ≤ i ·
(3k)2

m
+ (i− 1) · k

2

m
+

1

k
≤ 1

k
+

10ik2

m
(1)

Next we lower bound Pr[E1], i.e., the probability that an attachment occurs before
the middle interval can be re-sheathed. Let c = ln2m. Let Tk be the random variable
representing the time for a continuous time unbiased random walk with rate m to move
distance k. By Lemma 7, Pr[Tk ≤ k2

2mc] ≤
k2

c e
−c/2 + 0.86k

2/c.
The time for the middle interval to attach a blocking monomer is an exponential

random variable T ′a with rate k, given that the middle interval remains unsheathed. Hence,

Pr[T ′a ≥ k2

2cm] = e−k
k2

2cm = e−
k3

2cm .

If T ′a <
k2

2cm and Tk >
k2

2cm , then E1 occurs, so by the union bound and the above

two probability bounds, Pr[¬E1] ≤ e−
k3

2cm + k2

c e
−c/2 + 0.86k

2/c. Recall that c = ln2m and

k = m1/3 lnm, which implies that

Pr[¬E1] ≤ e−
(m1/3 lnm)3

2m ln2 m +
(m1/3 lnm)2

ln2m
e−

1
2
ln2m + 0.86(m

1/3 lnm)2/ ln2m

= e−
1
2
lnm +m2/3e−

1
2
ln2m + 0.86m

2/3

= e−
1
2
lnm +m2/3(elnm)−

1
2
lnm + 0.86m

2/3

= e−
1
2
lnm +m2/3− 1

2
lnm + 0.86m

2/3

Since all three terms go to 0 as m→∞, for sufficiently large m the right side is at most 1
4 .

We use similar reasoning to derive bounds on Pr[Ei] for i > 1: for Ei to occur, we must

have either T ′a ≥ k2

cm or Tk ≤ k2

c occur i − 1 times in a row independently (i.e., we must

19

have the events (¬E1) AND (¬E2 conditioned on ¬E1) AND . . . AND (¬Ei−1 conditioned
on ¬Ei−2 AND ¬Ei−3 . . .) in order for the first i − 1 re-sheathings to occur before an
attachment can occur in the middle interval). Since these are independent

Pr[Ei] ≤
1

4i−1
=

1

2i
(2)

We combine the bound on E[Ta|Ei] (Equation (1)) with the bound on Pr[Ei] (Equa-
tion (2)), to get

E[Ta] =

∞∑
i=1

E[Ta|Ei] · Pr[Ei]

≤
∞∑
i=1

(
1

k
+

10ik2

m

)
· Pr[Ei]

=
1

k
+

10k2

m

∞∑
i=1

i · Pr[Ei]

≤ 1

k
+

10k2

m

∞∑
i=1

i · 1

2i

=
1

k
+

20k2

m
since the sum converges to 2

=
1

m1/3 lnm
+

20(m1/3 lnm)2

m

=
1

m1/3 lnm
+ 20

ln2m

m1/3

< 21
ln2m

m1/3
.

This is a bound on the expected time for the ratchet to move right by distance k =

m1/3 lnm. Since this must occur m
m1/3 lnm

= m2/3

lnm times for the ratchet to move the complete
distance m, by linearity of expectation the expected time to move distance m is at most

21 ln2m
m1/3

m2/3

lnm = 21m1/3 lnm.

The following technical lemma bounds the probability that a continuous-time random
walk takes much longer than its expected time to reach a certain distance from the starting
point.

Lemma 7. Let k ∈ Z+, let c ∈ R+, let m > 0 and let Tk be the random variable describing
the amount of time taken by a continuous-time random walk on Z with rate m to reach the
value k for the first time, starting from 0. Then Pr[Tk ≤ k2

2mc] ≤
k2

c e
−c/2 + 0.86k

2/c.

20

Proof. For all i ∈ Z+, define Bi to be a random variable with Pr[Bi = +1] = Pr[Bi =
−1] = 1

2 . For all j ∈ Z+, define Sj =
∑j

i=1Bi. Let tk be the number of steps needed for
the random walk to reach k. For any τ ∈ Z+, the condition that tk ≤ τ is equivalent to the
condition that (∃j ∈ {1, . . . , τ}) Sj ≥ k.

Then by the union bound, Pr[tk ≤ k2

c] ≤
∑k2/c

j=1 Pr[Sj ≥ k]. We use the following form of

the Chernoff bound: If Bi is a random variable with Pr[Bi = +1] = Pr[Bi = −1] = 1
2 , then

for any j, t, Pr[
∑j

i=1Bi ≥ t ·
√
j] ≤ e−t2/2. By this bound, Pr[Sj ≥ k] = Pr[Sj ≥ k√

j

√
j] ≤

e−k
2/(2j). Therefore

Pr

[
tk ≤

k2

c

]
≤

k2/c∑
j=1

e−k
2/(2j) <

k2/c∑
j=1

e−k
2/(2k2/c) =

k2

c
e−c/2. (3)

We now bound Pr[Tk ≤ k2

2mc |tk ≥
k2

c]. In the worst case, tk = k2

c , so we make this

assumption. Under this assumption, the event Tk ≤ k2

2mc is equivalent to the event that a

sum of k2

c exponential random variables, each with rate m, takes value at most k2

2mc .
Recall that the moment-generating function of an exponential random variable Xi with

rate m is MXi(θ) = E[eθXi] = m
m−θ , defined whenever |θ| < m. Then if X =

∑k2/c
i=1 Xi is a

sum of independent exponential random variables, each with rate m, we have

E[eθX] = E[eθ
∑k2/c

i=1 Xi] = E

k2/c∏
i=1

eθXi

 =

k2/c∏
i=1

E[eθXi] =

(
m

m− θ

)k2/c
.

Therefore, if θ < 0, by Markov’s inequality,

Pr

[
X ≤ k2

2mc

]
= Pr[eθX ≥ eθk2/(2mc)] ≤ E[eθX]

eθk2/(2mc)
=

(
m
m−θ

)k2/c
eθk2/(2mc)

.

Letting θ = −m/2, the above expression becomes(
2
3

)k2/c
e−k2/(4c)

=

(
2e1/4

3

)k2/c
< 0.86k

2/c. (4)

Combining the bounds (3) and (4) with the union bound, we have Pr[Tk ≤ k2

2mc] ≤
k2

c e
−c/2 + 0.86k

2/c.

Acknowledgments

A special thanks to Erik Winfree for many insightful and helpful discussions on the model
and constructions. We also thank Robert Schweller, Matthew Cook and Andrew Winslow
for discussions on the model and problems studied in this paper.

21

References

[1] J. Bath and A. Turberfield. DNA nanomachines. Nature Nanotechnology, 2:275–284,
2007.

[2] M. Chen, D. Xin, and D. Woods. Parallel computation using active self-assembly.
In DNA19: The 19th International Conference on DNA Computing and Molecular
Programming, volume 8141 of LNCS, pages 16–30, Tempe, Arizona, Sept. 2013. Springer.
Full version: arXiv:1405.0527.

[3] N. Dabby and H.-L. Chen. Active self-assembly of simple units using an insertion
primitive. In SODA: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1526–1536, Jan. 2012.

[4] R. E. Dawes-Hoang, K. M. Parmar, A. E. Christiansen, C. B. Phelps, A. H. Brand,
and E. F. Wieschaus. Folded gastrulation, cell shape change and the control of myosin
localization. Development, 132(18):4165–4178, 2005.

[5] D. Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55:78–88,
2012.

[6] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods. The
tile assembly model is intrinsically universal. In FOCS: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, pages 439–446, Oct. 2012.

[7] A. C. Martin, M. Kaschube, and E. F. Wieschaus. Pulsed contractions of an actin–
myosin network drive apical constriction. Nature, 457(7228):495–499, 2008.

[8] M. J. Patitz. An introduction to tile-based self-assembly. In Unconventional Computa-
tion and Natural Computation. 7445: 34–62, LNCS, Springer, 2012.

[9] E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, June 1998.

[10] D. Woods. Intrinsic universality and the computational power of self-assembly. In MCU:
Proceedings of Machines, Computations and Universality, volume 128 of Electronic
Proceedings in Theoretical Computer Science, pages 16–22, Univ. of Zürich, Switzerland.
Sept. 9-12, 2013. Open Publishing Association. dx.doi.org/10.4204/EPTCS.128.5.

[11] D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In ITCS’13:
Proceedings of the 4th conference on Innovations in Theoretical Computer Science,
pages 353–354. ACM, 2013. Full version: arXiv:1301.2626 [cs.DS].

22

http://arxiv.org/abs/1405.0527
http://dx.doi.org/10.4204/EPTCS.128.5
http://arxiv.org/abs/1301.2626

Appendix

A Movement rule definition

The nubot movement rule is not used in the constructions in this paper, but we include its
definition here since it is part of the full nubot model [11, 2].

From Section 2, a rule is of the form (s1, s2, b,−→u)→ (s1′, s2′, b′,−→u ′). For a movement
rule, −→u 6= −→u ′. Also, it must be the case that d(−→u ,−→u ′) = 1, where d(u, v) is Manhattan
distance on the triangular grid, and s1, s2, s1′, s2′ ∈ S \ {empty}. If we fix −→u ∈ D, then
there are two −→u ′ ∈ D that satisfy d(−→u ,−→u ′) = 1. A movement rule is applicable if it can be
applied both (i) locally and (ii) globally, as follows.

(i) Locally, the pair of monomers should be in state s1, s2, share bond b and have orien-
tation −→u of s2 relative to s1. Then, one of the two monomers is chosen nondeterministically
to be the base (that remains stationary), the other is the arm (that moves). If the s2
monomer, denoted X, is chosen as the arm then X moves from its current position p(X) to
a new position p(X)−−→u +−→u ′. After this movement (and potential state change), −→u ′ is
the relative position of the s2′ monomer to the s1′ monomer, as illustrated in Figure 1(b).
Analogously, if the s1 monomer, Y , is chosen as the arm then Y moves from p(Y) to
p(Y) +−→u −−→u ′. Again, −→u ′ is the relative position of the s2′ monomer to the s1′ monomer.
Bonds and states may change during the movement.

(ii) Globally, the movement rule may push, or pull other monomers, or if it can do
neither then it is not applicable. This is formalized as follows, see [11] or [2] for examples.
Using the definition of agitation set, Definition 3, we define the movable set M(C,A,B,~v)
for a pair of monomers A,B, unit vector ~v and configuration C.

Definition 8 (Movable set). Let C be a configuration containing adjacent monomers A,B,
let ~v ∈ D be a unit vector, and let C ′ be the same configuration as C except that C ′ omits
any bond between A and B. The movable set M(C,A,B,~v) is defined to be the agitation
set A(C ′, A,~v) if B 6∈ A(C ′, A,~v), and the empty set otherwise.

If M(C,A,B,−→v) 6= {}, then the movement where A is the arm (which should be
translated by −→v) and B is the base (which should not be translated) is applied as follows:
(1) the movable set M(C,A,B,−→v) moves unit distance along −→v ; (2) the states of, and
the bond between, A and B are updated according to the rule; (3) the states of all the
monomers besides A and B remain unchanged and pairwise bonds remain intact (although
monomer positions and flexible/null bond orientations may change). IfM(C,A,B,−→v) = {},
the movement rule is inapplicable (the rule is “blocked” and thus A is prevented from
translating).

23

	1 Introduction
	1.1 Results and future work

	2 The nubot model
	2.1 Example: A simple, but slow, method to build a line

	3 Synchronization via agitation
	4 Building squares via agitation
	5 Building lines via agitation
	5.1 Line length-doubling analysis

	A Movement rule definition

