
Feasible Depth

David Doty1∗ and Philippe Moser2†

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
ddoty (at) iastate (dot) edu

2 Dept de Informática e Ingenieŕıa de Sistemas, Centro Politécnico Superior,
Zaragoza, Spain. mosersan (at) gmail (dot) com

Abstract. This paper introduces two complexity-theoretic formulations
of Bennett’s computational depth: finite-state depth and polynomial-time
depth. It is shown that for both formulations, trivial and random infinite
sequences are shallow, and a slow growth law holds, implying that deep
sequences cannot be created easily from shallow sequences. Furthermore,
the E analogue of the halting language is shown to be polynomial-time
deep, by proving a more general result: every language to which a non-
negligible subset of E can be reduced in uniform exponential time is
polynomial-time deep.

Keywords: dimension, depth, randomness, polynomial-time, finite-state

1 Introduction

Whereas many structures found in nature are highly complex (a DNA sequence,
a cell), some seem much simpler, either because of their complete regularity (ice),
or their complete randomness (gas). Bennett introduced computational depth [3]
to formalize computationally the difference between complex and non-complex
(trivial or random) structures. Briefly, a computationally deep object is one with
a shorter description than itself, but which requires a long time to compute from
this short description.

Depth is not a measure of information contained in an object, which corre-
lates with randomness, but rather its value, or its useful information content.
According to classical [18] or algorithmic information theory [14], the informa-
tion content of a sequence is not representative of its value. Consider an infinite
binary sequence produced by random coin tosses. Although the sequence con-
tains a large amount of information in the sense that, with probability 1, it
cannot be significantly compressed, its information is not of much value, except

∗ Corresponding author. This author was partially supported by grant number 9972653
from the National Science Foundation as part of their Integrative Graduate Educa-
tion and Research Traineeship (IGERT) program.

† This author was partially supported by subvenciones para grupos de investigación
Gobierno de Aragón UZ-T27 and subvenciones de fomento de movilidad Gobierno
de Aragón MI31/2005.

as a source of input to randomized algorithms. Contrast this with the character-
istic sequence of the halting language, access to which enables any computably
enumerable language to be decided in linear time. From this perspective, the
halting sequence is much more useful than a randomly generated sequence.

Bennett’s computational depth separates the sequences that are deep (i.e.,
that show high internal organization) from those that are shallow (i.e., not deep).
Informally, deep sequences are those which contain redundancy, but in such a
way that an algorithm requires extensive resources to exploit the redundancy (for
instance, to compress or to predict the sequence). In other words, deep sequences
are organized, but in a nontrivial way. Highly redundant sequences like 00000...
are shallow, because they are trivially organized. Random sequences are shallow,
because they are completely unorganized. One of the key features of Bennett’s
computational depth is that it obeys a slow growth law [3, 11]: no fast process
can transform a shallow sequence into a deep one. Therefore a deep object can
be created only through a complex, time-consuming process.

Bennett [3] showed that the halting language is deep, arguing that its depth
was evidence of its usefulness. Juedes, Lathrop, and Lutz [11] generalized this
result and solidified the connection between usefulness and depth by proving
that every weakly useful language [8] is deep, where a weakly useful language is
one to which a nonnegligible subset of the decidable languages (in the sense of
resource-bounded measure theory [15]) reduce in a fixed computable time bound.

Unfortunately, because it is based on Kolmogorov complexity, Bennett’s com-
putational depth is not computable. Lathrop and Lutz [13] investigated recursive
computational depth, which is computable, but not within any feasible time scale.
Antunes, Fortnow, van Melkebeek, and Vinodchandran [1] investigated several
polynomial-time formulations of depth as instances of the more general concept
of computational depth obtained by considering the difference between variants
of Kolmogorov complexity. Deep and intriguing connections were demonstrated
between depth and average-case complexity, nonuniform circuit complexity, and
efficient search for satisfying assignments to Boolean formulas. Nevertheless,
some of the depth notions in [1] require complexity assumptions to prove the
existence of deep sequences, and not all the depth notions obey slow growth
laws. Furthermore, [1] lacks an analogue of the Juedes-Lathrop-Lutz theorem
demonstrating that useful objects are necessarily deep.

The aim of this paper is to propose a feasible depth notion that satisfies a
slow growth law and in which deep sequences can be proven to exist. We propose
two such notions: finite-state depth, and polynomial-time depth. Furthermore,
we connect polynomial-time depth to usefulness in deciding languages in the
complexity class E. In both cases, the definition of depth intuitively reflects that
of Bennett’s computational depth: a sequence is deep if it is redundant, but an
algorithm requires extensive resources in order to exploit the redundancy.

Our formulation of finite-state depth is based on the classical model of finite-
state compressors and decompressors introduced by Shannon [18] and investi-
gated by Huffman [10] and Ziv and Lempel [20]. Informally, a sequence is finite-
state deep if given more states, a finite-state machine can decompress the se-

quence from an input significantly shorter than is possible with fewer states. We
show that both finite-state trivial sequences (sequences with finite-state strong
dimension [2] equal to 0) and finite-state random sequences (those with finite-
state dimension [6] equal to 1, or equivalently normal sequences [4]) are shallow.
Our main result in this section shows that finite-state depth obeys a slow growth
law: no information lossless finite-state transducer can transform a finite-state
shallow sequence into a finite-state deep sequence. We conclude the section by
proving the existence of finite-state deep sequences.

Our formulation of polynomial-time depth – contrary to finite-state depth –
is not based on compression algorithms but on polynomial-time oblivious predic-
tors. Given a language L, a polynomial-time oblivious predictor is a polynomial-
time computable function that, given an input string x, predicts the probability
that x ∈ L. Informally, L is polynomial-time deep if, given more time, a predictor
is better able to predict membership of strings in L. We show that both E-trivial
languages (languages in the complexity class E) and E-random languages are
polynomial-time shallow. Our main results in this section are a slow growth law
similar to that for finite-state depth and computational depth, and a theorem
stating that any language which is “useful” for quickly deciding languages in E
must be polynomial-time deep. It follows that HE, the E version of the halting
language, is polynomial-time deep.

2 Preliminaries

Proofs of some results are found in the Appendix.
N is the set of all nonnegative integers. A (finite) string is an element of

{0, 1}∗. An (infinite) sequence is an element of the Cantor space C = {0, 1}∞.
For a string or sequence S and i, j ∈ N, S[i . . j] denotes the substring consisting
of the ith through the jth bits of S, inclusive, and S � n denotes S[0 . . n−1]. For
a string x and a string or sequence S, we write x v S to denote that x = S � n
for some n ∈ N. For a string x, its length is denoted by |x|. s0, s1, s2 . . . denotes
the standard enumeration of the strings in {0, 1}∗ in lexicographical order, where
s0 = λ denotes the empty string. If x, y are strings, we write x < y if |x| < |y|
or |x| = |y| and x precedes y in alphabetical order, and x ≤ y if x < y or x = y.

A language is a subset of {0, 1}∗. A class is a set of languages. The charac-
teristic sequence of a language L is the sequence χL ∈ {0, 1}∞, whose nth bit is
1 if and only if sn ∈ L. Because L 7→ χL is a bijection, we will often speak of lan-
guages and sequences interchangeably, with it understood that the “sequence”
L refers to χL, and the “language” χL refers to L. For n ∈ N, we write L � n to
denote χL � n. Given sn ∈ {0, 1}∗, let L(sn) = χL[n] (the value 1 if sn ∈ L, and
0 if sn 6∈ L). Let E =

⋃
c∈N DTIME(2cn) and EXP =

⋃
c∈N DTIME(2nc

).

Let 1 ≤ i ≤ j ∈ N. The ith projection function proji : ({0, 1}∗)j → {0, 1}∗, is
given by proji(x1, . . . , xj) = xi.

3 Finite-State Depth

3.1 Finite-State Compression

We use a model of finite-state compressors and decompressors based on finite-
state transducers, which was introduced in a similar form by Shannon [18] and
investigated by Huffman [10] and Ziv and Lempel [20]. Kohavi [12] gives an
extensive treatment of the subject.

A finite-state transducer (FST) is a 4-tuple T = (Q, δ, ν, q0), where

– Q is a nonempty, finite set of states,
– δ : Q× {0, 1} → Q is the transition function,
– ν : Q× {0, 1} → {0, 1}∗ is the output function,
– q0 ∈ Q is the initial state.

Furthermore, we assume that every state in Q is reachable from q0.
For all x ∈ {0, 1}∗ and a ∈ {0, 1}, define the extended transition function δ̂ :

{0, 1}∗ → Q by the recursion δ̂(λ) = q0, and δ̂(xa) = δ(δ̂(x), a). For x ∈ {0, 1}∗,
we define the output of T on x to be the string T (x) defined by the recursion
T (λ) = λ, and T (xa) = T (x)ν(δ̂(x), a) for all x ∈ {0, 1}∗ and a ∈ {0, 1}.

A FST can trivially act as an “optimal compressor” by outputting λ on every
transition arrow, but this is, of course, a useless compressor, because the input
cannot be recovered. A FST T = (Q, δ, ν, q0) is information lossless (IL) if the
function x 7→ (T (x), δ̂(x)) is one-to-one; i.e., if the output and final state of T
on input x ∈ {0, 1}∗ uniquely identify x. An information lossless finite-state
transducer (ILFST) is a FST that is IL. We write FST to denote the set of all
finite-state transducers, and we write ILFST to denote the set of all information
lossless finite-state transducers. We say f : {0, 1}∞ → {0, 1}∞ is FS computable
(resp. ILFS computable) if there is a FST (resp. ILFST) T such that, for all
S ∈ {0, 1}∞, lim

n→∞
|T (S � n)| = ∞ and, for all n ∈ N, T (S � n) v f(S). In this

case, define T (S) = f(S).
The following well-known theorem [10, 12] states that the function from

{0, 1}∗ to {0, 1}∗ computed by an ILFST can be inverted – in an approximate
sense – by another ILFST.

Theorem 3.1. For any ILFST T , there exists an ILFST T−1 and a constant
c ∈ N such that, for all x ∈ {0, 1}∗, x � (|x| − c) v T−1(T (x)) v x.

Corollary 3.2. For any ILFST T , there exists an ILFST T−1 such that, for all
sequences S, T−1(T (S)) = S.

Fix some standard binary representation σT ∈ {0, 1}∗ of each FST T , and
define |T | = |σT |. For all k ∈ N, define

FST≤k = {T ∈ FST : |T | ≤ k},
ILFST≤k = {T ∈ ILFST : |T | ≤ k}.

Let k ∈ N and x ∈ {0, 1}∗. The k-FS decompression complexity (or when k
is clear from context, FS complexity) of x is

Dk
FS(x) = min

p∈{0,1}∗

{
|p|

∣∣∣ (∃T ∈ FST≤k) T (p) = x
}

,

i.e., the size of the smallest program p ∈ {0, 1}∗ such that some k-bit FST
outputs x on input p.

For a fixed k, Dk
FS is a finite state analogue of Kolmogorov complexity. For

any sequence S, define the finite-state dimension of S by

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
FS(S � n)

n
, (3.1)

and the finite-state strong dimension of S by

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
FS(S � n)

n
. (3.2)

Finite-state dimension and strong dimension measure the degree of finite-
state randomness of a sequence. The above definitions are equivalent [7, 19] to
several other definitions of finite-state dimension and strong dimension in terms
of finite-state gamblers [2,6], entropy rates [5,20], information lossless finite-state
compressors [2, 6, 20], and finite-state log-loss predictors [9].

Schnorr and Stimm [17] (and more explicitly, Bourke, Hitchcock, and Vinod-
chandran [5]) showed that a sequence has finite-state dimension 1 if and only if
it is normal in the sense of Borel [4], meaning that for all k ∈ N, every substring
of length k occurs in S with limiting frequency 2−k.

3.2 Finite-State Depth

Intuitively, a sequence is finite-state deep if a finite state transducer, given ad-
ditional states (or more accurately, additional bits with which to represent the
transducer), can decompress the sequence from a significantly shorter input.

Definition 3.3. A sequence S is finite-state deep if

(∃α > 0)(∀k ∈ N)(∃k′ ∈ N)(∃∞n ∈ N) Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn.

A sequence S is finite-state shallow if it is not finite-state deep.

Remark. All results in this section remain true if the quantification in the de-
finition of finite-state depth is changed to

(∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∃∞n ∈ N) Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn.

Note that any sequence deep by the former definition must be deep by the latter
definition.

Finite-state trivial and finite-state random sequences are finite-state shallow.

Proposition 3.4. Let S ∈ C.
1. If DimFS(S) = 0, then S is finite-state shallow.
2. If S is normal (i.e., if dimFS(S) = 1), then S is finite-state shallow.

Finite-state deep sequences cannot be created easily, as the following theorem
shows. More precisely, no ILFST can transform a finite-state shallow sequence
into a finite-state deep sequence.

Theorem 3.5 (Finite-state slow growth law). Let S be any sequence, let
f : {0, 1}∞ → {0, 1}∞ be ILFS computable, and let S′ = f(S). If S′ is finite-state
deep, then S is finite-state deep.

Finally, we show that finite-state deep sequences exist.

Theorem 3.6. There exists a finite-state deep sequence.

4 Polynomial-Time Depth

Because the time bound defining polynomial-time depth is in terms of the char-
acteristic sequence of a language, we focus on the class E of languages decidable
in time 2c|sn| for a fixed c ∈ N, or equivalently, nc, where n is the length of the
characteristic sequence of a language up to the string sn.

4.1 Measure in E

We use Lutz’s measure theory for the complexity class E, which we now briefly
describe. See [16] for more details.

Measure on E is obtained by imposing appropriate resource bounds on a game
theoretical characterization of the classical Lebesgue measure of subsets of C. A
martingale is a function d : {0, 1}∗ → [0,∞) such that, for every w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2
.

We say that a martingale d succeeds on a language L if lim supn→∞ d(L � n) =
∞. Intuitively, d is a gambler that bets money on each successive bit of χL,
doubling the money bet on the bit that occurs, and losing the rest. It succeeds
by making unbounded money.

A class of languages C has p-measure zero, and we write µp(C) = 0, if there
is a polynomial-time computable martingale that succeeds on every language
in C. C has measure zero in E, denoted µ (C|E) = 0, if C ∩ E has p-measure
zero. A class C has p-measure one, denoted µp(C) = 1, if C has p-measure zero,
where C denotes the complement of C, and C has measure one in E, denoted
µ (C|E) = 1, if E−C has p-measure zero. We say that a language L is E-random
if the singleton {L} does not have p-measure zero.

Measure in E yields a size notion on the class E similar to Lebesgue measure
on the Cantor space. Subsets of E that have p-measure zero are then “small
subsets of E”; for example, the singleton set {L} for any L ∈ E. E, being the
largest subset of itself, has p-measure one.

4.2 Polynomial-Time Depth

This section proposes a variation of depth based on polynomial-time oblivious
predictors, which, given a language L, try to predict L[n] (i.e., the membership of
sn in L), without having access to L[0 . . n−1]. This is in contrast to a martingale,
where the bet on L[n] is by definition a function of L[0 . . n− 1]. Intuitively, L is
polynomial-time deep if giving a polynomial-time predictor more time allows it
to predict bits of L with significantly greater accuracy.

An oblivious predictor is a function P : {0, 1}∗ × {0, 1} → [0, 1] such that,
for all x ∈ {0, 1}∗, P (x, 0) + P (x, 1) = 1. Intuitively, when trying to predict
a language L, P (x, 1) is the probability with which the predictor predicts that
x ∈ L. To measure how well a predictor P predicts L, we consider its associated
martingale p : {0, 1}∗ → [0,∞) given by

p(L � n) = 2n
∏

y≤sn

P (y, L(y)).

We shall consider predictors P such that P (sn, b) is computable in time poly-
nomial in n (hence computable in time 2c|sn| for some constant c), and call
such a P a polynomial-time oblivious predictor, and we call the martingale p its
polynomial-time oblivious martingale (pom), with the convention that predictors
are given in uppercase and pom in lowercase.

Definition 4.1. A language L is polynomial-time deep if there exists a > 0
such that, for all pom p, there exists a pom p′ such that, for infinitely many
n ∈ N,

p′(L � n)
p(L � n)

≥ a log n,

with the convention that 1
0 = ∞. L is polynomial-time shallow if it is not

polynomial-time deep.

Languages that are trivial or random for E are polynomial-time shallow.

Proposition 4.2. Let L be a language.

1. If L ∈ E, then L is polynomial-time shallow.
2. If L is E-random, then L is polynomial-time shallow.

4.3 Slow Growth Law

Let f : {0, 1}∗ → {0, 1}∗. We say f is monotone if, for all x, y ∈ {0, 1}∗, x <
y =⇒ f(x) < f(y). Given l : N → N, we say f is l-bounded if, for all x ∈ {0, 1}∗,
|f(x)| ≤ l(|x|). Given two languages L1, L2 and a time bound t : N → N and
length bound l : N → N, we say that L1 is t-time l-bounded monotone many-one
reducible to L2 (abbreviated t-l-M reducible), and we write L1 ≤t,l

M L2, if there is
a Turing machine M computing a monotone, l-bounded reduction f : {0, 1}∗ →
{0, 1}∗ such that, on input sn, M halts in at most t(|sn|) = t(log n) steps and

outputs f(sn) ∈ {0, 1}∗ such that sn ∈ L1 if and only if f(sn) ∈ L2. We say
L1 is E-time linearly bounded monotone many-one reducible to L2 (abbreviated
E-Lb-M reducible), and we write L1 ≤E,Lb

M L2, if there exists c ∈ N such that

L1 ≤2c|sn|,c|sn|
M L2. We follow the convention of letting n refer to the length of a

characteristic sequence, rather than the length of the input string sn. Therefore,
equivalently, L1 ≤nc,nc

M L2; i.e., f(sn) is computable in time nc, and, if m ∈ N is
such that sm = f(sn), then m ≤ nc.

The following result shows that shallow sequences cannot be transformed
into deep ones by simple processes.

Theorem 4.3 (Polynomial-time slow growth law). Let L1, L2 be languages
such that L1 ≤E,Lb

M L2. If L1 is polynomial-time deep, then L2 is polynomial-time
deep.

4.4 Languages that are Useful for E

In [3] Bennett showed that the halting language is deep, and Juedes, Lathrop,
and Lutz [11] generalized this result by showing every weakly useful [8, 11] lan-
guage is deep. We prove a polynomial-time version of the result of Juedes, Lath-
rop, and Lutz, namely, that every E-Lb-M weakly useful language is polynomial-
time deep.

Following the definition of weakly useful languages from [11] and [8], we
define a language L to be E-Lb-M weakly useful if the set of languages in E that
are reducible to L – within a fixed time and length bound – is not small (does
not have measure zero in E). Intuitively, an E-useful language is somewhere
in between an E-hard language and a trivial language, in the sense that the
language does not necessarily enable one to decide all languages in E, but rather
a nonnegligible subset of them. Note, however, that an E-hard (for instance,
under polynomial-time many-one reductions) language may not necessarily be
E-Lb-M weakly useful because of the requirements that an E-Lb-M reduction be
monotone and linearly bounded.

Definition 4.4. A language L is E-Lb-M weakly useful if there is a c ∈ N such
that the set of languages 2c|sn|-c|sn|-M reducible to L does not have measure zero
in E, i.e., if

µ

(
L≥

2c|sn|,c|sn|
M

∣∣∣∣ E

)
6= 0

where
L≥

2c|sn|,c|sn|
M =

{
A

∣∣∣ A ≤2c|sn|,c|sn|
M L

}
.

In other words, a language L is weakly useful if a nonneglible subset of E
monotonically many-one reduces to L within a fixed exponential time bound and
fixed linear length bound. An example of an E-Lb-M weakly useful language is the
halting language for E, defined as follows. Fix a standard linear-time computable
invertible encoding of pairs of strings (x, y) 7→ 〈x, y〉. Let M1,M2, . . . be an enu-
meration of machines deciding languages in E, where machine Mi runs in time

2i|sn|. The E-halting language is given by HE =
{
〈0i, x〉

∣∣ Mi accepts x
}
. It is

easy to verify that access to the E-halting language allows one to decide every lan-
guage Li ∈ E, decided by machine Mi, using the 1.01|sn|-time-bounded, 1.01|sn|-
length-bounded, monotone reduction f(x) = 〈0i, x〉; i.e., E ⊆ H

≥1.01|sn|,1.01|sn|
M

E ,
whence HE is E-Lb-M weakly useful.

For every g : N → N and pom p define

Dg
p =

{
L ∈ C

∣∣∣∣ (∃ pom p′)(∃∞n ∈ N)
p′(L � n)
p(L � n)

≥ g(n)
}

.

Note that L is polynomial-time deep if and only if there exists a > 0 such that,
for all pom p, L ∈ Da log n

p .

Lemma 4.5. For any g : N → N such that g(n) = o(2n) and any pom p,
µ

(
Dg

p

∣∣ E
)

= 1.

Theorem 4.6. Every E-Lb-M weakly useful language is polynomial-time deep.

Corollary 4.7. HE is polynomial-time deep.

Corollary 4.8. No language in E is E-Lb-M weakly useful.

Corollary 4.9. No E-random language is E-Lb-M weakly useful.

No decidable language is deep in the sense of Bennett [3] (see also [11,
Corollary 5.7]). However, the halting language H is deep and, while not de-
cidable, is computably enumerable. Compare this with the fact that Corollary
4.8 (or a simple diagonalization) implies that HE 6∈ E. It is easy to verify, how-
ever, HE ∈ DTIME(2|sn|2) ⊆ EXP. Thus, polynomial-time depth mirrors Ben-
nett’s depth in that E-decidable languages are not polynomial-time deep, but
polynomial-time deep languages can be found “close” to E. Similarly, Lemma
4.5 tells us, in an analogous fashion to Corollary 5.10 of [11], that “partially
deep” sequences can be found in abundance in E.

Acknowledgment. We thank Jim Lathrop for many useful and stimulating
discussions in the early stages of this research.

References

1. L. Antunes, L. Fortnow, D. van Melkebeek, and N. Vinodchandran. Computational
depth: Concept and applications. Theoretical Computer Science, 354(3):391–404,
2006. Special issue for selected papers from the 14th International Symposium on
Fundamentals of Computation Theory.

2. K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong
dimension, algorithmic information, and computational complexity. SIAM Jour-
nal on Computing. To appear. Preliminary version appeared in V. Diekert and
M. Habib (eds.), Proceedings of the 21st International Symposium on Theoretical
Aspects of Computer Science, Springer Lecture Notes in Computer Science, Mont-
pellier, France, March 25-27, 2004, pp. 632–643.

3. C. H. Bennett. Logical depth and physical complexity. In R. Herken, editor,
The Universal Turing Machine: A Half-Century Survey, pages 227–257. Oxford
University Press, London, 1988.

4. E. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo Matematico di Palermo, 27:247–271, 1909.

5. C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-
state dimension. Theoretical Computer Science, 349:392–406, 2005. To appear.

6. J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension.
Theoretical Computer Science, 310:1–33, 2004.

7. D. Doty and P. Moser. Finite-state dimension and lossy decompressors. Technical
Report cs.CC/0609096, Computing Research Repository, 2006.

8. S. A. Fenner, J. H. Lutz, E. Mayordomo, and P. Reardon. Weakly useful sequences.
Information and Computation, 197:41–54, 2005.

9. J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theo-
retical Computer Science, 304(1–3):431–441, 2003.

10. D. A. Huffman. Canonical forms for information-lossless finite-state logical ma-
chines. IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–59, 1959.
Also available in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-
Wesley, 1964, pages 866-871.

11. D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and reducibility.
Theoretical Computer Science, 132(1–2):37–70, 1994.

12. Z. Kohavi. Switching and Finite Automata Theory (Second Edition). McGraw-Hill,
1978.

13. J. I. Lathrop and J. H. Lutz. Recursive computational depth. Information and
Computation, 153(2):139–172, 1999.

14. M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, Berlin, 1997. Second Edition.

15. J. H. Lutz. Almost everywhere high nonuniform complexity. J. Comput. Syst. Sci.,
44(2):220–258, 1992.

16. J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra
and A. L. Selman, editors, Complexity Theory Retrospective II, pages 225–254.
Springer-Verlag, 1997.

17. C. P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Infor-
matica, 1:345–359, 1972.

18. C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

19. D. Sheinwald, A. Lempel, and J. Ziv. On encoding and decoding with two-way
head machines. Information and Computation, 116(1):128–133, Jan. 1995.

20. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transaction on Information Theory, 24:530–536, 1978.

5 Appendix

This section contains proofs of some results from the main text, as well as aux-
iliary results needs for these proofs.

The next two lemmas show that ILFST’s cannot alter the FS complexity of
a string by very much.

Lemma 5.1. Let M be an ILFST. Then

(∃c1 ∈ N)(∀k ∈ N)(∀x ∈ {0, 1}∗) Dk+c

FS (M(x)) ≤ Dk
FS(x).

Proof. The proof idea of the lemma is the following. Let k, x be in the statement
of the lemma, let p be a k-minimal program for x, i.e. A(p) = x where A ∈
FST≤k, and Dk

FS(x) = |p|. We construct A′ and p′ for M(x). Let p′ = p and let
A′ be the automata which on input p′ simulates A(p), and plugs the output into
M . The size of A′ is roughly the size of A plus the size of M , i.e. Dk+c

FS (M(x)) ≤
Dk

FS(x), for some constant c1. More formally, let

δA : QA × {0, 1} → QA

be the transition function of A, with

QC = {(qi, si)| 1 ≤ i ≤ tC} ⊂ (P({0, 1}∗))2 C ∈ {A,M}

where qi ∈ {0, 1}∗ are the states and si ∈ {0, 1}∗ are the corresponding output
strings, and let δM : QM × {0, 1} → QM be the transition function for M . We
construct δ′ : Q′ × {0, 1} → Q′ for A′. Let

Q′ = QA ×QM × {A,M} × {0, 1}≤t × {0, 1}≤t

where t is a constant depending on A and M . Let (qA, sA) ∈ QA, (qM , sM) ∈ QM ,
s,m ∈ {0, 1}≤t and b ∈ {0, 1}. Define

δ′((qA, sA), (qM , sM), A, s,m, b)
= (δA((qA, sA), b), (qM , sM),M, λ,proj2(δA((qA, sA), b)))

δ′((qA, sA), (qM , sM),M, s, m, b)
= ((qA, sA), δM ((qM , sM),m), A, proj2(δM ((qM , sM),m)), λ).

ut

Lemma 5.2. Let M be an ILFST. Then

(∃c2 ∈ N)(∀k ∈ N)(∀x ∈ {0, 1}∗) Dk+c

FS (x) ≤ Dk
FS(M(x)).

Proof. The proof is similar to Lemma 5.1. Let k, x be as in the statement of the
lemma. By Theorem 3.1, there exists an ILFST M−1 and a constant b such that
for any string x, x � |x| − b v M−1(M(x)) v x.

Let p be a k-minimal program for M(x), i.e. A(p) = M(x) where A ∈ FST≤k,
and Dk

FS(M(x)) = |p|. We construct A′ and p′ for x. Let y = M−1(M(x)), i.e.

yz = x and |z| ≤ b. Let p′ = p and let A′ be the automata which on input
p′ simulates A(p), plugs the output into M−1 and adds z at the end of M−1’s
output. The size of A′ is roughly the size of A plus the size of M plus the size
of z (which is of size at most b), i.e. Dk+c

FS (M(x)) ≤ Dk
FS(x), for some constant

c2. ut
Proof (of Proposition 3.4). Let S ∈ C satisfy DimFS(S) = 0 and let α > 0. By
(3.2) let k ∈ N be such that

lim sup
n→∞

Dk
FS(S � n)

n
< α,

i.e. (∀∞n ∈ N) Dk
FS(S � n) < αn. Therefore

(∀k′ ∈ N)(∀∞n ∈ N) Dk
FS(S � n)−Dk′

FS(S � n) ≤ Dk
FS(S � n) < αn.

Since α is arbitrary, S is finite-state shallow.
Let S ∈ C be normal, k ∈ N, and α > 0. Because normal sequences have

finite-state dimension 1,

(∀k′ ∈ N)(∀∞n ∈ N) Dk′

FS(S � n) > (1− α) n.

Thus

(∀k′ ∈ N)(∀∞n ∈ N) Dk
FS(S � n)−Dk′

FS(S � n) < n− (1− α) n = αn.

Because α is arbitrary, S is finite-state shallow. ut
Proof (of Theorem 3.5). Let S, S′, f be as in the statement of the lemma and
M be an ILFST computing f . Because S′ is finite-state deep,

(∃α > 0)(∀k ∈ N)(∃k′ ∈ N)(∃∞n ∈ N) Dk
FS(S′ � n)−Dk′

FS(S′ � n) ≥ αn. (5.1)

Let l ∈ N and let c = max{c1, c2} where c1, c2 are the two constants in Lemmas
5.1 and 5.2. Let l′ = k′ + c where k′ is obtained from (5.1) with k = l + c. For
all n ∈ N, denote by mn the smallest integer such that M(S � mn) = S′ � n.
Because M is IL, it cannot visit a state twice without outputting at least one
bit, so there exists a constant β > 0 such that, for all n ∈ N, n ≥ βmn. For
infinitely many n ∈ N,

Dl
FS(S � mn)−Dl′

FS(S � mn)

= Dl
FS(S � mn)−Dk′+c

FS (S � mn) l′ = k′ + c

≥ Dl
FS(S � mn)−Dk′

FS(M(S � mn)) Lemma 5.2

= Dk−c
FS (S � mn)−Dk′

FS(M(S � mn)) k = l + c

≥ Dk
FS(M(S � mn))−Dk′

FS(M(S � mn)) Lemma 5.1

= Dk
FS(S′ � n))−Dk′

FS(S′ � n)) definition of mn

≥ αn by (5.1)
≥ αβmn, because M is IL

whence S is finite-state deep. ut

We next prove the existence of finite-state deep sequences. We require two
technical lemmas first, which place bounds on the FS complexity of two concate-
nated strings.

Lemma 5.3. (∀l ∈ N)(∀x, y ∈ {0, 1}∗) Dl
FS(xy) ≥ Dl

FS(x) + Dl
FS(y)− 2l.

Proof. Let l, x, y be as in the statement of the lemma and suppose Dl
FS(xy) =

|pp′| where T ∈ FST≤l, p, p′ ∈ {0, 1}∗, with T (pp′) = xy, and T (p) = x. Thus
Dl

FS(x) ≤ |p| and there exists s ∈ {0, 1}≤2l

(because T has less than 2l states)
such that T (sp′) = y, i.e. Dl

FS(y) ≤ |p′|+ 2l. Therefore

Dl
FS(xy) = |p|+ |p′| ≥ Dl

FS(x) + Dl
FS(y)− 2l,

which proves the lemma. ut

Lemma 5.4. (∃c ∈ N)(∀l ∈ N)(∀x, y ∈ {0, 1}∗) Dl+c
FS (xy) ≤ 2|x|+ Dl

FS(y) + 2.

Proof. Let l, x, y be as in the statement of the lemma and let p be a minimal
program for y, i.e. Dl

FS(y) = |p| where A(p) = y with p ∈ {0, 1}∗ and A ∈ FST≤l.
Let p′ = x′01p where x′ is x with every bit doubled and let A′ ∈ FST≤l+c where
c is a constant independent of l be the following FST for xy: A(p′) uses d(x) to
output x, then upon reading 01, it outputs A(p). ut

Proof (of Theorem 3.6). For all r ∈ {0, 1}∗, define the FST Tr = ({q0}, δ, ν, q0),
where, for b ∈ {0, 1}, δ(q0, b) = q0 and ν(q0, b) = r. Define the constant c′ =
|Tr| − |r| (i.e., the number of extra bits beyond r required to describe Tr; note
that this is a constant independent of r).

We construct the finite-state deep sequence S = S1S2 . . . in stages, with
Si ∈ {0, 1}∗ for all i ∈ N. Let φ : N → N × N be a function such that (∀k ∈
N)(∃∞j ∈ N) φ(j) = (k, 22k+1

), and for all i ∈ N, proj2(φ(i)) = 22proj1(φ(i))+1
. Let

j ∈ N and suppose the prefix S1S2 . . . Sj−1 has already been constructed. Let
tj−1 = |S1S2 . . . Sj−1|. Let (k, k′) = φ(j), so that k′ = 22k+1

.
Intuitively, at stage j, we will diagonalize against k-bit FST’s to make Dk

FS(S1 . . . Sj)
large, while helping a particular (k′ + c)-bit FST (c the constant from Lemma
5.4) so that Dk′+c

FS (S1 . . . Sj) is small.
Let rj ∈ {0, 1}k′−c′ be k-FS-random in the sense that

Dk
FS(rj) ≥ |rj | − 2k/2. (5.2)

Note that such a string always exists because there are at most |FST≤k| ·
2|rj |−2k/2

< 2|rj | strings contradicting (5.2). Let uj = 12tj−1. Let Sj = r
uj/|rj |
j be

uj/|rj | consecutive copies of rj . Let T = Trj
as described above. Then |T | = k′.

It is clear that T outputs Sj = r
uj/|rj |
j on any input program of length uj/|rj |.

Therefore Dk′

FS(Sj) ≤ uj/|rj |. Lemma 5.4 implies that

Dk′+c
FS (S1 . . . Sj) ≤ 2|S1 . . . Sj−1|+ Dk′

FS(Sj) + 2,

whence
Dk′+c

FS (S1 . . . Sj) ≤ 2tj−1 +
uj

|rj |
+ 2. (5.3)

Note that

Dk
FS(S1 . . . Sj) ≥ Dk

FS(S1 . . . Sj−1) + Dk
FS(Sj)− 2k Lemma 5.3

≥ Dk
FS(Sj)− 2k

≥ uj

|rj |
Dk

FS(rj)−
(

uj

|rj |
+ 1

)
2k Lemma 5.3

≥ uj −
uj

|rj |
2k/2 −

(
uj

|rj |
+ 1

)
2k choice of rj

≥ uj −
uj

|rj |
2k+1

> uj

(
1− 2k+1

k′

)
. (5.4)

By (5.3) and (5.4),

Dk
FS(S1 . . . Sj)−Dk′+c

FS (S1 . . . Sj)

≥ uj

(
1− 2k+1

k′
− 1
|rj |

)
− 2tj−1 − 2

= uj

(
1− 2k+1 + 1

k′

)
− 2tj−1 − 2

≥ uj

2
− 2tj−1 def of k′

=
1
4
uj + tj−1

≥ 1
4
(|Sj |+ |S1 . . . Sj−1|) def of uj and tj−1

=
1
4
|S1 . . . Sj |.

Because φ(j) revisits every pair (k, k′), with k′ = 22k+1
, for every k, there exists

k̂ = k′ + c such that, on infinitely many j, the above inequality holds. Hence S
is finite-state deep. ut

Proof (of Proposition 4.2). For the first item, let a > 0 and L ∈ E. Then there
exists a pom p that predicts L correctly on every string, i.e., p(L � n) = 2n for
every n ∈ N. Hence for any pom p′ we have

p′(L � n)
p(L � n)

≤ 2n

2n
= 1 < a log n

for all but finitely many n. Because a is arbitrary, L is polynomial-time shallow.

For the second item let a > 0 and L be E-random. Then for any pom p there
exists cp ∈ N such that for every n ∈ N, p(L � n) < cp. Fix a pom p such that
p(L � n) ≥ 1 for all n ∈ N. Then for any pom p′ we have

p′(L � n)
p(L � n)

≤ cp′

1
< a log n

for all but finitely many n. Thus L is polynomial-time shallow. ut

Proof (of Theorem 4.3). Let f : {0, 1}∗ → {0, 1}∗ be the E-Lb-M reduction from
L1 to L2, and let c ∈ N such that f is computable in time nc (= 2c|sn|), so that,
for all x ∈ {0, 1}∗, x ∈ L1 ⇐⇒ f(x) ∈ L2, and |f(x)| ≤ c|x|.

Let p2 be any pom, such that P2 is computable in time nk for some k.
Consider the pom p1, where, for all x ∈ {0, 1}∗ and b ∈ {0, 1}, P1(x, b) =
P2(f(x), b). Then, if x = sn, P1 is computable in time nc + |f(x)|k ≤ nc + nck,
so P1 is computable in time polynomial in n. Since L1 is polynomial-time deep,
there exist a pom p′1, a constant a > 0, and an infinite set N ⊆ N such that, for
every n ∈ N ,

p′1(L1 � n)
p1(L1 � n)

≥ a log n. (5.5)

Consider the following pom p′2, where, for all y ∈ {0, 1}∗ and b ∈ {0, 1},

P ′
2(y, b) =

{
P ′

1(f
−1(y), b) if f−1(y) exists,

P2(y, b) otherwise.

For all n ∈ N, define mn ∈ N such that smn
, f(sn). Because f is monotone, it

is 1-1. Thus, if f−1(y) exists, then it is unique. Because f is monotone, n ≤ mn.
Therefore, letting y = smn

and x = f−1(y) = sn, x can be computed from y in
time polynomial in mn by searching all strings w ≤ smn and checking whether
f(w) = y, which takes at most mnnc ≤ mc+1

n steps. Hence P ′
2 is polynomial-time

computable.

For every n ∈ N ,

a log n ≤ p′1(L1 � n)
p1(L1 � n)

by (5.5)

=

∏
x≤sn

P ′
1(x, L1(x))∏

x≤sn
P1(x, L1(x))

=

∏
x≤sn

P ′
2(f(x), L2(f(x)))∏

x≤sn
P2(f(x), L2(f(x)))

=

∏
y∈f({s0,...,sn}) P ′

2(y, L2(y))∏
y∈f({s0,...,sn}) P2(y, L2(y))

putting y = f(x)

=

∏
y≤f(sn) P ′

2(y, L2(y))∏
y≤f(sn) P2(y, L2(y))

P ′
2(y, b) = P2(y, b) if f−1(y)

undefined, and f monotone

=
p′2(L2 � mn)
p2(L2 � mn)

.

Because f is linearly bounded, for all n ∈ N, mn ≤ nc. Thus for any n ∈ N ,

a

c
log mn ≤

a

c
log nc = a log n ≤ p′2(L2 � mn)

p2(L2 � mn)
.

Thus the constant a/c testifies that L2 is polynomial-time deep. ut

Proof (of Theorem 4.6). Let B be any E-Lb-M weakly useful language, i.e.

µ

(
B≥2c|sn|,c|sn|

M

∣∣∣∣ E

)
6= 0 for some c ∈ N. Let a = 1

c and let p2 be any pom. It

suffices to show that B ∈ Da log n
p2

. Let p1 be constructed from p2 as in the proof of

Theorem 4.3. By Lemma 4.5, µ
(
Dlog n

p1

∣∣ E
)

= 1. Thus Dlog n
p1

∩B≥2c|sn|,c|sn|
M 6= ∅,

whence there exists a language A ∈ Dlog n
p1

∩B≥2c|sn|,c|sn|
M . Thus A ≤2c|sn|,c|sn|

M B

and A ∈ Dlog n
p1

, so by the proof of Theorem 4.3, B ∈ Da log n
p2

. ut

Proof (of Lemma 4.5). Let g, p be as in the statement of the lemma. Let L ∈
E−Dg

p. It suffices to show that p succeeds on L. L ∈ E implies the existence of a
pom p′ such that for any n ∈ N, p′(L � n) = 2n. L 6∈ Dg

p implies that for all pom
p′ there are infinitely many n ∈ N such that p(L � n) > p′(L � n)/g(n). Thus
p(L � n) > 2n/g(n), which grows unboundedly as n → ∞ because g = o(2n);
i.e., p succeeds on L. ut

