
Hardness of computing and approximating predicates and functions

with leaderless population protocols∗

Amanda Belleville1, David Doty1, and David Soloveichik2

1Department of Computer Science, University of California, Davis
2Department of Electrical and Computer Engineering, University of Texas, Austin

Abstract

Population protocols are a distributed computing model appropriate for describing massive
numbers of agents with very limited computational power (finite automata in this paper), such as
sensor networks or programmable chemical reaction networks in synthetic biology. A population
protocol is said to require a leader if every valid initial configuration contains a single agent in a
special “leader” state that helps to coordinate the computation. Although the class of predicates
and functions computable with probability 1 (stable computation) is the same whether a leader
is required or not (semilinear functions and predicates), it is not known whether a leader is
necessary for fast computation. Due to the large number of agents n (synthetic molecular
systems routinely have trillions of molecules), efficient population protocols are generally defined
as those computing in polylogarithmic in n (parallel) time. We consider population protocols
that start in leaderless initial configurations, and the computation is regarded finished when the
population protocol reaches a configuration from which a different output is no longer reachable.

In this setting we show that a wide class of functions and predicates computable by popula-
tion protocols are not efficiently computable (they require at least linear time to stabilize on a
correct answer), nor are some linear functions even efficiently approximable. For example, our
results for predicates immediately imply that the widely studied parity, majority, and equality
predicates cannot be computed in sublinear time. (Existing arguments specific to majority were
already known). Moreover, it requires at least linear time for a population protocol even to ap-
proximate division by a constant or subtraction (or any linear function with a coefficient outside
of N), in the sense that for sufficiently small γ > 0, the output of a sublinear time protocol can
stabilize outside the interval f(m)(1 ± γ) on infinitely many inputs m. We also show that it
requires linear time to exactly compute a wide range of semilinear functions (e.g., f(m) = m if
m is even and 2m if m is odd).

In a complementary positive result, we show that with a sufficiently large value of γ, a
population protocol can approximate any linear f with nonnegative rational coefficients, within
approximation factor γ, in O(log n) time.

1 Introduction

Population protocols were introduced by Angluin, Aspnes, Diamadi, Fischer, and Peralta [4] as
a model of distributed computing in which the agents have very little computational power and
no control over their schedule of interaction with other agents. They can be thought of as a
special case of a model of concurrent processing introduced in the 1960s, known alternately as

∗The first and second authors were supported by NSF grant 1619343, and the third author by NSF grant 1618895.

1

vector addition systems [26], Petri nets [30], or commutative semi-Thue systems (or, when all
transitions are reversible, “commutative semigroups”) [12, 28]. As well as being an appropriate
model for electronic computing scenarios such as sensor networks, they are a useful abstraction of
“fast-mixing” physical systems such as animal populations [33], gene regulatory networks [9], and
chemical reactions.

The latter application is especially germane: several recent wet-lab experiments demonstrate
the systematic engineering of custom-designed chemical reactions [8, 16, 31, 34], unfortunately in
all cases having a cost that scales linearly with the number of unique chemical species (states).
(The cost can even be quadratic if certain error-tolerance mechanisms are employed [32].) Thus,
it is imperative in implementing a molecular computational system to keep the number of distinct
chemical species at a minimum. On the other hand, it is common (and relatively cheap) for the
total number of such molecules (agents) to number in the trillions in a single test tube. It is thus
important to understand the computational power enabled by a large number of agents n, where
each agent has only a constant number of states (each agent is a finite state machine).

A population protocol is said to require a leader if every valid initial configuration contains
a single agent in a special “leader” state that helps to coordinate the computation. Studying
computation without a leader is important for understanding essentially distributed systems where
symmetry breaking is difficult. Further, in the chemical setting obtaining single-molecule precision
in the initial configuration is difficult. Thus, it would be highly desirable if the population protocol
did not require an exquisitely tuned initial configuration.

1.1 Introduction to the model

A population protocol is defined by a finite set Λ of states that each agent may have, together
with a transition function1 δ : Λ2 → Λ2. A configuration is a nonzero vector c ∈ NΛ describing,
for each s ∈ Λ, the count c(s) of how many agents are in state s. By convention we denote the
number of agents by n = ‖c‖ =

∑
s∈Λ c(s). Given states r1, r2, p1, p2 ∈ Λ, if δ(r1, r2) = (p1, p2)

(denoted r1, r2 → p1, p2), and if a pair of agents in respective states r1 and r2 interact, then their
states become p1 and p2.2 The next pair of agents to interact is chosen uniformly at random. The
expected (parallel) time for any event to occur is the expected number of interactions, divided
by the number of agents n. This measure of time is based on the natural parallel model where
each agent participates in a constant number of interactions in one unit of time; hence Θ(n) total
interactions are expected per unit time [6].

The most well-studied population protocol task is computing Boolean-valued predicates. It is
known that a protocol stably decides a predicate φ : Nk → {0, 1} (meaning computes the correct
answer with probability 1; see Section 4 for a formal definition) if [4] and only if [5] φ is semilinear.

Population protocols can also compute integer-valued functions f : Nk → N. Suppose we start
with m ≤ n/2 agents in “input” state x and the remaining agents in a “quiescent” state q. Consider
the protocol with a single transition rule x, q → y, y. Eventually exactly 2m agents are in the
“output” state y, so this protocol computes the function f(m) = 2m. Furthermore (letting #s =
count of state s), if #q− 2m = Ω(n) initially (e.g., #q = 3m), then it takes Θ(log n) expected time
until #y = 2m. Similarly, the transition rule x, x→ y, q computes the function f(m) = bm/2c, but
exponentially slower, in expected time Θ(n). The transitions x1, q → y, q and x2, y → q, q compute

1Some work allows nondeterministic transitions, in which the transition function maps to subsets of Λ × Λ.
Our results are independent of whether transitions are nondeterministic, and we choose a deterministic, symmetric
transition function, rather than a more general relation δ ⊆ Λ4, merely for notational convenience.

2In the most generic model, there is no restriction on which agents are permitted to interact. If one prefers to
think of the agents as existing on nodes of a graph, then it is the complete graph Kn for a population of n agents.

2

f(m1,m2) = m1 −m2 (assuming m1 ≥ m2), also in time Θ(n) if m1 = m2 +O(1).
Formally, we say a population protocol stably computes a function f : Nk → N if, for every

“valid” initial configuration i ∈ NΛ representing input m ∈ Nk (via counts i(x1), . . . , i(xk) of
“input” states Σ = {x1, . . . , xk} ⊆ Λ) with probability 1 the system reaches from i to o such that
o(y) = f(m) (y ∈ Λ is the “output” state) and o′(y) = o(y) for every o′ reachable from o (i.e., o
is stable). Defining what constitutes a “valid” initial configuration (i.e., what non-input states can
be present initially, and how many) is nontrivial. In this paper we focus on population protocols
without a leader—a state present in count 1, or small count—in the initial configuration. Here, we
equate “leaderless” with initial configurations in which no positive state count is sublinear in the
population size n.

It is known that a function f : Nk → N is stably computable by a population protocol if and
only if its graph {(m, f(m)) | m ∈ Nk} ⊂ Nk+1 is a semilinear set [5, 15]. This means intuitively
that it is piecewise affine, with each affine piece having rational slopes.

Despite the exact characterization of predicates and functions stably computable by population
protocols, we still lack a full understanding of which of the stably computable (i.e., semilinear)
predicates and functions are computable quickly (say, in time polylogarithmic in n) and which
are only computable slowly (linear in n). For positive results, much is known about time to
convergence (time to get the correct answer). It has been known for over a decade that with an
initial leader, any semilinear predicate can be stably computed with polylogarithmic convergence
time [6]. Furthermore, it has recently been shown that all semilinear predicates can be computed
without a leader with sublinear convergence time [27]. (See Section 1.4 for details.)

In this paper, however, we exclusively study time to stabilization without a leader (time after
which the answer is guaranteed to remain correct). Except where explicitly marked otherwise with
a variant of the word “converge”, all references to time in this paper refer to time until stabilization.
Section 9 explains in more detail the distinction between the two.

1.2 Contributions

Undecidability of many predicates in sublinear time. Every semilinear predicate φ : Nk →
{0, 1} is stably decidable in O(n) time [6]. Some, such as φ(m1,m2) = 1 iff m1 ≥ 1, are stably
decidable in O(log n) time by a leaderless protocol, in this case by the transition x1, x2 → x1, x2,
where x1 “votes” for output 1 and x2 votes 0. A predicate is eventually constant if φ(m) = φ(m′)
for all sufficiently large m 6= m′. We show in Theorem 4.4 that unless φ is eventually constant, any
leaderless population protocol stably deciding a predicate φ requires at least linear time. Examples
of non-eventually constant predicates include parity (φ(m) = 1 iff m is odd), majority (φ(m1,m2) =
1 iff m1 ≥ m2), and equality (φ(m1,m2) = 1 iff m1 = m2). It does not include certain semilinear
predicates, such as φ(m1,m2) = 1 iff m1 ≥ 1 (decidable in O(log n) time) or φ(m1,m2) = 1 iff
m1 ≥ 2 (decidable in O(n) time, and no faster protocol is known).

Definition of function computation and approximation. We formally define computation
and approximation of functions f : Nk → N for population protocols. This mode of computation
was discussed briefly in the first population protocols paper [4, Section 3.4], which focused more on
Boolean predicate computation, and it was defined formally in the more general model of chemical
reaction networks [15, 19]. Some subtle issues arise that are unique to population protocols. We
also formally define a notion of function approximation with population protocols.

Inapproximability of most linear functions with sublinear time and sublinear error.
Recall that the transition rule x, x → y, q computes f(m) = bm/2c in linear time. Consider the

3

transitions a, x → b, y and b, x → a, q, starting with #x = m, #a = γm for some 0 < γ < 1,
and #y = #q = 0 (so n = m + γm total agents). Then eventually #y ∈ {m/2, . . . ,m/2 + γm}
and #x = 0 (stabilizing #y), after O(1

γ log n) expected time. (This is analyzed in more detail in
Section 7.) Thus, if we tolerate an error linear in n, then f can be approximated in logarithmic
time. However, Theorem 6.1 shows this error bound to be tight: any leaderless population protocol
that approximates f(m) = bm/2c, or any other linear function with a coefficient outside of N (such
as b4m/3c or m1 −m2), requires at least linear time to achieve sublinear error.

As a corollary, such functions cannot be stably computed in sublinear time (since computing
exactly is the same as approximating with zero error). Conversely, it is simple to show that any
linear function with all coefficients in N is stably computable in logarithmic time (Observation 7.1).
Thus we have a dichotomy theorem for the efficiency (with regard to stabilization) of computing
linear functions f by leaderless population protocols: if all of f ’s coefficients are in N, then it is
computable in logarithmic time, and otherwise it requires linear time.

Approximability of nonnegative rational-coefficient linear functions with logarithmic
time and linear error. Theorem 6.1 says that no linear function with a coefficient outside of
N can be stably computed with sublinear time and sublinear error. In a complementary positive
result, Theorem 7.2, by relaxing the error to linear, and restricting the coefficients to be nonnegative
rationals (but not necessarily integers), we show how to approximate any such linear function in
logarithmic time. (It is open if m1−m2 can be approximated with linear error in logarithmic time.)

Uncomputability of many nonlinear functions in sublinear time. What about non-linear
functions? Theorem 8.5 states that sublinear time computation cannot go much beyond linear
functions with coefficients in N: unless f is eventually N-linear, meaning linear with nonnegative
integer coefficients on all sufficiently large inputs, any protocol stably computing f requires at least
linear time. Examples of non-eventually-N-linear functions, that provably cannot be computed
in sublinear time, include f(m1,m2) = min(m1,m2) (computable slowly via x1, x2 → y, q), and
f(m) = m− 1 (computable slowly via x, x→ x, y).

The only remaining semilinear functions whose asymptotic time complexity remains unknown
are those “piecewise linear” functions that switch between pieces only near the boundary of Nk; for
example, f(m) = 0 if m ≤ 3 and f(m) = m otherwise.

Note that there is a fundamental difficulty in extending the negative results to functions and
predicates that “do something different only near the boundary of Nk”. This is because for inputs
where one state is present in small count, the population protocol could in principle use that input
as a “leader state”—and no longer be leaderless. However, this does not directly lead to a positive
result for such inputs, because it is not obvious how to use (for instance) state x1 as a leader when
its count is 1 while still maintaining correctness for larger counts of x1.

Our results leave open the possibility that non-eventually constant predicates and non-eventually-
N-linear functions, which cannot be computed in sublinear time in our setting, could be efficiently
computed in the following ways:

1. With an initial leader stabilizing to the correct answer in sublinear time,

2. Stabilizing to an output in expected sublinear time but allowing a small probability of incorrect
output (with or without a leader), or

3. Without an initial leader but converging to the correct output in sublinear time. Recently
Kosowski and Uznański [27] showed that this task is indeed possible. (See Section 1.4.)

4

1.3 Essential proof techniques

Techniques developed in previous work for proving time lower bounds [1,20] can certainly generalize
beyond leader election and majority, although it was not clear what precise category of computation
they cover. However, to extend the impossibility results to all non-eventually-N-linear functions,
we needed to develop new tools.

Compared to our previous work showing the impossibility of sublinear time leader election [20],
we achieve three main advances in proof technique. First, the previous machinery did not give
us a way to affect large-count states predictably to change the answer, but rather focused on
using surgery to remove a single leader state. Second, we need much additional reasoning to
argue if a predicate is not eventually constant, then we can find infinitely many α-dense inputs
that differ on their output but are close together. This leads to a contradiction when we use
transition manipulation arguments to show how to absorb the small extra difference between the
inputs without changing the output. Third, we need entirely different reasoning to argue that if a
semilinear function is not eventually N-linear, then we can find infinitely many α-dense inputs m
that do not appear “locally affine”: pushing a small distance v from m changes the function f(m)
to f(m + v) = f(m) + ε, but pushing by the same distance again changes it a different amount,
i.e., f(m + 2v) = f(m) + ε+ δ, where ε 6= δ. This leads to a contradiction when we use transition
manipulation arguments to show how, from input m + 2v, to stabilize the count of the output to
the incorrect value f(m) + 2ε.3

Both in prior and current work, the high level intuition of the proof technique is as follows. The
overall argument is a proof by contradiction: if sublinear time computation is possible, then we
find a nefarious execution sequence that stabilizes to an incorrect output. In more detail, sublinear
time computation requires avoiding “bottlenecks”—having to go through a transition in which both
states are present in small count (constant independent of the number of agents n). Traversing even
a single such transition requires linear time. Technical lemmas show that bottleneck-free execution
sequences from α-dense initial configurations (i.e., where every state that is present is present in at
least αn count) are amenable to predictable “surgery” [1,20]. At the high level, the surgery lemmas
show how states that are present in “low” count when the population protocol stabilizes, can be
manipulated (added or removed) such that only “high” count other states are affected. Since it can
also be shown that changing high count states in a stable configuration does not affect its stability,
this means that the population protocol cannot “notice” the surgery, and remains stabilized to the
previous output. For leader election, the surgery allows one to remove an additional leader state
(leaving us with no leaders). For majority computation [1], the minority input must be present in
low count (or absent) at the end. This allows one to add enough of the minority input to turn it
into the majority, while the protocol continues to output the wrong answer.

However, applying the previously developed surgery lemmas to fool a function computing pop-
ulation protocol is more difficult. The surgery to consume additional input states affects the count
of the output state, which could be present in “large count” at the end. How do we know that the
effect of the surgery on the output is not consistent with the desired output of the function? In
order to arrive at a contradiction we develop two new techniques, both of which are necessary to
cover all cases. The first involves showing that the slope of the change in the count of the output
state as a function of the input states is inconsistent. The second involves exposing the semilinear
structure of the graph of the function being computed, and forcing it to enter the “wrong piece”
(i.e., periodic coset).

3 These arguments are easier to understand for the special case when we can assume f is linear. Thus Section 6
concentrates on this special case, obtaining an exact characterization of the efficiently computable linear functions.
Section 8 reasons about the more difficult case of arbitrary semilinear functions.

5

1.4 Related work

Positive results. Angluin, Aspnes, Diamadi, Fischer, and Peralta [4] showed that any semilinear
predicate can be decided in expected parallel time O(n log n), later improved to O(n) by Angluin,
Aspnes, and Eisenstat [6]. More strikingly, the latter paper showed that if an initial leader is
present (a state assigned to only a single agent in every valid initial configuration), then there is
a protocol for φ that converges to the correct answer in expected time O(log5 n). However, this
protocol’s expected time to stabilize is still provably Ω(n). Section 9 explains this distinction in
more detail. Chen, Doty, and Soloveichik [15] showed in the related model of chemical reaction
networks (borrowing techniques from the related predicate results [4,5]) that any semilinear function
(integer-output f : Nk → N) can similarly be computed with expected convergence time O(log5 n)
if an initial leader is present, but again with much slower stabilization time O(n log n). Doty
and Hajiaghayi [19] showed that any semilinear function can be computed by a chemical reaction
network without a leader with expected convergence and stabilization time O(n). Although the
chemical reaction network model is more general, these results hold for population protocols.

Kosowski and Uznański [27] show that all semilinear predicates can be computed without an
initial leader, converging in O(polylog n) time if a small probability of error is allowed, and con-
verging in O(nε) time with probability 1, where ε can be made arbitrarily close to 0 by changing
the protocol. They also showed leader election protocols (which can be thought of as computing
the constant function f(m) = 1) with the same properties.

Since efficient computation seems to be helped by a leader, the computational task of leader
election has received significant recent attention. In particular, Alistarh and Gelashvili [3] showed
that in a variant of the model allowing the number of states λn to grow with the population size n,
a protocol with λn = O(log3 n) states can elect a leader with high probability in O(log3 n) expected
time. Alistarh, Aspnes, Eisenstat, Gelashvili, and Rivest [1] later showed how to reduce the number
of states to λn = O(log2 n), at the cost of increasing the expected time toO(log5.3 n log log n). Gasie-
niec and Stachowiak [21] showed that there is a protocol with O(log log n) states electing a leader
in O(log2 n) time in expectation and with high probability, recently improved to O(log n log log n)
time by Gasieniec, Stachowiak, and Uznański [22]. This asymptotically matches the Ω(log log n)
states provably required for sublinear time leader election (see negative results below).

Negative results. The first attempt to show the limitations of sublinear time population proto-
cols, using the more general model of chemical reaction networks, was made by Chen, Cummings,
Doty, and Soloveichik [14]. They studied a variant of the problem in which negative results are
easier to prove, an “adversarial worst-case” notion of sublinear time: the protocol is required to
be sublinear time not only from the initial configuration, but also from any reachable configu-
ration. They showed that the predicates computable in this manner are precisely those whose
output depends only on the presence or absence of states (and not on their exact positive counts).
Doty and Soloveichik [20] showed the first Ω(n) lower bound on expected time from valid initial
configurations, proving that any protocol electing a leader with probability 1 takes Ω(n) time.

These techniques were improved by Alistarh, Aspnes, Eisenstat, Gelashvili, and Rivest [1],
who showed that even with up to λn = O(log log n) states, any protocol electing a leader with
probability 1 requires nearly linear time: Ω(n/polylog n). They used these tools to prove time
lower bounds for another important computational task: majority (detecting whether state x1 or
x2 is more numerous in the initial population, by stabilizing on a configuration in which the state
with the larger initial count occupies the whole population). Alistarh, Aspnes, and Gelashvili [2]
strengthened the state lower bound, showing that Ω(logn) states are required to compute majority
in O(n1−c) time for some c > 0, when a certain “natural” condition is imposed on the protocol that

6

holds for all known protocols.
In contrast to these previous results on the specific tasks of leader election and majority, we

obtain time lower bounds for a broad class of functions and predicates, showing “most” of those
computable at all by population protocols, cannot be computed in sublinear time. Since they all
can be computed in linear time, this settles their asymptotic population protocol time complexity.

Informally, one explanation for our result could be that some computation requires electing
“leaders” as part of the computation, and other computation does not. Since leader election itself
requires linear time as shown in [20], the computation that requires it is necessarily inefficient. It
is not clear, however, how to define the notion of a predicate or function computation requiring
electing a leader somewhere in the computation, but recent work by Michail and Spirakis helps to
clarify the picture [29].

1.5 Organization of this paper

Section 2 defines population protocol model and notation. Section 3 proves the technical lemmas
that are used in all the time lower bound proofs. Section 4 shows that a wide class of predicates
requires Ω(n) time to compute. Section 5 explains our definitions of function computation and
approximation. Section 6 shows that linear functions with either a negative (e.g., m1 − m2) or
non-integer (e.g., bm/2c) coefficient cannot be stably approximated with o(n) error in o(n) time.
Section 7 shows our positive result, Theorem 7.2, that linear functions with all nonnegative rational
coefficients (e.g., b2m1/3c + 3m2) can be stably approximated with O(n) error in O(log n) time.
Section 8 studies non-linear functions, showing that a large class of those computable by population
protocols require Ω(n) time to compute. Section 9 states conclusions and open questions.

2 Preliminaries

If Λ is a finite set (in this paper, of states, which will be denoted as lowercase Roman letters with
an overbar such as s), we write NΛ to denote the set of functions c : Λ → N. Equivalently, we
view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each coordinate “labeled” by
an element of Λ. (By assuming some canonical ordering s1, . . . , sk of Λ, we also interpret c ∈ NΛ

as a vector c ∈ Nk.) Given s ∈ Λ and c ∈ NΛ, we refer to c(s) as the count of s in c. Let
‖c‖ = ‖c‖1 =

∑
s∈Λ c(s). We write c ≤ c′ to denote that c(s) ≤ c′(s) for all s ∈ Λ. Since we view

vectors c ∈ NΛ equivalently as multisets of elements from Λ, if c ≤ c′ we say c is a subset of c′.
For α > 0, we say that c ∈ Nk is α-dense if, for all i ∈ {1, . . . , k}, if c(i) > 0, then c(i) ≥ α‖c‖.

It is sometimes convenient to use multiset notation to denote vectors, e.g., {x, x, y} and {2x, y}
both denote the vector c defined by c(x) = 2, c(y) = 1, and c(s) = 0 for all s 6∈ {x, y}. Given
c, c′ ∈ NΛ, we define the vector component-wise operations of addition c + c′, subtraction c − c′,
and scalar multiplication mc for m ∈ N. For a set ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as
a vector c ∈ NΛ by assuming c(s) = 0 for all s ∈ Λ \∆. Write c � ∆ to denote the vector d ∈ N∆

such that c(s) = d(s) for all s ∈ ∆. For any vector or matrix c, let amax(c) denote the largest
absolute value of any component of c. Also, given b ∈ N and m ∈ Nk, max(b,m) is a shorthand

for max
(
{b} ∪

⋃k
i=1{m(i)}

)
, and similar for amax(b,m).

In this paper, the floor function b·c : R → Z is defined to be the integer closest to 0 that is
distance < 1 from the input, e.g., b−3.4c = −3 and b3.4c = 3. For an (infinite) set/sequence
of configurations C, let bdd(C) = {s ∈ Λ | (∃b ∈ N)(∀c ∈ C) c(s) < b} be the set of states
whose counts are bounded by a constant in C. Let unbdd(C) = Λ \ bdd(C). For m ∈ N, let

7

Nk≥m0
= {m ∈ Nk | (∀i ∈ {1, . . . , k} m(i) ≥ m0}, denote the set of vectors in which each coordinate

is at least m0.

2.1 Population Protocols

A population protocol is a pair P = (Λ, δ), where Λ is a finite set of states and δ : Λ2 → Λ2 is the
(symmetric) transition function. A configuration of a population protocol is a vector c ∈ NΛ, with
the interpretation that c(s) agents are in state s ∈ Λ. If there is some “current” configuration c
understood from context, we write #s to denote c(s). By convention, the value n ∈ Z≥1 represents
the total number of agents ‖c‖. A transition is a 4-tuple τ = (r1, r2, p1, p2) ∈ Λ4, written τ :
r1, r2 → p1, p2, such that δ(r1, r2) = (p1, p2). If an agent in state r1 interacts with an agent in
state r2, then they change states to p1 and p2. This paper typically defines a protocol by a list of
transitions, with δ implicit. There is a null transition δ(r1, r2) = (r1, r2) if a different output for
δ(r1, r2) is not specified.

Given c ∈ NΛ and transition τ : r1, r2 → p1, p2, we say that τ is applicable to c if c ≥ {r1, r2},
i.e., c contains 2 agents, one in state r1 and one in state r2. If τ is applicable to c, then write τ(c)
to denote the configuration c−{r1, r2}+{p1, p2} (i.e., that results from applying τ to c); otherwise
τ(c) is undefined. A finite or infinite sequence of transitions (τi) is a transition sequence. Given a
c0 ∈ NΛ and a transition sequence (τi), the induced execution sequence (or path) is a finite or infinite
sequence of configurations (c0, c1, . . .) such that, for all i ≥ 1, ci = τi−1(ci−1).4 If a finite execution
sequence, with associated transition sequence q, starts with c and ends with c′, we write c =⇒q c′.
We write c =⇒P c′ (or c =⇒ c′ when P is clear from context) if such a path exists (i.e., it is possible
to reach from c to c′) and we say that c′ is reachable from c. Let postP(c) = {c′ | c =⇒P c′} to
denote the set of all configurations reachable from c, writing post(c) when P is clear from context.
If it is understood from context what is the initial configuration i, then say c is simply reachable
if i =⇒ c. If a transition τ : r1, r2 → p1, p2 has the property that for i ∈ {1, 2}, ri 6∈ {p1, p2}, or if
(r1 = r2 and (ri 6= p1 or ri 6= p2)), then we say that τ consumes ri; i.e., applying τ reduces the
count of ri. We say τ produces pi if it increases the count of pi.

2.2 Time Complexity

The model used to analyze time complexity is a discrete-time Markov process, whose states cor-
respond to configurations of the population protocol. In any configuration the next interaction is
chosen by selecting a pair of agents uniformly at random and applying transition function δ to
determine the next configuration. Since a transition may be null, self-loops are allowed. To mea-
sure time we count the expected total number of interactions (including null), and divide by the
number of agents n. (In the population protocols literature, this is often called “parallel time”; i.e.
n interactions among a population of n agents corresponds to one unit of time). Let c ∈ NΛ and
C ⊆ NΛ. Denote the probability that the protocol reaches from c to some configuration c′ ∈ C by
Pr[c =⇒C]. If Pr[c =⇒C] = 1,5 define the expected time to reach from c to C, denoted T [c =⇒C],
to be the expected number of interactions to reach from c to some c′ ∈ C, divided by the number
of agents n = ‖c‖. If Pr[c =⇒C] < 1 then T [c =⇒C] =∞.

4When the initial configuration to which a transition sequence is applied is clear from context, we may overload
terminology and refer to a transition sequence and an execution sequence interchangeably.

5Since population protocols have a finite reachable configuration space, this is equivalent to requiring that for all
x ∈ post(c), there is a c′ ∈ C ∩ post(x).

8

3 Technical tools

In this section we explain some technical results that are used in proving the time lower bounds
of Theorems 4.4, 6.3, 6.4, 8.4, and 8.5. In some cases the main ideas are present in previous
papers, but several must be adapted significantly to the current problem. Throughout Section 3,
let P = (Λ, δ) be a population protocol.

Although other results from this section are used in this paper, the key technical result of this
section is Corollary 3.11. It gives a generic method to start with an initial configuration i reaching
in sublinear time to a configuration o (in all our uses o is a stable configuration, but this is not
required by the corollary), and starting from two copies of i, to manipulate the transitions leading
from 2i to 2o while having a predictable effect on the counts of certain states, possibly also starting
with a “small” number of extra states, denoted d∆ in Corollary 3.11. This leads to a contradiction
when the effect on the counts of the states representing the output can be shown to be incorrect
for the given input 2i + d∆.

We often deal with infinite sequences of configurations.6 The following lemma, used frequently in
reasoning about population protocols, shows that we can always take a nondecreasing subsequence.

Lemma 3.1 (Dickson’s Lemma [17]). Any infinite sequence c0, c1, . . . ∈ Nk has an infinite nonde-
creasing subsequence ci0 ≤ ci1 ≤ . . ., where i0 < i1 < . . . ∈ N.

3.1 Bottleneck transitions take linear time

Let b ∈ N. A transition r1, r2 → p1, p2 is a b-bottleneck for configuration c if c(r1) ≤ b and c(r2) ≤ b.
The next observation, proved in [20], states that, if to get from a configuration x ∈ NΛ to some

configuration in a set S ⊆ NΛ, it is necessary to execute a transition r1, r2 → p1, p2 in which the
counts of r1 and r2 are both at most some number b, then the expected time to reach from x to
some configuration in S is Ω(n/b2).

Observation 3.2 ([20]). Let b ∈ N, x ∈ NΛ, and S ⊆ NΛ such that Pr[x =⇒S] = 1. If every path
taking x to a configuration o ∈ S has a b-bottleneck, then T [x =⇒S] ≥ n−1

2(b|Λ|)2 >
n

3b2‖Λ‖2 .

The next corollary is useful.

Observation 3.3 ([20]). Let γ > 0, b ∈ N, c ∈ NΛ, and X,S ⊆ NΛ such that Pr[c =⇒X] ≥ γ,
Pr[c =⇒S] = 1, and every path from every x ∈ X to some o ∈ S has a b-bottleneck. Then
T [c =⇒S] > γ n

3b2|Λ|2 .

3.2 Transition ordering lemma

The following lemma was originally proved in [14] and was restated in the language of population
protocols as Lemma 4.5 in [20]. Intuitively, the lemma states that a “fast” transition sequence
(meaning one without a bottleneck transition) that decreases certain states from large counts to
small counts must contain transitions of a certain restricted form. In particular the form is as
follows: if ∆ is the set of states whose counts decrease from large to small, then we can write the
states in ∆ in some order d1, d2, . . . , dd, such that for each 1 ≤ i ≤ d, there is a transition τi that
consumes di, and every other state involved in τi is either not in ∆, or comes later in the ordering.
These transitions will later be used to do controlled “surgery” on fast transition sequences, because

6In general these will not be execution sequences. Typically none of the configurations are reachable from any
others because they are configurations with increasing numbers of agents.

9

they give a way to alter the count of di, by inserting or removing the transitions τi, knowing that
this will not affect the counts of d1, . . . , di−1.

Let ∆ ⊆ Λ, with d = |∆|. We say that P is ∆-ordered (via τ1, . . . , τd) if there is an order on
∆, so that we may write ∆ = {d1, . . . , dd}, such that, for all i ∈ {1, . . . , d}, there is a transition
τi : di, si → oi, o

′
i, such that si, oi, o

′
i 6∈ {d1, . . . , di}. In other words, for each i there is a transition

consuming exactly one di without affecting d1, . . . , di−1.

Lemma 3.4 (adapted from [14]). Let b1, b2 ∈ N such that b2 > |Λ| · b1. Let x,o ∈ NΛ such that
x =⇒p o via a path p without a b2-bottleneck. Define ∆ = {d ∈ Λ | x(d) ≥ b2 and o(d) ≤ b1}. Then
P is ∆-ordered via τ1, . . . , τd, and each τi occurs at least (b2 − |Λ| · b1)/|Λ|2 times in p.

3.3 Sublinear time from dense configuration implies bottleneck free path from
dense configuration with every state present

Say that c ∈ NΛ is full if (∀s ∈ Λ) c(s) > 0, i.e., every state is present. The following theorem
states that with high probability, a population protocol will reach from an α-dense configuration to
a configuration in which all states are present (full) in “large” count (β-dense, for some 0 < β < α).7

It was proven in [18] in the more general model of chemical reaction networks, for a subclass of
such networks that includes all population protocols.

Theorem 3.1 (adapted from [18]). Let α > 0. Then there are constants ε, β > 0 such that, letting
Xβ = { x ∈ NΛ | x is full and β-dense }, for all sufficiently large α-dense i ∈ NΛ, Pr[i =⇒Xβ] ≥
1− 2−ε‖i‖.

The following was originally proved as Lemma 4.4 in [20]. The result was stated with S being
the set of what was called “Q-stable configs,” but we have adapted it to make the statement more
general and quantitatively relate the bound b(n) to the expected time t(n). It states that if a
protocol goes from an α-dense configuration to a set of states S in expected time ≤ t(n), then there
is a full β-dense (for 0 < β < α) reachable configuration x and a path from x to a state in S with

no b(n)-bottleneck transition, where b(n) = O

(√
n
t(n)

)
. If t(n) = o(n), then b(n) = ω(1), which

suffices for our subsequent results.

Lemma 3.5 (adapted from [20]). For all α > 0, there is a β > 0 such that the following holds.
Suppose that for some t : N→ N, some set S ⊆ NΛ and some set of α-dense initial configurations

I, for all i ∈ I, T [i =⇒S] ≤ t(n). Define b(n) = 1
|Λ|

√
n

6t(n) . There is an n0 ∈ N such that for all

i ∈ I with ‖i‖ = n ≥ n0, there is x ∈ post(i) and path p such that:

1. x(s) ≥ βn for all s ∈ Λ,

2. x =⇒p o, where o ∈ S, and

3. p has no b(n)-bottleneck transition.

Proof. Intuitively, the lemma follows from the fact that state x is reached with high probability
by Theorem 3.1, and if no paths such as p existed, then all paths from x to a stable configuration
would have a bottleneck and require more than the stated time by Observation 3.3. Since x is
reached with high probability, this would imply the entire expected time is linear.

7With the same probability, this happens in time O(1), although this fact is not needed in this paper.

10

For any configuration x reachable from some configuration i ∈ I, there is a transition sequence
p satisfying condition (2) by the fact that Pr[i =⇒S] = 1. It remains to show we can find x and p
satisfying conditions (1) and (3).

By Theorem 3.1 there exist ε, β (which depend only on A and α) such that, starting in any
sufficiently large initial configuration i, with probability at least 1−2−εn, A reaches a configuration
x where all states s ∈ Λ have count at least βn, where n = ‖i‖. For all i, let Xi = post(i) ∩Xβ =
{x | i =⇒x and (∀s ∈ Λ) x(s) ≥ β‖i‖}. Let n0 be a lower bound on n such that Theorem 3.1 applies
for all n ≥ n0 and 1 − 2−εn0 ≥ 1

2 . Then for all i ∈ I such that ‖i‖ = n ≥ n0, Pr[i =⇒Xi] ≥ 1
2 .

Choose any n ≥ n0 for which there is i ∈ I with ‖i‖ = n. Then any x ∈ Xi satisfies condition (1):
x(s) ≥ βn for all s ∈ Λ. We now show that by choosing x from Xi for a large enough n, we can
find a corresponding p satisfying condition (3) as well.

Suppose for the sake of contradiction that, we cannot satisfy condition (3) when choosing x
as above, no matter how large we make n. This means that for infinitely many i ∈ I, (and
therefore infinitely many population sizes n = ‖i‖), all transition sequences from Xi to S have a
b(n)-bottleneck. Applying Observation 3.3, letting c = i, γ = 1

2 , X = Xi, tells us that t(n) =

T [i =⇒S] > 1
2

n
3b(n)2|Λ|2 , so b(n) > 1

|Λ|

√
n

6t(n) , a contradiction.

In the following lemma, note that the indexing is over a subset N ⊆ N; for example, the sequence
might be indexed i3, i6, i7, i12, . . . if N = {3, 6, 7, 12, . . .}, allowing us to retain the convention that
the population size ‖in‖ is represented by n. Lemma 3.6 essentially states that, if infinitely many
configurations i satisfy the hypothesis of Lemma 3.5, then we can find three infinite sequences
satisfying the conclusion of Lemma 3.5: initial configurations in, intermediate full configurations
xn, and “final” configurations on (in our applications all on will be stable), which by Dickson’s
lemma can all be assumed nondecreasing.

Lemma 3.6. For all α > 0, there is a β > 0 such that the following holds. Suppose that for some
set S ⊆ NΛ and infinite set of α-dense initial configurations I, for all i ∈ I, T [i =⇒S] ≤ t(n).

Define b(n) = 1
4|Λ|

√
n
t(n) . There is an infinite set N ⊆ N and infinite sequences of configurations

(in ∈ I)n∈N , (xn ∈ NΛ)n∈N , (on ∈ NΛ)n∈N , where (xn)n∈N and (on)n∈N are nondecreasing, and
an infinite sequence of paths (pn)n∈N such that, for all n ∈ N ,

1. ‖in‖ = ‖xn‖ = ‖on‖ = n,

2. in =⇒xn,

3. xn(s) ≥ βn for all s ∈ Λ,

4. xn =⇒pn on, where on ∈ S, and

5. pn has no b(n)-bottleneck transition.

Proof. Since I is infinite, the set In0 = {i ∈ I | ‖in‖ ≥ n0} is infinite. Pick an infinite sequence (in)
from In0 , where ‖in‖ = n (n may range over a subset of N here, but for each n ∈ N, at most one
configuration in the sequence has size n). For each in in the sequence, pick xn, pn and on for in
as in Lemma 3.5. By Dickson’s Lemma (Lemma 3.1) there is an infinite subset N ⊆ N such that
(xn)n∈N and (on)n∈N are nondecreasing on the respective subsequences of (xn)n∈N and (on)n∈N
corresponding to N . Lemma 3.5 ensures that properties (1)-(5) are satisfied.

The conclusion of Lemma 3.6, with its various infinite sequences, is quite complex. The hy-
pothesis of Lemma 3.9 is equally complex; they are used in tandem to prove Lemma 3.10 and

11

Corollary 3.11, the latter being our main technical tool for proving the time lower bounds of The-
orems 4.4, 6.3, 6.4, 8.4, and 8.5.

The idea of Lemma 3.10 is to start with a protocol satisfying the hypothesis of Lemma 3.6,
which reaches in sublinear time from some set I of α-dense initial configurations to some set S (in all
applications, S is the set of stable configurations reachable from I). Then, invoke Lemma 3.9 to show
that it is possible from certain initial configurations to drive some states in the set ∆ = bdd((on))
to 0.

The reason that the statement of Lemma 3.10 is also fairly complex, and references some of
these infinite sequences, is that the set ∆ appearing in the conclusion of Lemma 3.9 depends on the
particular infinite sequence (on) defined in the conclusion of Lemma 3.6. Several infinite sequences,
each with their own ∆, could satisfy the hypothesis of Lemma 3.9, and it matters which one we pick.
Thus, in applying these results, before reaching the conclusion of Lemma 3.9, we must explicitly
define these infinite sequences to know the particular ∆ to which the conclusion of Lemma 3.9
applies.

3.4 Path manipulation

This is the most technically dense subsection, with many intermediate technical lemmas that cul-
minate in our primary technical tool for proving time lower bounds, Corollary 3.11. Each lemma
statement is complex and involves many interacting variables. The first three lemmas are accom-
panied by an example and figures to help trace through the intuition.

The next two lemmas, Lemmas 3.7 and 3.8, apply to population protocols that have transitions
as described in Lemma 3.4. Both use these transitions in order to manipulate a configuration (by
manipulating a “fast” path leading to it from another configuration) until it has prescribed counts
of states in ∆ from Lemma 3.4.

Lemmas 3.7 and 3.8 are based on statements first proven as “Claim 1” and “Claim 2” in [20].
Since their statements in that paper were not self-contained (being claims as part of a larger proof),
we have rephrased them as self-contained Lemmas 3.7 and 3.8, and we give self-contained proofs.
Furthermore, we have significantly adapted both the statements and proofs to make them more
generally useful for proving negative results, in particular stating the minimum conditions required
to apply the lemmas, in addition to quantitatively accounting for the precise effect that the path
manipulation has on the underlying configurations.

We use linear algebra to describe changes in counts of states. It is beneficial to fix some
notational conventions first. Recall Λ is the set of all states, ∆ ⊂ Λ where ∆ = {d1, . . . , dd},
and Γ = Λ \ ∆ where Γ = {g1, . . . , gg}. A matrix C̃ ∈ ZΓ×∆ is an integer-valued matrix with g

rows and d columns, with row j corresponding to state gj and column i corresponding to state di.

Given a vector c∆ ∈ N∆ representing counts of states in ∆, then C̃.c∆ = dΓ is a vector dΓ ∈ ZΓ

representing changes in counts of states in Γ.
Our notation for indexing these matrices will generally follow our usual vector convention of

using the name of the state itself, rather than an integer index, so for example, C̃(gi, dj) refers
to the entry in the column corresponding to dj and the row corresponding to gi. If necessary to
identify the position, this will correspond to the i’th row and j’th column. Where convenient, we
also use the traditional notation C̃(i, j) as well: for instance, a protocol being ∆-ordered implies a
1-1 correspondence between transitions τ1, . . . , τd and ∆ = {d1, . . . , dd}, which can both be indexed
by i ∈ {1, . . . , d}.

Similarly, when convenient we will abuse notation and consider a vector v ∈ Nk, for a predicate
or function with k inputs, to equivalently represent a configuration or subconfiguration in NΣ,
where Σ ⊆ Λ is the set of k input states of the population protocol.

12

The next lemma says that for any amount c∆ ∈ N∆ of states in ∆, there exists an amount
e ∈ NΛ of states that, if present in addition to c∆, can be used to remove c∆ and e � ∆ (the states
of e that are in ∆), resulting in a configuration zΓ ∈ NΓ with no states in ∆. Furthermore, both e
and zΓ are linear functions of c∆.

So when we employ Lemma 3.7 later, where will these extra agents e come from? Although
we talk about them as if they are somehow physically added, in actuality, we’ll start with a larger
initial configuration and “guide” some of the agents to the desired states that make up e; this is
the work of Lemma 3.8.

Lemma 3.7 (adapted from [20]). Let ∆ ⊆ Λ such that P is ∆-ordered, d = |∆|, and let Γ = Λ\∆.
Then there are matrices C1 ∈ NΓ×∆ and C2 ∈ NΛ×∆, with max(C1) < 2d+1, max(C2) < 2d, such
that, for all c∆ ∈ N∆, setting e = C2.c

∆ ∈ NΛ and zΓ = C1.c
∆ ∈ NΓ, then c∆ + e =⇒ zΓ.

Proof. Intuitively, the proof works as follows. Since P is ∆-ordered, for each i ∈ {1, . . . , d}, there is
a transition τi : di, si → oi, o

′
i, such that for all i, di ∈ ∆ and oi, o

′
i 6∈ {d1, . . . , di}. We will construct

the path p such that c∆ + e =⇒p z as follows. A näıve approach would simply consume states in
c∆, by adding c∆(i) copies of τi to the path p, and c∆(i) copies of the other input si to e. Since P
is ∆-ordered this would indeed result in count 0 of d1. However, although for i ∈ {2, . . . , d}, this
consumes c∆(di) copies of di, it might produce additional copies of di if it appears as an output state
of some transitions τ1, . . . , τi−1 that were added. Let c∆

1 denote these counts. Since c∆
1 (d1) = 0, we

won’t need to add any more τ1. Repeat the näıve approach a second time to consume c∆
1 , which

will result in c∆
2 , where c∆

2 (d1) = c∆
2 (d2) = 0. Repeating this d times consumes all of ∆.

We now formally define matrices that will help to account for the exact changes in state counts
that result from executing this path. First, we define a matrix T ∈ Nd×d. Intuitively, if c∆ ∈ N∆

represents counts of states in ∆, then the vector t ∈ Nd defined by t = T.c∆ represents counts
of transitions τ1, . . . , τd in the path p such that c∆ + e =⇒p zΓ. In particular, t(di) will represent
the total number of transitions τi that we add to path p, in order to consume all copies of di, not
only the c∆(di) present initially, but also any added because of transitions τj for j < i appearing
previously in p, if one of the outputs of τj is di.

Define the d×d matrix T1 as follows. Intuitively, T1 is a matrix such that, if t ∈ Nd represents
“counts of transition executions”, i.e., t(j) means “execute transition τj t(j) times”, then T1.t ∈ Nd
(equivalently, N∆) represents the total count of output states in ∆ that would be produced as outputs
of these transitions. It does not account for the number of input states consumed, nor the number
of output states in Γ produced.

Formally, T1 is a strictly lower diagonal matrix (0’s on and above the diagonal). Column j is
0’s, other than potentially up to two positive entries, described below.

• If τj has output states dk, dk′ where j < k 6= k′, then T(k, j) = T(k′, j) = 1.

• If τj has output states dk, dk where j < k, then T(k, j) = 2.

• If τj has output states dk, g, where j < k and g ∈ Γ, then T(k, j) = 1.

By the fact that P is ∆-ordered via τ1, . . . , τd, there are no other forms the transitions can take.
For example, if we have transitions

τ1 : d1, d3 → d2, d4

τ2 : d2, g1 → d3, d4

τ3 : d3, d6 → d5, g1

τ4 : d4, d6 → g1, g2

τ5 : d5, g2 → d6, d6

τ6 : d6, g1 → g1, g2

13

where g1, g2 ∈ Γ, then

T1 =

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 2 0

We define T based on T1. Näıvely, to consume states in c∆, for each i ∈ {1, . . . , d} one would

add c∆(i) copies of τi. Since P is ∆-ordered this would indeed result in count 0 of d1. However,
although for i ∈ {2, . . . , d}, this consumes c∆(di) copies of di, it also produces (T1.c

∆)(i) copies of
di, which is positive if di is an output of some transition in τ1, . . . , τi−1.

Applying the näıve idea a second time, to consume the states that were produced on the first
step, for each i ∈ {1, . . . , d} we add (T1.c

∆)(di) copies of τi. (Note that (T1.c
∆)(d1) = 0 so this

second step adds no additional copies of τ1.) Thus, this results in count 0 of d2, and although it
consumes the copies of d3, . . . , dd that remained after the first step, it also produces T1.(T1c

∆)(di)
additional copies of di. The number of transitions after two steps is then described by summing
steps 1 and 2: c∆ +T1.c

∆. We iterate this procedure a total of d steps, where the transitions added
in step i are described by the vector Ti−1

1 .c∆.
Since the i’th step results in getting to count 0 of d1, . . . , di, all d1, . . . , dd will have count

0 after d steps. The total number of transitions applied over all steps is then described by the
vector obtained by summing the d vectors indicating transition counts for each step 1 through d:
c∆ + T1.c

∆ + T2
1.c

∆ + T3
1.c

∆ + . . . + Td−1
1 .c∆. Thus, taking T0

1 to be the d × d identity matrix,

we can define the matrix T =
∑d−1

i=0 Ti
1. Since each column of T1 is either all 0, has one or two

1’s, or has a single 2, a simple induction shows that for all i ∈ {1, . . . , d − 1}, max(Ti
1) ≤ 2i.

Thus max(T) ≤
∑d−1

i=0 max(Ti
1) ≤

∑d−1
i=0 2i < 2d. (This bound is nearly tight; e.g., transitions

τi : di, s→ di+1, di+1 result in T(d, 1) = 2d−1.)
Now that we have defined T, which tells us that we will have (T.c∆)(i) copies of τi in path p,

it is easy to define C1 and C2 based on T. For each copy of τi : di, s → o, o′, we add a copy of s
to e. Thus, define the matrix S ∈ NΛ×∆ so that, for all i ∈ {1, . . . , d}, S(s, di) = 1 if transition τi,
which by definition has one input state di, has s as its other input state. All other entries of S are
0. Then C2 = S.T, and max(C2) = max(T) < 2d.

It remains to define C1, so that C1.c
∆ describes the vector zΓ of states in Γ produced by path p

First, define the matrix G ∈ NΓ×∆ as follows, which intuitively maps a count vector of transitions
in τ1, . . . , τd to a total count of states in Γ produced as output by the transitions. Let j ∈ {1, . . . , d}
and let τj : dj , s → o, o′. If o, o′ ∈ ∆, then the j’th column of G is all 0. If exactly one (w.l.o.g.)
o ∈ Γ, then G(o, dj) = 1 and the remainder of the j’th column of G is all 0. If both o, o′ ∈ Γ, and
o = o′, then G(o, dj) = 2 and the remainder of the j’th column of G is all 0. If both o, o′ ∈ Γ, and
o 6= o′, then G(o, dj) = G(o′, dj) = 1 and the remainder of the j’th column of G is all 0. Then
C1 = G.T, and max(C1) ≤ 2 ·max(T) < 2d+1.

We demonstrate Lemma 3.7 with a concrete example. Consider a Population Protocol P defined
by transitions

τ1 : d1, d3 → g1, d2

τ2 : g1, d2 → g1, d3

τ3 : g1, d3 → g1, g1

τ4 : g1, g2 → g1, g1

τ5 : g1, g2 → g2, g2

14

Let ∆ = {d1, d2, d3}. Then P is ∆-ordered via τ1, τ2, τ3, because τ2 does not reference d1, and
τ3 does not reference d2 or d3, and for all i ∈ {1, 2, 3}, τi contains exactly one reference to di as an
input. By the terminology of Lemma 3.7, Γ = {g1, g2}.

For a given c∆, we can design a configuration e ∈ N∆ such that c∆ + e =⇒ zΓ. We will remove
agents in ∆ using the transitions given to us by P being ∆-ordered. For example, to remove n
agents of d1 we will need transition τ1 to occur n times. Similarly, to remove m agents of d2, we
will need τ2 to occur at least m times, and we may need more if τ1 generated additional copies of
d2.

Let T be defined as in the proof of Lemma 3.7 and let

c∆ =

 5
1
2

In order to remove 5 copies of d1, we need enough copies of d3 for τ1 to occur 5 times. As

such, we add T.c∆(d1) = 5 d3 agents to e allowing τ1 to occur 5 times, as shown in Figure 1.
This effectively removes all copies of d1 and produces 5 extra copies of both g1 and d2. Since P is
∆-ordered, we know that the only states created will either be in Γ or they will be in ∆ but further
in the ordering - allowing us to remove the extra agents at a later time.

1add 5·d 5·3

c𝚫
T.c ()𝚫 1d

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

⇒→
(a) (b) (c)

Figure 1: First step of the surgery detailed in Lemma 3.7. (a) Our initial configuration c∆. (b)
Add 5 d3 agents which will react with 5 d1 agents. (c) All 5 copies of d1 have been removed.

Now, we must remove 1 original copy of d2 plus 5 newly created copies created via τ1 in the
previous step. To do so, we can use τ2, which requires we add T.c∆(d2) = 6 additional copies of
g1 to e. Via τ2, an additional 6 copies of both d3 and g1 are created. This process is illustrated
in Figure 2 Again, since d3 comes after d2 in the ordering, we can still remove all copies of d3 at a
later step.

There are now 8 copies of d3 to remove due to additional agents being produced in the previous
steps. We will add T.c∆(d3) = 8 copies of g1 to e to allow 8 instances of τ3 to take place. This
will transition all instances of d3 into instances of g1 and leave us with a configuration zΓ of states
only in Γ as shown in Figure 3

While the process can be presented as several separate steps as above, e will be the sum of all
the agents added in the prior steps. In Figure 4, we add e to c∆, which will then transition to zΓ.
We have removed all agents in ∆ and arrived at a configuration zΓ as desired.

The next lemma works toward generating the vector of states e needed to apply Lemma 3.7.
The “cost” for Lemma 3.8 is that the path must be taken “in the context” of additional agents in
states captured by p. The intuitive reason p is needed is this: In Lemma 3.7, we add new transitions
and add enough new states (e) to supply the inputs for all these transitions. Thus the resulting
counts of states in Γ can only be larger than the the original path. However, the manipulation of

15

→
add 6·g 6· 2

T.c ()𝚫 2d

1
⇒

(b) (c)

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

(a)

Figure 2: Second step of the surgery detailed in Lemma 3.7. (a) The same configuration as in
panel (c) of Figure 1. (b) Add 6 g1 agents which will react with 6 d2 agents. (c) All 6 copies of d2

have been removed.

add 8·g 8· 3

z𝚪T.c ()𝚫 3d

1
⇒→

(a) (b) (c)

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

Figure 3: Third step of the surgery detailed in Lemma 3.7. (a) The same configuration as in panel
(c) of Figure 2. (b) Add 8 g1 agents which will react with 8 d3 agents. (c) All 8 copies of d3 have
been removed. The resulting configuration contains only states in Γ.

Lemma 3.8 does not add new states, so inputs of added transitions may have lower count. Also,
unlike Lemma 3.8, the manipulation also involves removing transitions; thus the outputs of those
transitions may have their counts lowered. The states in p are used as a “buffer” to keep any
state count from becoming negative, which could happen if the manipulation were applied to the
path starting from just the original configuration x. Because of this, we do not specify where
precisely in the transition sequence certain transitions are added, nor which specific occurrences
are removed. These could be chosen anywhere along the sequence, and the buffer p ensures that
the entire sequence remains applicable.

Importantly, the net effect of the path preserves p, which will give a way to “interleave” Lem-
mas 3.7 and 3.8, in order to start from a configuration with large counts of all states and reach a
configuration with count 0 of all states in ∆. Note that unlike matrices C̃1 and C̃2 of Lemma 3.7,
the matrix C̃3 may have negative entries, since the resulting configuration is described as a differ-
ence from the configuration o, and some states in Γ may have lower count in the new configuration
than in o.

Lemma 3.8 (adapted from [20]). Let b1, b2 ∈ N. Let x,o ∈ NΛ such that x =⇒q o via path q that
does not contain a b2-bottleneck. Define ∆ = {d ∈ Λ | o(d) ≤ b1}, d = |∆|, and Γ = Λ \ ∆. Let
o∆ = o � ∆ and oΓ = o � Γ. Then there is a matrix C̃3 ∈ ZΓ×∆ with amax(C̃3) < 2d+1, such
that for all e∆ ∈ N∆, if b2 ≥ |Λ| · b1 + d2d ·max(b1, e

∆) · |Λ|2, and if x(s) ≥ b2 for all s ∈ Λ and
o(s) ≥ b2 for all s ∈ Γ, letting p ∈ NΛ be defined p(s) = d2d+1 · max(b1, e

∆) for all s ∈ Λ, then
p + x =⇒p + oΓ + C̃3.o

∆ − C̃3.e
∆ + e∆.

Note that we consider configurations in which all counts in oΓ are arbitrarily large (see Lemma 3.9),
whereas counts in o∆ and e∆, as well as the entries of C̃3, are bounded. Thus, for sufficiently large

16

→
ec𝚫

add e

14·g }, 15· 6· 2 8· 3⊕ ⊕

z𝚪

= {5·d3 1
⇒e

(a) (b) (c)

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

Figure 4: Illustration of the whole path surgery technique detailed in Lemma 3.7. We combine the
steps shown in Figures 1, 2, and 3 to form a single transition sequence leading from c∆ to zΓ. (a)
The same initial configuration c∆ as in panel (a) of Figure 1. (b) Add e = {5d3}+{6g1}+{8g1} =
{5d3, 14g1} to c∆. (c) All states in ∆ are removed and we reach a configuration zΓ.

starting configurations, oΓ ≥ C̃3.o
∆ − C̃3.e

∆ + e∆, justifying our earlier claim that in this lemma,
we “get p back at the end.”

Proof. By Lemma 3.4, P is ∆-ordered via τ1, . . . , τd, and each τi occurs at least (b2 − |Λ| · b1)/|Λ|2
times in q.

Intuitively, this proof is similar to that of Lemma 3.7, except that instead of targeting count
0 of all states in ∆, we target counts given by e∆. Also, rather than constructing a new path
consisting solely of transitions of type τ1, . . . , τd, we alter the path q, which may contain other
types of transitions (although we will only modify transitions of type τ1, . . . , τd). Since x =⇒p o,
we can think of our “starting value” for counts in ∆ as being o∆, and thus the total change in
counts that we want to make is described by the vector o∆ − e∆. In particular, since we may have
o∆(di) < e∆(di) for some d ∈ ∆, this may require removing transitions from q as well as adding
them. Furthermore, since we have no e at the start as in Lemma 3.7, when adding or removing
transition di, s→ o, o′ to alter the count of di, we must account not only for the effect this has on
the output states o, o′, but also the effect on the other input state s. This may result in a path
that is not valid, in the sense that some counts may be negative after the modification. The extra
states in p have the purpose of keeping the entire path valid. The bound on p will then be derived
from the bound on the size of the changes to q that we make.

First, we define a matrix T̃ ∈ Zd×d. Intuitively, if c̃∆ ∈ Z∆ represents changes in counts of
states in ∆ that we wish to achieve through addition and removal of transitions τ1, . . . , τd from the
path q, then the vector t̃ ∈ Zd defined by t̃ = T̃.c̃∆ represents changes in counts of transitions
τ1, . . . , τd in the path q to achieve this. More precisely, the counts in o are given by o∆, but we
wish them to be e∆ instead. Letting c̃∆ = o∆−e∆, then t̃ = T̃.c̃∆ describes how many transitions
of each type to add or remove from q.

Define the d× d matrix T̃1 as follows. Intuitively, T̃1 is a matrix such that, if t̃ ∈ Zd represents
(possibly negative) “counts of transition executions”, i.e., t̃(j) means “execute transition τj an
additional t̃(j) times” (where executing a transition an additional negative number of times means
removing it from q), then T̃1.t̃ ∈ Zd (equivalently, Z∆) represents the total count of states in ∆
that would be produced as outputs of these transitions or consumed as the second input. Here, the
“second” input means, for transition τi : di, s→ o, o′, the input s that is not di. It does not account
for the number of input states in Γ consumed, nor the number of output states in Γ produced.

Formally, T̃1 is a strictly lower diagonal matrix (0’s on and above the diagonal). Column j is
0’s, other than potentially up to two nonzero entries, described below.

• If τj has output states dk, dk′ where j < k 6= k′, then T̃(k, j) = T̃(k′, j) = 1.

17

• If τj has output states dk, dk where j < k, then T̃(k, j) = 2.

• If τj has output states dk, g, where j < k and g ∈ Γ, then T̃(k, j) = 1.

• If τj has second input state dk where j < k, then T̃(k, j) = −1.

By the fact that P is ∆-ordered via τ1, . . . , τd, there are no other forms the transitions can take.
For example, if we have transitions

τ1 : d1, d3 → d2, d4

τ2 : d2, g1 → d3, d4

τ3 : d3, d6 → d5, g1

τ4 : d4, d6 → g1, g2

τ5 : d5, g2 → d6, d6

τ6 : d6, g1 → g1, g2

where g1, g2 ∈ Γ, then

T̃1 =

0 0 0 0 0 0
1 0 0 0 0 0
−1 1 0 0 0 0

1 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 −1 2 0

We define T̃ based on T̃1. Näıvely, to consume (respectively, produce) counts of states as

described in c̃∆, for each i ∈ {1, . . . , d} one would add c̃∆(i) copies of τi (where adding a negative
amount means removing from path q). Since P is ∆-ordered this would indeed result in altering
the count of d1 by c̃∆(d1). However, although for i ∈ {2, . . . , d}, this consumes (resp. produces)
c∆(di) copies of di, it also produces (T̃1.c̃

∆)(i) copies of di (where “producing” a negative number
corresponds to consuming copies of di). Note that (T̃1.c̃

∆)(1) = 0 since d1 does not appear in any
transition other than τ1.

We take the same approach as in the proof of Lemma 3.7, in which we take the vector T̃1.c̃
∆,

which represents the difference between the count of states in ∆, compared to our target after doing
step 1 above. Step 2 consists of adding transitions as described by the vector T̃1.c̃

∆, resulting in
T̃2

1.c̃
∆, in which T̃2

1.c̃
∆(1) = T̃2

1.c̃
∆(2) = 0. The i’th step involves adding transitions according to

the vector T̃i
1.c̃

∆. We define T̃ =
∑d−1

i=0 T̃i
1.

Thus, if transition τi appears ai times in q, then in the altered path q′, it appears ai+(T̃.c̃∆)(i)
times. Thus, so long as for each i, ai ≥ −(T̃.c̃∆)(i), there are sufficiently many transitions of
each type in q to potentially remove. Since each column of T̃1 has either a single 2, or two 1’s,
and at most one −1, a simple induction shows that for each i, amax(T̃i

1) ≤ 2i. Thus amax(T̃) ≤∑d−1
i=0 T̃i

1 ≤
∑d−1

i=0 2i < 2d, which implies that max(−(T̃.c̃∆)) < d2d · amax(c̃∆). Thus, it suffices
if ai ≥ d2d · amax(c̃∆). By Lemma 3.4, ai ≥ (b2 − |Λ| · b1)/|Λ|2. Thus it suffices to show that
d2d · amax(c̃∆) ≤ (b2 − |Λ| · b1)/|Λ|2. Note that b1 ≥ max(o∆) by the defintion of ∆ in the
statement of the lemma. Then we have d2d ·amax(c̃∆) = d2d ·amax(o∆−e∆) ≤ d2d ·max(o∆, e∆) ≤
d2d ·max(b1, e

∆) ≤ (b2 − |Λ| · b1)/|Λ|2 where the last inequality follows from the assumption that
b2 ≥ |Λ| · b1 + d2d ·max(b1, e

∆) · |Λ|2.
It remains to define C̃3, so that the vector C̃3.c̃

∆ = C̃3.o
∆− C̃3.e

∆ describes relative counts of
states in Γ compared to oΓ. First, define the matrix G ∈ NΓ×∆ as follows, which intuitively maps
a count vector of transitions in τ1, . . . , τd to a total count of states in Γ either produced as output
or consumed as a second input by the transitions. Let j ∈ {1, . . . , d} and let τj : dj , s→ o, o′. Let

18

i ∈ {1, . . . , g} (recall g = |Γ|). Let G(i, j) ∈ {−1, 0, 1, 2} denote the net number of gi produced
by τj ; e.g., −1 if s = gi 6= o, o′, 0 if gi 6= s, o, o′ or if gi = s = o 6= o′, etc. Then C̃3 = G.T, and
amax(C̃3) ≤ 2 · amax(T̃) < 2d+1.

Finally, recall that the new path may not be valid since, although the final configuration oΓ +
C̃3.o

∆ − C̃3.e
∆ + e∆ ∈ NΛ is nonnegative, some intermediate configurations between x and the

final configuration could be negative. Define G′ ∈ NΛ×∆ similarly to G above, but reflecting
the effect of a transition τ1, . . . , τd on every state s ∈ Λ (not just those in Γ). Then letting
C̃′3 = G′.T, amax(C̃′3.c̃

∆) < d2d+1amax(c̃∆) is an upper bound on how much any individual state
count can change. Thus, for all s ∈ Λ, letting p(s) = d2d+1 · amax(c̃∆) = d2d+1 · amax(o∆− e∆) ≤
d2d+1 ·max(o∆, e∆) ≤ d2d+1 ·max(b1, e

∆) suffices to ensure that the whole path p+x =⇒p+oΓ +
C̃3.o

∆ − C̃3.e
∆ + e∆ is valid.

The following example provides intuition for Lemma 3.8. Let ∆, Γ, x, o, p be defined as in
Lemma 3.8. For all e∆, we can alter a transition sequence p — either by adding or removing
transitions — to ensure we finish with only states in Γ plus exactly e∆ from ∆. In other words,
given that we have additional agents in p to use, we can manipulate a population protocol to have
the exact amount of agents in ∆ that we desire. Depending on the desired e∆, doing so will effect
the counts of states in Γ in a predictable way.

Let us continue with the above example using P. In order to transition c∆ to zΓ, we needed to
add e, which contained 14 copies of g1 and 5 copies of d3. So, for this example, we will show how
to produce e∆ such that

e∆ =

 0
0
5

Let x =⇒p o by transition sequence p and let

o∆ =

 3
1
2

So,

c̃∆ = o∆ − e∆ =

 3
1
−3

representing the number of agents of each state in ∆ that must be removed. The proof of Lemma 3.8
provides further detail on how to create matrices to determine exactly how many instances of each
transition are added or removed based on c̃∆. We will need to remove two instances of τ3 and add
3 instances of τ1 and 4 instances of τ2.

Additional transition executions can be added to the end of the transition sequence without
otherwise affecting the original transition sequence; however, you can only remove transition exe-
cutions where they take place. Thus, to remove two instance of τ3, we need to alter p in the middle
of the sequence.

Removing transitions has an affect on the overall counts of other states. We have extra states
in p to account for this. If removing a transition in the middle of the sequence causes the count of
a state to become zero later in the sequence, and if a transition requiring that state was meant to
take place after that point, the extra agents in p can be used instead.

Our example population protocol P includes τ4 and τ5 to demonstrate how p may be used.
While these transition rules may not seem particularly useful in practice, they allow us to show a
simple situation in which the count of one state dips to zero.

19

In P, removing two instances of τ3 will increase the count of d3 by 2, at the same time reducing
the count of g1 by 2. At some point in p, the count of g1 dips to 2. With 2 fewer g1 agents in our
modified transition sequence, we instead arrive at a configuration where there are zero copies of g1.
In order for the next τ4 transition to take place, we must use the extra agents provided by p. Thus,
the presence of additional agents allows the rest of the transition sequence to remain unchanged
after removing transitions from the transition sequence. This is demonstrated in Figure 5.

We can then add the transitions necessary to remove d1 and d2 from the resulting configuration,
since our final configuration e∆ contains no agents from these states. This process is similar to the
one detailed above to describe Lemma 3.7. In Figure 6 we add 3 instances of τ1 and in Figure 7 we
add 4 instances of τ3, which completes the adjusted transition sequence.

In the final configuration of Figure 7, counts of states in Γ are altered and counts of states in
∆ are exactly equal to those in e∆ as desired. This demonstrates how we can create e as required
by Lemma 3.7. This concludes the description of the example showing Lemma 3.8.

The following is a general lemma that uses Lemmas 3.7 and 3.8 to “steer” certain configurations
(each of which is expressed as “twice a configuration xn where all counts are large (≥ b2), plus a
few more states described by d∆”) to a configuration with a “target” t∆ amount of states in ∆.

Intuitively, the proof goes like this: Letting c∆ in Lemma 3.7 equal on � ∆ + d∆, the states
in ∆ in the final configuration on, plus the states d∆ that we have added at the start, which we
want to eliminate, use Lemma 3.7 to determine what states e need to be added to apply the extra
transitions of Lemma 3.7 and eliminate all of d∆ + on � ∆. Then, apply Lemma 3.8 to produce
these states e from xn. However, Lemma 3.8 requires the presence of an extra “buffer” p of states
to enable e to be produced. A second copy of xn serves as this extra buffer (for large enough n
xn ≥ p, since xn(s) ≥ βn for all state counts in xn, due to xn, when we employ Lemma 3.9, being
the sequence of configurations from Lemma 3.6 in which all state counts are at least βn for a fixed
β > 0). Finally, we can generalize to not only eliminate all of d∆ + on � ∆ (i.e., set final counts of
states in ∆ all to 0), but to target other positive counts of states in ∆, represented by the vector
t∆. The states in t∆ can simply be generated by Lemma 3.8 alongside the states in e. In this
paper we use only Corollary 3.11, which sets t∆ = 0, but it may be useful in other applications to
be able to choose a nonzero t∆.

Lemma 3.9. Let b2 ∈ N. Let N ⊆ N be infinite. Let (xn)n∈N and (on)n∈N be nondecreasing
sequences of configurations. Let (pn)n∈N be a sequence of paths such that, for all n ∈ N ,

1. ‖xn‖ = ‖on‖ = n,

2. xn(s) ≥ b2 for all s ∈ Λ,

3. xn =⇒pn on, and

4. pn has no b2-bottleneck transition.

Let ∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \ ∆. Then there are matrices D̃1 ∈ ZΓ×∆ and
D̃2 ∈ ZΓ×∆ with amax(D̃1), amax(D̃2) ≤ d22d+2 and the following holds. For each n ∈ N , let
o∆
n = on � ∆ and oΓ

n = on � Γ. Let b1 = max
n∈N,d∈∆

o∆
n (d). For all b ∈ N, there is nb ∈ N such that for

all n ∈ N with n ≥ nb and all d∆, t∆ ∈ N∆ with d∆ ≤ b, t∆ ≤ d2d(b1 + b), and b2 ≥ max(|Λ| · b1 +
d2d ·max(b1, d2d+1(b1 +b)) · |Λ|2, d222d+2(b1 +b)), we have 2xn+d∆ =⇒ 2oΓ

n+D̃1.o
∆
n +D̃2.d

∆ +t∆.

Proof. Choose n ∈ N sufficiently large to satisfy the conditions below as needed. The bound on b2
in the hypothesis is a max of two different bounds, each needed for its own purpose:

20

#d
 =

 3
1

#d
 =

 2
3

#d
 =

 1
2

2
#d

 =
 5

#g
 =

 22
1

#g
 =

 22
2

#g
 =

 35
2

#g
 =

 2
1

#g
 =

 18
#g

 =
 17

2
1

x
o

p

3
2·

#d
 =

 10
1

#g
 =

 10
1

#g
 =

 10
2

#d
 =

 10
2

#d
 =

 10
3

#d
 =

 5
1

#d
 =

 5
3

2
#d

 =
 5 #g

 =
 18

#g
 =

 19
1

2

#d
 =

 5
1

#d
 =

 3
3

#g
 =

 33
2

#g
 =

 4
1

2
#d

 =
 5

#d
 =

 5
1

#d
 =

 3
3

2
#d

 =
 5

#d
 =

 5
1

#d
 =

 3
3

4
2·

2
#d

 =
 5

#g
 =

 20
1

#g
 =

 22
2

#g
 =

 35
2

#g
 =

 0
1

#g
 =

 18
#g

 =
 17

2
1

x
3

2
cop

ies
 of

 re

mo
ved

#d
 =

 10
1

T
T

#g
 =

 10
1

#g
 =

 10
2

#d
 =

 10
2

#d
 =

 10
3

#d
 =

 5
1

#d
 =

 5
3

#g
 =

 33
2

#g
 =

 4
1

2
#d

 =
 5

#d
 =

 5
1

#d
 =

 5
3

2
#d

 =
 5

#d
 =

 5
1

#d
 =

 5
3

3
p

—
 2

·

#d
 =

 3
1

#d
 =

 4
3

#d
 =

 1
2

p

4
2·

(1a
)

(1b
)

(1c
)

(1d
)

(1e
)

(2a
)

(1f
)

(2b
)

(2c
)

(2d
)

(2e
)

(2f
)

⇒
⇒

⇒
⇒

⇒⇒

⇒
⇒

⇒
⇒

⇒⇒

ma
ny

tra
nsi

tio
ns

ma
ny

tra
nsi

tio
ns

ma
ny

tra
nsi

tio
ns

ma
ny

tra
nsi

tio
ns

ma
ny

tra
nsi

tio
ns

d
,d

g
,d

1

2
3→

1: g
,d

g
,d

2

3
→

2: g
,d

g
,g

3→

3:
1

11

1
1

1

g
,g

g
,g

2→

4:
1

1
1

g
,g

g
,g

2→

5:
1

2
2

d
,d

g
,d

1

2
3→

1: g
,d

g
,d

2

3
→

2: g
,d

g
,g

3→

3:
1

11

1
1

1

g
,g

g
,g

2→

4:
1

1
1

g
,g

g
,g

2→

5:
1

2
2

p
p

p
p

−2
·g 1

F
ig

u
re

5:
S

u
rg

er
y

a
s

d
es

cr
ib

ed
in

L
em

m
a

3.
8

to
p

ro
d

u
ce

tw
o

ex
tr

a
co

p
ie

s
of
d

3
.

T
h

is
fi
gu

re
sh

ow
s

th
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

o
ri

gi
n

a
l

tr
a
n

si
ti

o
n

se
q
u

en
ce

an
d

th
e

se
q
u

en
ce

af
te

r
su

rg
er

y.
T

h
e

to
p

d
ia

gr
am

sh
ow

s
x

=
⇒
p
o

w
it

h
ou

t
an

y
in

te
rf

er
en

ce
.

(1
a
)

T
h

e
in

it
ia

l
co

n
fi

g
u

ra
ti

on
x

.
(1

b
)

an
in

te
rm

ed
ia

te
co

n
fi

gu
ra

ti
on

.
(1

c
)

2
in

st
an

ce
s

of
τ 3

ta
ke

p
la

ce
.

(1
d

)
A

co
n

fi
gu

ra
ti

on
af

te
r

m
an

y
in

st
an

ce
s

of
τ 5

h
av

e
ca

u
se

d
th

e
co

u
n
ts

o
f
g

1
to

d
ro

p
to

2.
(1

e
)

2
in

st
an

ce
s

of
τ 4

ta
ke

p
la

ce
b

ri
n

gi
n

g
th

e
co

u
n
t

of
g

1
to

4.
(1

f)
F

in
al

ly
,

th
e

tr
an

si
ti

on
se

q
u

en
ce

en
d

s
in

o
.

C
on

si
st

en
t

w
it

h
th

e
d

efi
n

it
io

n
of

∆
an

d
Γ

,
th

e
co

u
n
ts

of
st

at
es

in
∆

ar
e

lo
w

,
an

d
co

u
n
ts

of
b

ot
h
g

1
an

d
g

2
ar

e
“l

ar
ge

”.
(2

a
)

T
h

e
sa

m
e

in
it

ia
l

co
n

fi
gu

ra
ti

o
n

x
fr

om
(1

a)
.

(2
b

)
th

e
sa

m
e

in
te

rm
ed

ia
te

co
n

fi
gu

ra
ti

on
fr

om
(1

b
).

(2
c
)

R
em

ov
e

2
in

st
an

ce
s

of
τ 3

.
(2

d
)

D
u

e
to

th
e

re
m

ov
al

of
2

in
st

a
n

ce
s

of
τ 3

,
th

er
e

ar
e

2
le

ss
co

p
ie

s
of
g

1
an

d
2

ex
tr

a
co

p
ie

s
of
d

3
co

m
p

ar
ed

to
(1

d
).

T
h

e
tr

an
si

ti
on

se
q
u

en
ce

re
ac

h
es

a
p

oi
n
t

w
h

er
e

th
er

e
a
re

n
o
t

en
ou

gh
ag

en
ts

ou
ts

id
e

of
p

fo
r
τ 4

to
ex

ec
u

te
.

(2
e
)

W
e

m
u

st
u

se
th

e
ad

d
it

io
n

al
ag

en
ts

in
p

to
co

n
ti

n
u

e
w

it
h

th
e

re
m

ai
n

d
er

o
f

th
e

tr
an

si
ti

on
se

q
u

en
ce
p
−

2τ
3
.

(2
f)

W
e

ar
e

le
ft

w
it

h
2

ad
d

it
io

n
al

co
p

ie
s

of
d

3
an

d
2

le
ss

co
p

ie
s

of
g

1

d
u

e
to

re
m

ov
in

g
2

in
st

an
ce

s
o
f
τ 3

.
W

e
h

av
e

cr
ea

te
d

so
m

e
of

th
e

co
p

ie
s

of
d

3
re

q
u

ir
ed

fo
r

ou
r

d
es

ir
ed

e
∆

.
N

ot
e

th
at

p
ca

n
b

e
“r

es
to

re
d

”
b
y

ta
k
in

g
co

p
ie

s
o
f
g

1
fr

om
o

Γ
si

n
ce

it
h

a
s

“l
ar

ge
”

co
u

n
ts

.

21

⇒
13·

#g = 201 #g = 222

#d = 31 3
#d = 12 #d = 4

#g = 231 #g = 222

#d = 01 3
#d = 42 #d = 1

p p

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

(a) (b)

Figure 6: Removing all instances of d1 using techniques detailed in Lemma 3.8. Since we are adding
transitions (not removing them as in Figure 5), this is similar to the surgery shown in Figures 1, 2,
and 3. (a) The same configuration as seen in panel (2f) of Figure 5. (b) Add 3 instances of τ1 to
remove all copies of d1 as e∆ contains no copies of d1

⇒
24·#g = 231 #g = 222

#d = 01 3
#d = 42 #d = 1 #d = 01 3#d = 5#d = 02

o + C .o - C .e + e3 3
𝚫 𝚫𝚪^ ~ ~

#g = 231 #g = 222

p p

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

(a) (b)

Figure 7: Removing all instances of d2 using techniques detailed in Lemma 3.8. This is similar
to the surgery shown in Figures 1, 2, and 3. (a) The same configuration as seen in panel (b) of
Figure 6. (b) Add 4 instances of τ2 to remove all copies of d2 as e∆ contains no copies of d2 (c)
The only agents from ∆ that remain are exactly those needed in e∆ = {5d3}.

1. b2 ≥ |Λ| · b1 + d2d ·max(b1, d2d+1(b1 + b)) · |Λ|2 is necessary to apply Lemma 3.8.

2. b2 ≥ d222d+2(b1 + b) is necessary to ensure that xn, which has xn(s) ≥ b2 for all s ∈ Λ by
hypothesis, obeys xn ≥ p as defined below, where p is used as in Lemma 3.8.

Choose C̃3 for ∆, Γ, xn, on, and pn as in Lemma 3.8. By Lemma 3.7, letting c∆ = d∆ + o∆
n ,

there are C1 ∈ NΓ×∆ and C2 ∈ NΛ×∆, so that, setting e = C2.c
∆, there is a transition sequence

q1 such that

d∆ + o∆
n + e =⇒q1 C1.(d

∆ + o∆
n)

= C1.d
∆ + C1.o

∆
n .

Since max(C1) < 2d+1, max(C2) < 2d, max(o∆
n) ≤ b1, and max(d∆) ≤ b, we have max(C1.(d

∆ +
o∆
n) < d2d+1(b1 + b) and max(e) = max(C2.(d

∆ + o∆
n)) < d2d(b1 + b).

Let e∆ = e � ∆ and eΓ = e � Γ. Let e∆
2 = e∆ + t∆. Since max(e) < d2d(b1 + b) and

max t∆ ≤ d2d(b1 + b), we have that max(e∆
2) ≤ d2d+1(b1 + b).

22

Apply Lemma 3.8 on e∆
2 , which says that, letting p ∈ NΛ be defined

p(s) = d2d+1 ·max(b1, e
∆
2) ≤ d2d+1 ·max(b1, d2d+1(b1 + b))

= d2d+1 · d2d+1(b1 + b)

= d222d+2(b1 + b)

for all s ∈ Λ, there is a transition sequence q2 such that

p + xn =⇒q2 p + oΓ
n + C̃3.(o

∆
n)− C̃3.e

∆
2 + e∆

2

= p + oΓ
n + C̃3.(o

∆
n)− C̃3.e

∆
2 + e∆ + t∆.

Since b2 ≥ max(|Λ| · b1 + d2d · max(b1, e
∆
2) · |Λ|2, (d2 + 1)22d+1(b1 + b)), we have b2 ≥ (d2 +

1)22d+1(b1 + b). Since xn(s) ≥ b2 for all s ∈ Λ, xn ≥ p, so by additivity

2xn =⇒q2 xn + oΓ
n + C̃3.(o

∆
n)− C̃3.e

∆ + e∆ + t∆.

For large enough n, for all s ∈ Γ, oΓ
n(s) ≥ eΓ(s). Define ôΓ

n = oΓ
n − eΓ. Then oΓ

n + e∆ = ôΓ
n + e.

Therefore 2xn =⇒q2 xn + ôΓ
n + C̃3.o

∆
n − C̃3.e

∆ + e∆ + t∆. Recall that the transition sequence pn
takes xn =⇒pn on. By additivity we have (the relevant parts of the configuration needed for the
subsequence transitions are underlined)

2xn + d∆ =⇒q2 xn + ôΓ
n + C̃3.o

∆
n − C̃3.e

∆ + e + t∆ + d∆

=⇒pn on + ôΓ
n + C̃3.o

∆
n − C̃3.e

∆ + d∆ + e + t∆

= oΓ
n + ôΓ

n + C̃3.o
∆
n − C̃3.e

∆ + o∆
n + d∆ + e + t∆

=⇒q1 oΓ
n + ôΓ

n + C̃3.o
∆
n − C̃3.e

∆ + C1.d
∆ + C1.o

∆
n + t∆

= 2oΓ
n + C̃3.o

∆
n − C̃3.e

∆ + C1.d
∆ + C1.o

∆
n − eΓ + t∆

Recall that e = C2.(d
∆ + o∆

n), so eΓ = C2.(d
∆ + o∆

n) � Γ. Thus, the last configuration above is

2oΓ
n + C̃3.o

∆
n − C̃3.(C2.(d

∆ + o∆
n) � ∆) + C1.d

∆ + C1.o
∆
n −C2.(d

∆ + o∆
n) � Γ + t∆

Let CΓ
2 be C2 with the rows corresponding to ∆ removed (so that for any v ∈ N∆, CΓ

2 .v ∈ ZΓ;
this has the same effect as restricting the output vector to Γ, as above with C2.(d

∆ + o∆
n) � Γ).

Similarly, let C∆
2 be C2 with the rows corresponding to Γ removed, and let C̃4 ∈ ZΓ×∆ be C̃3.C

∆
2 ,

Then the above configuration is

2oΓ
n + C̃3.o

∆
n − C̃4.(d

∆ + o∆
n) + C1.d

∆ + C1.o
∆
n −CΓ

2 .(d
∆ + o∆

n) + t∆

= 2oΓ
n + C̃3.o

∆
n − C̃4.o

∆
n + C1.o

∆
n −CΓ

2 .o
∆
n − C̃4.d

∆ + C1.d
∆ −CΓ

2 .d
∆ + t∆.

Letting D̃1 = C̃3−C̃4 +C1−CΓ
2 and D̃2 = −C̃4 +C1−CΓ

2 , the above is 2oΓ
n+D̃1.o

∆
n +D̃2.d

∆ +t∆.
Since max(C2) < 2d, and amax(C̃3) < 2d+1, we can conclude that amax(C̃4) < d22d+1. Since
max(C1) < 2d+1 and C1 and C2 are both nonnegative, we know that amax(C1 − CΓ

2) < 2d+1.
Thus, amax(D̃1) < 2d+1 + d22d+1 + 2d+1 < d22d+2, and similarly for amax(D̃2).

We will use the same population protocol used in the previous two examples, P, to demonstrate
how Lemma 3.7 and Lemma 3.8 can be used in conjunction with each other. We choose the special
case of target t∆ = 0. We will show that if a transition sequence arrives at a configuration without
any b2-bottleneck transitions, then we can also bring all counts of states in ∆ to zero. In the

23

statement of Lemma 3.9, we define Γ and ∆ over an infinite sequence. Here, will we be looking at
a single population protocol with configuration xn that satisfies the constraints of Lemma 3.9. Let
C1 be defined as in the proof of Lemma 3.9

We will begin with two copies of xn plus d∆ which contains additional agents from ∆ that need
to be removed.

xn =

10
10
10
10
10

d∆ =

 2
0
0

The second copy of xn will serve the same purpose as p in Lemma 3.8.
Using Lemma 3.8, one copy of xn will transition via transition sequence q2 to ôΓ

n + C̃3.o
∆
n −

C̃3.e
∆ + e. We use the same techniques here to build the desired e∆ as in Lemma 3.8. Then, the

second copy of xn will transition “normally” via pn to on. The process is shown in Figure 8.

o∆
n =

 3
1
2

 o + C .o - C .e + en 3 3n
𝚫 𝚫𝚪^ ~ ~

xn

d𝚫 d𝚫 d𝚫

#g = 101 #g = 102

#d = 103#d = 101

#d = 102

xn

#g = 101

#g = 102

#d = 103

#d = 101
#d = 102

#d = 01

3#d = 5

#d = 02

#g = 231

#g = 222

xn#g = 101 #g = 102

#d = 103#d = 101

#d = 102

#d = 01

3#d = 5

#d = 02

#g = 231

#g = 222

#d = 31

#d = 23#d = 12

#g = 222

#g = 221

on

q2 pn
⇒ ⇒

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2
 o + C .o - C .e + en 3 3n

𝚫 𝚫𝚪^ ~ ~

(a) (b) (c)

Figure 8: The first steps of Lemma 3.9 use techniques from Lemma 3.8 to push one copy of xn
to the desired configuration and produce e. (a) We start with two copies of xn plus d∆. (b)
Via transition sequence q2 based on the techniques of Lemma 3.8, we produce the e = {5d3, 14g1}
needed for Lemma 3.7. (c) Via transition sequence pn, the second copy of xn transitions without
interference to on. We end in the configuration d∆ + on+ ôΓ

n + C̃3.o
∆
n − C̃3.e

∆ + e. Figure 9 shows
how to use Lemma 3.7 to use the e produced in (b) to remove states in ∆ in on in (c).

At this point, our goal is to remove all agents from d∆ and o∆
n . Using the techniques from

Lemma 3.7 along with e created previously using the techniques of Lemma 3.8, e has exactly the
counts of agents from ∆ needed to remove all of d∆+o∆

n . And so, d∆+o∆
n +e =⇒q1 C1.(d

∆+o∆
n) =

C1.d
∆ + C1.o

∆
n The resulting final configuration contains only agents in Γ. As shown in Figure 9,

all agents in ∆ have been removed, as desired.
Finally, we combine Lemmas 3.6 and 3.9 into a single lemma, which is the main technical result

of this subsection, used (via Corollary 3.11, which sets t∆ = 0) for proving time lower bounds in
Theorems 4.4, 6.3, 6.4, 8.4, and 8.5.

24

C .d +𝚫 C .o n
𝚫1 1

d𝚫

o + C .o - C .e n 3 3n
𝚫 𝚫𝚪^ ~ ~

q1equivalent on
𝚫

e

on
𝚪

e

on
𝚫

o + C .o - C .e n 3 3n
𝚫 𝚫𝚪^ ~ ~

on
𝚪

d𝚫

o + C .o - C .e n 3 3n
𝚫 𝚫𝚪^ ~ ~

on
𝚪

= ⇒

d ,d g ,d 1 23→1:
g ,d g ,d 2 3→2:
g ,d g ,g 3→3:

1 1

1

1 1 1

g ,g g ,g 2→4: 1 1 1

g ,g g ,g 2→5: 1 2 2

(a) (b) (c)

Figure 9: The second steps of Lemma 3.9 use techniques from Lemma 3.7 to remove all remaining
states from ∆. (a) This is the same configuration as in panel (c) in Figure 8. (b) We visually
separate e from ôΓ

n + C̃3.o
∆
n − C̃3.e

∆ + e and o∆
n from oΓ

n. (c) Via transition sequence q1 based on
the techniques of Lemma 3.7, d∆ +o∆

n +e =⇒q1 C1.d
∆ +C1.o

∆
n . The agents in e react with agents

from on and d∆ to remove all remaining states in ∆. The final configuration has only states from
Γ, as desired.

Lemma 3.10. Let α > 0. Suppose that for some set S ⊆ NΛ and infinite set I of α-dense
configurations, for all i ∈ I, letting n = ‖i‖, T [i =⇒S] = o(n).

Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set N ⊆ N, and infinite
nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the following holds. Let
∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆ and oΓ
n = on � Γ.

Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. Let b1 = max
n∈N,d∈∆

o∆
n (d). For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such

that n ≥ nb and all d∆, t∆ ∈ N∆ such that d∆ ≤ b and t∆ ≤ d2d(b1 + b), we have that
2in + d∆ =⇒ 2oΓ

n + D̃1.o
∆
n + D̃2.d

∆ + t∆.

Proof. Let t : N → N be such that T [in =⇒S] ≤ t(n). Define b(n) = 1
4|Λ|

√
n
t(n) ; note that

b(n) = ω(1) since t(n) = o(n) by hypothesis. By Lemma 3.6 there is β > 0 such that the
following holds. There is an infinite set N ⊆ N and infinite sequences of configurations (in ∈ I)n∈N ,
(xn ∈ NΛ)n∈N , (on ∈ NΛ)n∈N , where (xn)n∈N and (on)n∈N are nondecreasing, and an infinite
sequence of paths (pn)n∈N such that, for all n ∈ N ,

1. ‖in‖ = ‖xn‖ = ‖on‖ = n,

2. in =⇒xn,

3. xn(s) ≥ βn for all s ∈ Λ,

4. xn =⇒pn on, where on ∈ S, and

5. pn has no b(n)-bottleneck transition.

Conditions (1) and (3) of Lemma 3.9 are two of the above. Let b1 = max
n∈N,d∈∆

on(d). Let b2 =

max(|Λ| · b1 + d2d ·max(b1, d2d+1(b1 + b)) · |Λ|2, d222d+2(b1 + b)). For sufficiently large n, βn > b2,
satisfying condition (2) of Lemma 3.9, and b(n) ≥ b2, satisfying condition (4) of Lemma 3.9.

25

Thus Lemma 3.9 tells us that there are D̃1, D̃2 ∈ ZΓ×∆ such that for all b ∈ N, there exists
nb ∈ N such that for all n ≥ nb such that n ∈ N and all d∆, t∆ ∈ N∆ such that d∆ ≤ b and
t∆ ≤ d2d(b1 + b), letting o∆

n = on � ∆ and oΓ
n = on � Γ, 2xn + d∆ =⇒ 2oΓ

n + D̃1.o
∆
n + D̃2.d

∆ + t∆.
Since in =⇒xn, by additivity 2in + d∆ =⇒ 2oΓ

n + D̃1.o
∆
n + D̃2.d

∆ + t∆. Lemma 3.9 also gives
that amax(D̃1), amax(D̃2) ≤ d22d+2.

The following corollary, which sets t∆ = 0, is the only result of this subsection employed for
our time lower bounds.

Corollary 3.11. Let α > 0. Suppose that for some set S ⊆ NΛ and infinite set I of α-dense
configurations, for all i ∈ I, letting n = ‖i‖, T [i =⇒S] = o(n).

Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set N ⊆ N, and infinite
nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the following holds. Let
∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆ and oΓ
n = on � Γ.

Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such that n ≥ nb and all d∆ ∈ N∆

such that max(d∆) ≤ b, we have 2in + d∆ =⇒ 2oΓ
n + D̃1.o

∆
n + D̃2.d

∆.

For all n ∈ N , define vΓ
n = 2oΓ

n + D̃1.o
∆
n + D̃2.d

∆ to be the configuration reached in part (2) of
the conclusion. We note two important properties of vΓ

n:

1. vΓ
n ∈ NΓ (i.e., it has no states in ∆).8 This is crucial for the final statement of Observation 3.12

below arguing that vΓ
n is stable.

2. There is a constant c ∈ N such that for all s ∈ Γ and n ∈ N , |vΓ
n(s) − 2on(s)| ≤ c, i.e., the

counts of Γ states in vΓ
n are within a constant c of those in 2on. The constant c depends on

the sequence (on), which defines max(o∆
n), and c also depends on the bound b on max(d∆),

as well as the values of entries of D̃1 and D̃2, but crucially c does not depend on n.

3.5 Stable configurations and unbounded states

In this subsection, let C be a function-computing or function-approximating population protocol
with input states Σ and output state y, taking “stable” in the next two observations to mean stable
with respect to y. The set ∆ (and its complement Γ) referenced frequently in previous sections will
play a key role the main proof as the set of states with bounded counts in some infinite sequence
of reachable stable configurations.

The next observation states that if we have a stable configuration o, and we modify it by
reducing the counts of states that are already “small” (contained in ∆) and changing in either
direction the counts of states that are “large” (contained in Γ), then the resulting configuration v
is also stable.

Observation 3.12. If there is an infinite nondecreasing sequence (on) of stable configurations such
that Γ = unbdd((on)) and ∆ = bdd((on)), for every v ∈ NΛ such that v � ∆ ≤ on � ∆ for some
n ∈ N, v is stable. In particular, any v ∈ NΓ is stable.

8 Compare this to Lemma 3.10, which allows one to “target” a particular nonzero count t∆ of ∆ states to be
present in the final configuration.

26

This follows since for sufficiently large n, v ≤ on, and stability is closed downward. The
following corollary is useful, which states that adding any amount u of states in Γ to a stable
configuration, as well as removing any amount w of states (whether in Γ or not), keeps it stable.

Corollary 3.13. If there is an infinite nondecreasing sequence (on) of stable configurations such
that Γ = unbdd((on)), for every on and every u ∈ NΓ and w ∈ NΛ, on + u−w is stable.

4 Predicate computation

In this section we show that a wide class of Boolean predicates cannot be stably computed in
sublinear time by population protocols (without a leader). This is the class of predicates φ : Nk →
{0, 1} that are not eventually constant (see definition below): for all m ∈ N, there are two inputs
m0,m1 ∈ Nk≥m such that φ(m0) 6= φ(m1).

4.1 Definition of predicate computation

Computation of Boolean predicates φ : Nk → {0, 1} was the first type of computational problem
studied in population protocols [4–7]. Compared to function computation (defined formally in
Section 5), it is a bit more complex to define output, since we require a convention for converting
several integer counts to a single Boolean value. However, the definition is also simpler because
there is no need for initial configurations to contain quiescent states (see Section 5): whatever
predicates are computable by population protocols, are computable from initial configurations
containing only the input states [7]. Thus we have a 1-1 correspondence between inputs to φ and
valid initial configurations.

It is worth mentioning that, using the output convention from the foundational work on predi-
cate computation with population protocols [4–7], we cannot merely consider predicates a special
case of functions with integer outputs in {0, 1}. If this were the case, then the results of this section
would follow trivially from Theorem 8.5. The reason this does not work is that the output conven-
tion requires not merely to produce a single y if and only if the answer is yes; instead it requires
all agents to vote unanimously on a “yes” or “no” output.9

Formally, a predicate-deciding leaderless population protocol is a tuple D = (Λ, δ,Σ,Υ1), where
(Λ, δ) is a population protocol, Σ ⊆ Λ is the set of input states, and Υ1 ⊆ Λ is the set of 1-voters.
By convention, we define Υ0 = Λ \Υ1 to be the set of 0-voters. The output Φ(c) of a configuration
c ∈ NΛ is b ∈ {0, 1} if c(s) = 0 for all s ∈ Υ1−b (i.e., if the vote is unanimously b); the output
is undefined if voters of both types are present. We say o ∈ NΛ is stable if Φ(o) is defined and
for all o′ ∈ post(o), Φ(o′) = Φ(o). For all m ∈ Nk, define initial configuration im ∈ NΛ by
im � Σ = m and im � (Λ \ Σ) = 0. Call such an initial configuration valid. For any valid initial
configuration im ∈ NΛ and predicate φ : Nk → {0, 1}, let Sim,φ = {o ∈ NΛ | im =⇒o,o is stable,
and Φ(o) = φ(m)}. A population protocol stably decides10 a predicate φ : Nk → {0, 1} if, for any

9 The reason this issue is not trivially resolved by converting the “0/1-function” output convention to the “whole
population votes” convention is two-fold: 1) If y is absent, there is no straightforward way to detect this in order
to ensure that 0-voters are produced. It turns out that this output convention is equivalent if time complexity is
not an issue, although this is not straightforward to prove [11]. But this leads to the second issue: 2) Even with a
symmetric convention where a single n state is present to represent output 0, and a single y state to represent output
1, it takes at least linear time to convert all other voters by a standard scheme where the single agent representing
output directly interacts with all other agents.

10 The original definition [4] used the term stably compute, which we reserve for integer-valued function computa-
tion.

27

valid initial configuration im ∈ NΛ, Pr[im =⇒Sim,φ] = 1. This is equivalent to requiring that for all
c ∈ post(im), there is o ∈ post(c) such that o is stable and Φ(o) = φ(m).

For example, the protocol defined by transitions

x1, x2 → q1, q2

x1, q2 → x1, q1

x2, q1 → x2, q2

q1, q2 → q1, q1

if Υ1 = {x1, q1} and Υ0 = {x2, q2}, decides whether m1 = i(x1) ≥ m2 = i(x2). The first transition
stops once the less numerous input state is gone. If x1 (resp. x2) is left over, then the second (resp.
third) transition converts qi states to its vote. If neither is left over (i.e., if m1 = m2, requiring
output 1), the fourth transition converts all q2 states to q1.

Relation to prior work. Alistarh, Aspnes, Eisenstat, Gelashvili, and Rivest [1] showed a linear-
time lower bound on any leaderless population protocol deciding the majority predicate. Their
technique is based on showing that after adding enough of the input in the minority to change it
to the majority, the effect of this addition can be effectively nullified by surgery of the transition
sequence, yielding a stable configuration with the original (now incorrect) answer. The technique
can be extended easily to show various other specific predicates, such as equality and parity, also
require linear time. We use the same technique of finding pairs of inputs with opposite correct
answers and apply a similar transition sequence surgery. The main difficulty in showing Theo-
rem 4.4, which covers the class of all predicates that are semilinear but not eventually constant
(see below), is to identify a common characteristic, derived from the semilinear structure of the
predicate computed, that can be exploited to find an infinite sequence of pairs of inputs that are
all α-dense for some fixed α > 0. Subsection 4.2 shows how this structure can be used.

4.2 Eventually constant predicates

Let φ : Nk → {0, 1}, and for b ∈ {0, 1}, define φ−1(b) = {m ∈ Nk | φ(m) = b} to be the set of
inputs on which φ outputs b. We say φ is eventually constant if there is m0 ∈ N such that φ is
constant on Nk≥m0

= {m ∈ Nk | (∀i ∈ {1, . . . , k}) m(i) ≥ m0}, i.e., either φ−1(0) ∩ Nk≥m0
= ∅

or φ−1(1) ∩ Nk≥m0
= ∅. In other words, although φ may have an infinite number of each output,

“sufficiently far from the boundary” (where all coordinates exceed m0), only one output appears.
The main result of this section, Theorem 4.4, concerns eventually constant predicates as defined

above. However, our proof technique requires reasoning about infinitely many inputs m ∈ Nk that
are α-dense for some α > 0. A predicate φ : Nk → {0, 1} can be not eventually constant, yet for
any fixed α > 0, have all but finitely many α-dense inputs map to a single output. For example,
the predicate φ(m) = 1 ⇐⇒ m(1) = m(2)2 is not eventually constant, yet for any fixed α > 0,
all but finitely many α-dense inputs m have φ(m) = 0. The rest of this section shows that for
semilinear predicates φ, if φ is not eventually constant, then we can find infinitely many α-dense
inputs mapping to each output. The actual requirements we need to prove Theorem 4.4 are a bit
more technical and are captured in Corollary 4.3.

Given D ⊆ Nk, we say φ is almost constant on D if either |φ−1(0)∩D| <∞ or |φ−1(1)∩D| <∞.
In other words, φ is constant on D except for a finite number of counterexamples in D.11 For α > 0

11 Note that almost constant is a stricter requirement than eventually constant, since the latter allows infinitely
many counterexamples so long as at least one component is “small”.

28

and k ∈ N, let Dk
α = {m ∈ Nk | m is α-dense }. Say that a predicate φ : Nk → {0, 1} is α-densely

almost constant if φ is almost constant on Dk
α. Say that φ is densely almost constant if for all

α > 0, φ is α-densely almost constant.
The following proof uses the definition of semilinear given in Section 8 in terms of finite unions

of periodic cosets.

Lemma 4.1. If φ : Nk → {0, 1} is semilinear and densely almost constant, then φ is eventually
constant.

Proof. We prove this by contrapositive. Assume φ is semilinear and not eventually constant. We
will show φ is not densely almost constant.

For b ∈ {0, 1}, let Ib = φ−1(b) be the set of inputs mapping to output b. Since φ is not eventually
constant, for all m0 ∈ N, for both b ∈ {0, 1}, |Ib ∩ Nk≥m0

| 6= ∅. If for some m0, |Ib ∩ Nk≥m0
| < ∞,

then for sufficiently large m′0, we would have |Ib ∩ Nk≥m′0 | = ∅, a contradiction. So in fact, for all

m0 ∈ N, for both b ∈ {0, 1}, |Ib ∩ Nk≥m0
| =∞.

Since φ is semilinear, so is Ib, so expressible as a finite union Ib =
⋃p
i=1 Pi, of p periodic cosets

P1, . . . , Pp. Since |Ib∩Nk≥m0
| =∞ for all m0 ∈ N, without loss of generality, |P1∩Nk≥m0

| =∞ for all

m0 ∈ N as well. Let b,p1, . . . ,pl ∈ Nk be such that P1 = {b + n1p1 + . . .+ nlpl | n1, . . . , nl ∈ N}.
Let p = p1 + . . . + pl. Then p(i) > 0 for all i ∈ {1, . . . , k}. (Otherwise, we would have

(∃i)(∀j)pj(i) = 0 and P1 could not be arbitrarily large on component i, so it could not intersect
Nk≥m0

for all m0.) Letting α′ = min(p)/‖p‖, we have that for all r ∈ N, rp is α′-dense. Let
α = α′/2. Then for sufficiently large r, b + rp is α-dense. Since (b + rp) ∈ P1 ⊆ Ib, this shows
that Ib has infinitely many α-dense points. Since b ∈ {0, 1} was arbitrary, φ is not α-densely almost
constant, hence not densely almost constant.

For i ∈ {1, . . . , k}, let ui ∈ Nk be the unit vector such that ui(i) = 1 and ui(j) = 0 for all j 6= i.

Lemma 4.2. Let φ : Nk → {0, 1}. If φ is not densely almost constant, then there is α > 0 and an
infinite subset D ⊆ Dk

α so that one of the following two conditions holds.

1. For all m ∈ D, φ(m) 6= φ(2m).

2. There is i ∈ {1, . . . , k} such that for all m ∈ D, φ(m) 6= φ(m+ui) and φ(m) 6= φ(2(m+ui)).

Proof. Since φ is not densely almost constant, for some α > 0, |φ−1(0)∩Dk
α| = |φ−1(1)∩Dk

α| =∞.
So for infinitely many m ∈ Dk

α, there is im ∈ {1, . . . , k} such that φ(m) 6= φ(m + uim). In other
words, since each output b ∈ {0, 1} is supported on infinitely many points in Dk

α, there must be
infinitely many pairs of adjacent points with opposite output (“adjacent” meaning that the points
differ on exactly one coordinate, and that difference is 1). By the pigeonhole principle there is
i ∈ {1, . . . , k} so that some infinite subset of these m use the same coordinate im = i, so consider
only this infinite subset D′ ⊆ Dk

α.
If φ(m) 6= φ(2m) for infinitely many m ∈ D′, take D to be this infinite subset, and we are done.
Otherwise, φ(m) = φ(2m) for all but finitely many m ∈ D′. If φ(2m) 6= φ(2(m + ui)) for

infinitely many of these m, then φ(m) 6= φ(2(m + ui)) and we are done. In the remaining case, we
have that φ(2(m+ui)) = φ(2m) 6= φ(m+ui) for infinitely many m ∈ D′. In this case, replace each
such m in D′ with m′ = m + ui, calling the resulting set D, noting that m′ satisfies condition (1)
of the lemma since φ(m′) 6= φ(2m′).

Combining Lemma 4.2 and the contrapositive of Lemma 4.1 gives the following corollary.

29

Corollary 4.3. Let φ : Nk → {0, 1} be semilinear and not eventually constant. Then there is α > 0
and an infinite subset D ⊆ Dk

α so that one of the following two conditions holds.

1. For all m ∈ D, φ(m) 6= φ(2m).

2. There is i ∈ {1, . . . , k} such that for all m ∈ D, φ(m) 6= φ(m+ui) and φ(m) 6= φ(2(m+ui)).

4.3 Time lower bound for non-eventually-constant predicates

The following theorem shows that unless a predicate is eventually constant, it cannot be stably
decided in sublinear time by a leaderless population protocol.

Theorem 4.4. Let φ : Nk → {0, 1} and D be a predicate-deciding leaderless population protocol
that stably decides φ. If φ is not eventually constant, then D takes expected time Ω(n).

The high level intuition behind our proof technique is as follows. Sublinear time computation
requires avoiding “bottlenecks”—having to go through a transition in which both states are present
in small count (constant independent of the number of agents n). Traversing even a single such
transition requires linear time. Corollary 3.11 shows that bottleneck-free execution sequences from
α-dense initial configurations (i.e., initial configurations where every state that is present is present
in at least αn count) are amenable to predictable “surgery”. Using Corollary 3.11, we show how
to consume additional input states but still drive the system to the same output stable answer,
and thus fool the population protocol into giving the wrong answer. Using Corollary 3.11 is rather
technical and requires finding infinitely many candidate execution sequences and respective α-
dense initial configurations that are “close” to other initial configurations on which the computed
predicate is supposed to evaluate to the opposite answer. The reason that Theorem 4.4 holds only
for not eventually constant predicates is that the initial configurations susceptible to surgery need
to be α-dense, and thus we can only fool the population protocol if the predicate evaluates to both
0 and 1 “far away” from the boundaries of Nk.

A bit of care is needed in picking the pairs of inputs that give a different answer. In particular,
we need to ensure that any input states xi that we add in d∆ when applying Corollary 3.11 are
actually contained in ∆, the set of states with bounded counts in all the output stable configurations
in the sequence. Not all input states are contained in ∆ in some cases. For instance, consider the
majority-computing protocol

x1, x2 → y, y

x1, n → x1, y

x2, y → x2, n

y, n → y, y,

which decides whether #x1 ≥ #x2 initially, if φ(x1) = φ(y) = 1 and φ(x2) = φ(n) = 0. If the
sequence of inputs picked were such that #x1 = 2#x2, then #x1 would grow unboundedly in stable
configurations, hence x1 ∈ Γ. Note, however, that x2 ∈ ∆ since it would have count 0 in all such
stable configurations. This helps to see how ∆ depends on the choice of infinite sequences of inputs;
if instead #x1 = #x2/2 in all such inputs, then x1 ∈ ∆ but x2 ∈ Γ. If #x1 = #x2, then x1, x2 ∈ ∆.

We choose such inputs m as in Lemma 4.2 to be such that either φ(m) 6= φ(2m), or φ(m) 6=
φ(m+ui) and φ(m) 6= φ(2(m+ui)), where ui ∈ {0, 1}k. In the first case, we don’t need any inputs
to be in ∆; we get a contradiction since Corollary 3.11 with d∆ = 0 gives us a way to drive from
2m to a stable configuration very close to (therefore having the same output as) twice the stable

30

configuration reached from m, which gives a contradiction. In the second case, the contradiction
arises between inputs m and 2(m + ui), but unlike the first case, we need to apply Corollary 3.11
with d∆ 6= 0. The d∆ we choose corresponds to the positive entries of ui. The assumption that
φ(m) 6= φ(m + ui) is used to justify that those input states that are positive in ui are in fact
contained in ∆, so that we are able to send their counts to 0 via Corollary 3.11 and conclude via
Corollary 3.13 that the resulting configuration is stable.

Proof. Suppose for the sake of contradiction that D takes expected time o(n). Since D stably
decides φ, φ is semilinear [5], so by Corollary 4.3 there is α > 0 and an infinite subset D ⊆ Dk

α so
that one of the following two conditions holds.

1. For all m ∈ D, φ(m) 6= φ(2m).

2. There is i ∈ {1, . . . , k} such that for all m ∈ D, φ(m) 6= φ(m+ui) and φ(m) 6= φ(2(m+ui)).

Let I = {im ∈ NΛ | m ∈ D} denote the set of initial configurations corresponding to D. Let
S = {o | (∃i ∈ I) i =⇒o and o is stable} be the set of stable configurations reachable from some
initial configuration in I. By assumption we have that for each i ∈ I, T [i =⇒S] = o(n).

Apply Corollary 3.11. Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set
N ⊆ N, and infinite nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the
following holds. Let ∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆
and oΓ

n = on � Γ. Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such that n ≥ nb and all d∆ ∈ N∆

such that max(d∆) ≤ b, we have 2in + d∆ =⇒ 2oΓ
n + D̃1.o

∆
n + D̃2.d

∆.

Let b = 2; below we ensure that max(d∆) ≤ b. Let m = inb
� Σ and o = onb

.
Suppose we are in case (1) of Lemma 4.2; then φ(m) 6= φ(2m). Let vΓ = 2oΓ

nb
+ D̃1.o

∆
nb

. Then
applying the above reachability argument with d∆ = 0 gives that 2inb

=⇒vΓ, which is stable and
has the same output as is correct for m, a contradiction since it is reachable from 2inb

representing
input 2m, which should have the opposite output.

Suppose we are in case (2) of Lemma 4.2; then there is i ∈ {1, . . . , k} such that for all m ∈ D,
φ(m) 6= φ(m + ui) and φ(m) 6= φ(2(m + ui)). Let xi be the input corresponding to unit vector ui.
We claim that xi ∈ ∆. To see why, recall that φ(m) 6= φ(m + ui). If xi 6∈ ∆, then Corollary 3.13
tells us that o+{xi} is stable (hence the same output φ(m) as o). However, inb

+{xi}=⇒o+{xi},
a contradiction since φ(m) 6= φ(m + ui). This shows that xi ∈ ∆.

Let d∆ = {2xi} ∈ N∆. By the above, letting vΓ = 2oΓ
nb

+ D̃1.o
∆
nb

+ D̃2.d
∆, we have that

2inb
+ d∆ =⇒vΓ. By Corollary 3.13, vΓ is stable and reachable from the initial configuration

2inb
+ d∆ corresponding to input 2m + ui, which should have the opposite output as m. This

contradicts the correctness of D.

5 Definition of function computation with population protocols

In this section we formally define error-free (a.k.a. stable) function computation by population
protocols. This mode of computation was discussed briefly in the first population protocols paper [4,
Section 3.4], which focused more on Boolean predicate computation, and more extensively in the
more general model of chemical reaction networks [15,19].

31

5.1 Issues with definition of approximation and computation

There are subtle issues in formalizing these definitions for population protocols, as well as extending
from exact to approximate computation, which we discuss before stating our definitions.

We focus on single-output functions f : Nk → N. It is simple to apply all of our results to
multi-output functions f : Nk → Nl, simply by considering f as the result of combining l different
single-output functions all computed in parallel by independent protocols.

The model of chemical reaction networks allows the creation and destruction of molecules via
reactions such as X → 2Y and 2X → Y . However, all population protocol transitions occur
between two agents, so to compute a function such as f(m) = 2m via the transition x, q → y, y
requires starting with m agents in an input state x and at least m additional agents in a “quiescent”
state q, to ensure that there are enough agents to represent the output of the function.

Next, the time complexity models are slightly different between chemical reaction networks and
population protocols. In addition to the distinction between continuous time in chemical reaction
networks and discrete time in population protocols, the former model has an extra parameter called
the volume, which dictates the rate of bimolecular reactions. To make the models have the same
expected time, the “volume” of a population protocol is implicitly the total number of agents n.
However, as we noted above, the total number of agents n in some cases necessarily differs from
the number of agents representing input. This leads to a definitional quandary: is it more “fair” to
measure the time as a function of the input size m (number of agents representing input), or as a
function of the total system size n ≥ m (number of total agents, including non-input agents)? We
will handle this by requiring the protocol to work no matter how large n is compared to m, but
will measure expected time as a function of n, and our main theorem applies to show an expected
time lower bound only when n = O(m). This will lead to the same asymptotic time measurement
within a multiplicative constant, whether time is measured as a function of m or n.

Finally, given the specific nature of the problem we study, that of approximating functions
with population protocols, we must take care in what are defined as valid initial configurations.
We observed that the protocol a, x → b, y and b, x → a, q can approximate the function f(m) =
bm/2c within multiplicative factor γ from the initial configuration im,γ defined by im,γ(x) = m
and im,γ(a) = bγmc. The initial count of state a serves to control the approximation factor;
setting it lower makes the approximation better but the stabilization time longer. What is the
appropriate way to generalize this to a complete definition of function approximation? Note that
the following does not work: declaring the set the valid initial configurations to be {im,γ | m ∈ N},
where γ is a fixed constant. For then, we could simply set γ = 1

2 and let y = a, and have no
transitions whatsoever: the initial configuration would already contain the correct amount of y,
with the computation having been done not by the protocol itself, but merely by the specification
of the initial configuration. To avoid this sort of cheating by “sneaking computation into the initial
configuration,” we allow the designer of the protocol to set a constant lower bound (not dependent
on the input value), but not an upper bound, on how many agents have initial state a.

Informally, a population protocol exactly computes a function f : Nk → N if, starting in a
configuration with counts of agents in “input” states x1, . . . , xk described by a vector m ∈ Nk,
and sufficiently large counts of other agents in a “quiescent” state q, the protocol is guaranteed
to stabilize to exactly f(m) agents in “output” state y. Unlike predicate computation with a
Boolean output (as studied in the foundational population protocol papers [4–7]), it is necessary
to allow initial agents in the quiescent state q, beyond those representing the input, if f(m) >
m(1) + . . . + m(k), to ensure there are enough agents to represent the output. For example, the
function f(m) = 2m is computable via the transition x, q → y, y if #q ≥ #x initially. However, the
protocol must work in any sufficiently large population, i.e., for any sufficiently large initial count

32

of q.
Informally, a protocol approximates a function if it is guaranteed to get #y “close” to the

correct output value, where the closeness is controlled by the initial count of an “approximation”
state a. (Actually, there is no requirement that the approximation error must depend on #a, but
the definition is motivated by the protocols of Theorem 7.2, which do use the approximation state
in this way.) In particular, the protocol may stabilize to different values of #y on different runs
starting from the same initial configuration (so the protocol may not stably compute any function).

However, the protocol is required to stabilize its output count to some value on each run. An
alternative formulation would relax this requirement, and merely require that #y eventually enters,
and never again leaves, an interval surrounding the correct value, while continuing to change the
value of #y indefinitely. However, our proof technique is based on the idea that certain (carefully
chosen) input states must be absent, or very low count, in stable configurations. Under this more
relaxed definition, this would not be the case. For example, for any γ > 0, there is a t ∈ R≥1

such that, for any m, starting with #x = m, the transition x, x→ y, q in expected time t gets #y
to the interval [m/2 − γm/2,m/2], so in constant time the protocol “stabilizes to that interval”,
even though the value of #y may still change within that interval, so it is not stable by the stricter
definition. However, at the time that #y enters the interval, #x = γm, whereas our proof technique
requires #x = O(1) in any stable configuration. In this example, once #y stabilizes (i.e., stops
changing), then #x is either 0 or 1.

Sections 5.2 and 5.3 give formal definitions of these concepts.

5.2 Definition of exact function computation

A function-computing leaderless population protocol is a tuple C = (Λ, δ,Σ, y, q), where (Λ, δ) is a
population protocol, Σ = {x1, . . . , xk} ⊂ Λ is the set of input states, y ∈ Λ is the output state, and
q ∈ Λ \Σ is the quiescent state. We say that a configuration o ∈ NΛ is stable if, for all o′ ∈ post(o),
o(y) = o′(y), i.e., the count of y cannot change once o is reached.

Let f : Nk → N, i ∈ NΛ, and let m = i � Σ. We say that C stably computes f from i if, for all
c ∈ post(i), there exists a stable o ∈ post(c) such that o(y) = f(m), i.e., C stabilizes to the correct
output from the initial configuration i. However, for any input m ∈ Nk, there are many initial
configurations i ∈ NΛ representing it (i.e., such that i � Σ = m). We now formalize what sort of
initial configurations C is required to handle.

We say a function q0 : Nk → N is linearly bounded if there is a constant c ∈ N such that, for all
m ∈ Nk, q0(m) ≤ c‖m‖. We say that C stably computes f if there is a linearly bounded function
q0 : Nk → N such that, for any i ∈ NΛ, defining m = i � Σ, if i(q) ≥ q0(m) and i(s) = 0 for
all s ∈ Λ \ (Σ ∪ {q}), then C stably computes f from i. We say that an initial configuration i
so defined is valid. Since all semilinear functions are linearly bounded [15], a linearly bounded q0

suffices to ensure there are enough agents to represent the output of a semilinear function, even
if we choose i(q) = q0(i � Σ). If q0 were not linearly bounded, and thus a super-linear count of
state q is required, we would essentially need to do non-semilinear computation just to initialize
the population protocol.

It is well-known [7] that this is equivalent to requiring, under the randomized model in which
the next interaction is between a pair of agents picked uniformly at random, that the protocol
stabilizes on the correct output with probability 1. More formally, given f : Nk → N and m ∈ Nk,
defining SCf,m = {o ∈ NΛ | o is stable and o(y) = f(m)}, C stably computes f if and only if, for

all m, defining i with i � Σ = m as above with i(q) sufficiently large, Pr
[
i =⇒SCf,m

]
= 1. It is

also equivalent to requiring that every fair infinite execution leads to a correct stable configuration,

33

where an execution is fair if every configuration infinitely often reachable appears infinitely often
in the execution.

Let f : Nk → N and t : N → N. Given a function-computing leaderless population protocol
C that stably computes f , we say C stably computes f in expected time t if, for all valid initial

configurations i of C, letting m = i � Σ, T
[
i =⇒SCf,m

]
≤ t(n).

Note that unstability is closed upwards in NΛ. In other words, for any c ∈ NΛ, if c is not stable,
then no c′ ≥ c is stable either. This is because c is unstable if and only if there is a path p such
that c =⇒p d and c(y) 6= d(y). Thus p is applicable to any c′ ≥ c, also changing #y by the amount
d(y)− c(y), so c′ is also unstable. By contrapositive, the set of stable configurations is then closed
downward : for any stable o, if o′ ≤ o, then o′ is also stable.

5.3 Definition of function approximation

A function-approximating leaderless population protocol is a tuple A = (Λ, δ,Σ, y, q, a), where
(Λ, δ,Σ, y, q) is a function-computing population protocol and a ∈ Λ \ (Σ ∪ {y, q}) is the approxi-
mation state. Let ε, τ ∈ N; intuitively τ represents the “target” (or “true”) function output, and
ε represents the allowed approximation error. We say that a configuration o ∈ NΛ is ε-τ -correct if
|o(y)− τ | ≤ ε.

Let f : Nk → N, ε ∈ N, i ∈ NΛ, and let m = i � Σ. We say that A stably ε-approximates f from
i if, for all c ∈ post(i), there exists a o ∈ post(c) that is stable and ε-f(m)-correct, i.e., from the
initial configuration i, A gets the output to stabilize to a value at most ε from the correct output.
Let SAf,m,ε = {o ∈ NΛ | o is stable and ε-f(m)-correct }. Note that A stably ε-approximates f from

i if and only if Pr
[
i =⇒SAf,m,ε

]
= 1.

Let E : N → N; the choice of E as a function instead of a constant reflects the idea that the
approximation error is allowed to depend on the initial count i(a) of the approximation state a,
i.e., E(i(a)) is the desired approximation error. We say that A stably E-approximates f if there
are a0 ∈ N and linearly bounded q0 : Nk+1 → N such that, for any i ∈ NΛ, defining m = i � Σ,
if i(a) ≥ a0, i(q) ≥ q0(m, i(a)), and i(s) = 0 for all s ∈ Λ \ (Σ ∪ {q, a}), then A stably E(i(a))-
approximates f from i.12 An initial configuration i so defined is valid.

Note that we allow the protocol to require at least a certain initial amount of a in order to
function correctly. For example, the protocol with transitions a, x → b, y and b, x → a, q stably
E-approximates f(m) = bm/2c, where E : N → N is the identity function, if at least one a is
present initially. However, setting a0 does not imply the protocol is able to use a as a leader: since
a0 is just a lower bound. The protocol must work correctly for any initial value of i(a) ≥ a0, where
E(i(a)) defines how close the output must be to f(m) to be “correct”.

Note also that in this example, the approximation error increases with i(a) (i.e., E is mono-
tonically increasing), while the expected time to stabilization decreases with i(a). It is conceivable
for the approximation error to decrease with i(a), or even not to depend on i(a), although we do
not know of any examples of such protocols. Our main theorem lower bounds the approximation
error as a linear function of the count of the lowest-count state present in the initial configuration,
whether that is a or not, so our proof works regardless of the precise form of E .

12I.e., the initial count i(a) can influence the initial required count i(q), since adding more initial a may imply that
more quiescent agents are required as “fuel”. However, a0 is constant, not a function of m.

34

6 Sublinear-time, sublinear-error approximation of linear func-
tions with negative or non-integer coefficients is impossible

We say a function f : Nk → N is N-linear if there are c1, . . . , ck ∈ N such that for all m ∈ Nk,
f(m) =

∑k
i=1 cim(i).

As we consider leaderless population protocols, we need to make sure that a does not act as a
small count “leader”. Consistent with the rest of this paper, we reason about initial configurations
with i(a) ≥ αn for some α > 0 to ensure α-density.

Let f : Nk → N. In defining running time for function-approximating population protocols, we
express the expected time as a function of both the total number of agents n = ‖i‖ and the initial
count i(a) of approximation states. Let E : N→ N and t : N2 → N. Given a function-approximating
population protocol A that E-approximates f , we say A E-approximates f in expected time t if, for

all valid initial configurations i of A, letting m = i � Σ, T
[
i =⇒SAf,m,E(i(a))

]
≤ t(n, i(a)).

The following theorem states that given any linear function f and any population protocol P,
if f has a non-integer or negative coefficient, then P requires at least linear time to approximate
f with sublinear error. It states this by contrapositive: if the protocol takes sublinear time, then
the error E : N→ N must grow at least linearly with the initial count of approximation state a. In
particular, the initial configurations i (letting n = ‖i‖) on which our argument maximizes the error
have i(a) = Ω(n). Thus, the fact that E(a) ≥ γa implies that on these i, the error is Ω(n).

Theorem 6.1. Let f : Nk → N be a linear function that is not N-linear. Let E : N→ N. Let A be a
function-approximating leaderless population protocol that stably E-approximates f in expected time
t, where for some α > 0, t(n, αn) = o(n). Then there is a constant γ > 0 such that, for infinitely
many a ∈ N, E(a) ≥ γa.

A protocol stably computing f also stably E-approximates f for E(a) = 0, so we have:

Corollary 6.2. Let f : Nk → N be a linear function f(m) =
∑k

i=1 bcim(i)c, where ci 6∈ N for some
i ∈ {1, . . . , k}. Let C be a function-computing leaderless population protocol that stably computes f .
Then C takes expected time Ω(n).

This gives a complete classification of the asymptotic efficiency of computing linear functions
f(m) =

∑k
i=1 bcim(i)c with population protocols. If ci ∈ N for all i ∈ {1, . . . , k}, then f is stably

computable in logarithmic time by Observation 7.1. Otherwise, f requires linear time to stably
compute by Corollary 6.2, or even to approximate within sublinear error by Theorem 6.1. The
remainder of Section 6 is devoted to proving Theorem 6.1.

Theorem 6.1 follows directly from the two theorems in this section.
First, we show that subtraction takes linear time to approximate with sublinear error.

Theorem 6.3. Let f : Nk → N be a linear function f(m) =
∑k

i=1 bcim(i)c, where ci < 0 for
some i ∈ {1, . . . , k}. Let E : N→ N and t : N2 → N. Let A be a function-approximating leaderless
population protocol that stably E-approximates f in expected time t. Suppose there is α > 0 such that
t(n, αn) = o(n). Then there is a constant γ > 0 such that, for infinitely many a ∈ N, E(a) ≥ γa.

Proof. Assume without loss of generality that f(m) = c1m(1) − c2m(2) for c1, c2 > 0; a function
with more inputs can have those inputs set to 0, and the remaining two re-ordered to be the
first two, to result in this f . Assume for notational ease that c1 = c2 = 1. The extension to other
coefficients in Q>0 is routine, requiring us only to modify the set I=

α below to contain configurations
i with c1i(x1) = c2i(x2) instead of merely i(x1) = i(x2).

35

Let E : N → N and t : N2 → N. Let C be a function-approximating population protocol that
stably E-approximates f in expected time t. Let α > 0 be such that t(n, αn) = o(n) and, for all
m ∈ N, there is a valid α-dense initial configuration i ∈ NΛ such that i(x1) = i(x2) = m. Such an
α exists since the quiescent threshold q0 : Nk → N is linearly bounded.

Let I=
α be the set of all such α-dense valid i, where i(x1) = i(x2) (i.e., the set of α-dense initial

configurations representing an input m to f such that f(m) = 0). Let S = {o | (∃i ∈ I=
α) i =⇒o

and o is stable} be the set of stable configurations reachable from some initial configuration in I=
α .

By assumption we have that for each i ∈ I=
α , T [i =⇒S] = o(n).

Apply Corollary 3.11. Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set
N ⊆ N, and infinite nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the
following holds. Let ∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆
and oΓ

n = on � Γ. Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such that n ≥ nb and all d∆ ∈ N∆

such that max(d∆) ≤ b, we have 2in + d∆ =⇒ 2oΓ
n + D̃1.o

∆
n + D̃2.d

∆.

Let b = 1; below we ensure that max(d∆) ≤ b.
There are two cases:

y ∈ ∆: We claim that x1 ∈ ∆. To see why, observe that increasing the initial amount of x1 by
1 should increase the output by 1. If we had x ∈ Γ, then by Corollary 3.13, for any stable
configuration o, the configuration o + {x1} would also be stable, but would have the same
output. Let i be any initial configuration representing an input with x1 = x2, such that
i =⇒o. Then we should have o(y) = 0. Then i + {x1}=⇒o + {x1}, a contradiction since the
correct output to compute from i + {x1} is 1, but the output is also 0 in stable configuration
o + {x1}. This shows the claim that x1 ∈ ∆.

Let d∆ = {x1}. Let w = 2oΓ
nb

+ D̃1.o
∆
nb

and let c1 = D̃2.d
∆. The above implies that

2inb
+{x1}=⇒w+c1. For all l ∈ N, let vl = l(w+c1) and i′l = l(2in′0 +{x1}). Thus i′l =⇒vl.

Let m = (2lm+ l, 2lm) = i′l � Σ, with correct output f(2lm+ l, 2lm) = l, but vl(y) = 0.

y ∈ Γ: Then for all sufficiently large n ≥ nb, 2on(y) +

(
min
n′∈N

(
D̃1.o

∆
n′

)
(y)

)
> 0. Fix such an n.

Let w = 2oΓ
n+D̃1.o

∆
n ; note that w(y) > 0. Letting d∆ = 0, the above implies that 2in =⇒w.

For all l ∈ N, let vl = lw and i′l = 2lin. Thus i′l =⇒vl.

Let m = (2lm, 2lm) = i′l � Σ, with correct output f(2lm, 2lm) = 0, but vl(y) ≥ l.

In each case vl is stable by Observation 3.12 and reachable from an initial configuration i′l repre-
senting input m, with |vl(y)− f(m)| ≥ l, so E(2linb

(a)) ≥ l. Since 2inb
(a) is constant with respect

to l, choosing γ = 1
2inb

(a) proves the theorem.

Now we show that division by a constant takes linear time to approximate with sublinear error.

Theorem 6.4. Let f : Nk → N be a linear function f(m) =
∑k

i=1 bcim(i)c, where ci 6∈ Z for
some i ∈ {1, . . . , k}. Let E : N→ N and t : N2 → N. Let A be a function-approximating leaderless
population protocol that stably E-approximates f in expected time t. Suppose there is α > 0 such that
t(n, αn) = o(n). Then there is a constant γ > 0 such that, for infinitely many a ∈ N, E(a) ≥ γa.

36

Proof. If ci < 0 for some i, then Theorem 6.3 applies and we are done, so assume all ci ≥ 0. Assume
without loss of generality that f(m) = bcmc, where c ∈ Q>0 \ N; a function with more inputs can
have those inputs set to 0 to result in this f . Write c in lowest terms as p

r for p, r ∈ Z≥1, and note
that r ≥ 2 since c 6∈ Z. Let the input state x1 be denoted simply x.

Let E : N → N. Let δ > 0 and let A be a function-approximating population protocol that
stably E-approximates f in expected time o(n). Let α > 0 be such that t(n, αn) = o(n) and, for all
m ∈ N, there is a valid α-dense initial configuration i ∈ NΛ with i(x) = m. Such an α exists since
the quiescent threshold q0 : Nk → N is linearly bounded.

Let Iα be the set of all such α-dense valid i. Let S = {o | (∃i ∈ Iα) i =⇒o and o is stable
and E(i(a))-f(i(x))-correct } be the set of stable “ε-t”-correct configurations reachable from some
configuration i ∈ Iα, and where the choice of ε and t to define ε-t-correct depends on i. By
hypothesis we have that for each i ∈ Iα, T [i =⇒S] = o(n).

Apply Corollary 3.11. Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set
N ⊆ N, and infinite nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the
following holds. Let ∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆
and oΓ

n = on � Γ. Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such that n ≥ nb and all d∆ ∈ N∆

such that max(d∆) ≤ b, we have 2in + d∆ =⇒ 2oΓ
n + D̃1.o

∆
n + D̃2.d

∆.

Note that y ∈ Γ since f(m) grows unboundedly with m and m = in(x) grows unboundedly with
n. We claim that x ∈ ∆. To see why, observe that increasing the initial amount of x by r should
increase the output by p. If we had x ∈ Γ, then by Corollary 3.13, for any stable configuration o,
the configuration o + {rx} would also be stable, but would have the same output. Let i be any
initial configuration such that i =⇒o. Then i+{rx}=⇒o+{rx}, a contradiction since the correct
output to compute from i + {rx} is p larger than the correct output for i. This shows the claim
that x ∈ ∆.

Let b = 1; below we ensure that max(d∆) ≤ b. Let w = r
(

2oΓ
nb

+ D̃1.o
∆
nb

)
and c1 = D̃2.d

∆.

The above argument shows that 2rinb
=⇒w (letting d∆ = 0) and 2rinb

+ r{x}=⇒w + rc1 (letting
d∆ = {x}). Since w ∈ NΓ and c1 ∈ NΓ, both w and w +rc1 are stable by Observation 3.12. Recall
f(2rm) = b2rmp/rc = 2mp. We have two cases:

w(y) 6= 2mp: Thus |w(y)−2mp| ≥ 1. For all l ∈ N, let vl = lw and ml = 2lrm. Then 2lrinb
=⇒vl,

and
|vl(y)− f(ml)| = |lw(y)− 2lmp| = l|w(y)− 2mp| ≥ l.

w(y) = 2mp: For all l ∈ N, let vl = l(w + rc1) and ml = l(2rm+ r). Thus, l(2rinb
+ r{x}) =⇒vl.

Also, f(ml) = blp(2rm+ r)/rc = 2lmp+ lu. Note that c1(y) ∈ Z. There are two subcases:

c1(y) ≥ 1: Then vl(y) = l(w(y) + rc1(y)) ≥ l(2mp+ r) = 2lmp+ lr, so

vl(y)− f(ml) ≥ 2lmp+ lr − (2lmp+ l) = lr − l ≥ l.

c1(y) ≤ 0: Then vl(y) = l(w(y) + rc1(y)) ≤ 2lmp, so

f(ml)− vl(y) ≥ 2lmp+ l − 2lmp = l.

In each case vl is stable by Observation 3.12 and reachable from an initial configuration representing
input ml, with count 2lrinb

(a) of a, but |vl(y) − f(ml)| ≥ l, so E(2lrinb
(a)) ≥ l. Since 2rinb

(a) is
constant with respect to l, choosing γ = 1

2rinb
(a) proves the theorem.

37

7 Logarithmic-time, linear-error approximation of linear functions
with nonnegative rational coefficients is possible

Recall the definition of N-linear function from Section 6. It is easy to see that any N-linear function
f can be stably computed in logarithmic time. Recall that x, q → y, y stably computes f(m) = 2m
in expected time O(log n). The extension to larger coefficients, e.g., f(m) = 4m, uses a series of
transitions:

x, q → y, x′

x′, q → y, x′′

x′′, q → y, y

The extension to multiple inputs, e.g., f(m1,m2,m3) = 4m1 + m2 + 2m3, uses similar transitions
for each input:

x1, q → y, x′1

x′1, q → y, x′′1

x′′1, q → y, y

x2, q → y, q

x3, q → y, y

We summarize this in the following observation.

Observation 7.1. Let f : Nk → N be an N-linear function. There is a function-computing leader-
less population protocol that stably computes f in expected time O(log n).

A function is Q≥0-linear if there are c1, . . . , ck ∈ Q≥0 such that for all m ∈ Nk, f(m) =∑k
i=1 bcim(i)c. We now describe how to stably approximate Q≥0-linear functions with a linear

approximation error, in logarithmic time. (It is open to do this for negative coefficients, e.g.,
f(m1,m2) = m1 − m2). Recall the following simple example of a population protocol that ap-
proximately divides by 2 (that is, with probability 1 it outputs a value guaranteed to be a certain
distance to the correct output), with a linear approximation error, and is fast (O(log n) time) with
initial counts #x = m, #a = γm, and #q = #y = 0:

a, x→ b, y

b, x→ a, q

which stabilizes #y to somewhere in the interval {m/2,m/2 + 1, . . . ,m/2 + γm}.
To see that the protocol is correct, note that the transition sequence can make #y closer to one

endpoint of the interval or the other depending on which transitions are chosen to consume the last
γm of x, but no matter what, the first transition executes at least as many times as the second,
but not more than γm times more.

If #a = 1 initially, the above protocol stably computes bm/2c (taking linear time just for the
last transition; and in total takes Θ(n log n) time, by a coupon collector argument).

To see that the protocol takes O(log n) time if #a = γm initially, note n = m + γm ≤ 2m.
Observe that #a + #b = γm in any reachable configuration. Thus the probability any given
interaction is one of the above two transitions is ≈ γm#x

n2 , so the expected number of interactions

38

until such a transition occurs is n2

γm#x . After m such transitions occur, all the input x is gone and
the protocol stabilizes, which by linearity of expectation takes expected number of interactions

m∑
#x=1

n2

γm#x
=

n2

γm

m∑
#x=1

1

#x
≈ n2

γm
lnm ≤ n2

γn/2
lnn =

2n

γ
lnn,

i.e., expected parallel time 2
γ lnn. Thus this shows a tradeoff between accuracy and speed in a

single protocol, adjustable by the initial count of a. In this case, the approximation error increases,
and the expected time to stabilization decreases, with increasing initial #a.

More generally, we can prove the following. In particular, if a = Ω(n), then t(n, a) = O(log n).
Also, if a = o(n), then the approximation error is o(n), and if a = ω(log n), then the expected
time is o(n) also. This does not contradict Theorem 6.1 since setting a = o(n) implies the initial
configurations are not all α-dense for a fixed α > 0.

Theorem 7.2. Let f : Nk → N be a Q≥0-linear function. Let E : N → N be the identity function.
Define t : N2 → N by t(n, a) = n

a log n. Then there is a function-approximating leaderless population
protocol A that E-approximates f in expected time O(t).

Proof. Write each rational coefficient ci = pi
ri

, where pi, ri ∈ Z≥1. (Since f is linear, the case
pi = 0 is easy to handle by simply ignoring xi as an input, so we assume all coefficients are
strictly positive.) The initial configuration i has i(xi) = m(i) for each i ∈ {1, . . . , k}, i(a) > 1 and
i(q) ≥ 2ki(a) +

∑k
i=1 pii(xi).

First, for each i ∈ {1, . . . , k}, we have transitions that multiply #xi = m(i) by pi. If pi = 1, we
have the transition xi, q → yi, q. If pi = 2, we have the transition xi, q → yi, yi. If pi ≥ 3, we have
a sequence of transitions that multiply #xi by pi:

xi, q → yi, x
(pi−1)
i

x
(pi−1)
i , q → yi, x

(pi−2)
i

x
(pi−2)
i , q → yi, x

(pi−3)
i

. . .

x
(2)
i , q → yi, yi

This ensures that for each i ∈ {1, . . . , k}, eventually #yi = pii(xi). Note that each agent in state
xi eventually causes pi agents in state q to be consumed as inputs to the above transitions, hence
at least

∑k
i=1 pim(i) agents in state q are required initially for the above to complete.

Next, we split up the approximation states to have a specific one for each input xi. In other
words, the initial configuration has i(a) agents in state a, and we want to reach a configuration
with i(a) agents in state a1, i(a) other agents in state a2, . . ., i(a) other agents in state ak. If k = 1

then we simply use a directly in place of the state a
(1)
1 below. Otherwise, let l ∈ N be such that

2l−1 < k ≤ 2l (i.e., 2l is the next power of 2 at least k).

39

We have the transitions that make copies of a for each input:

a, q → a0, a1

a0, q → a00, a01

a1, q → a10, a11

a00, q → a000, a001

a01, q → a010, a011

a10, q → a100, a101

a11, q → a110, a111

a000, q → a0000, a0001

. . .

and so on, up to transitions whose output (right-hand side) states are binary strings of length l.

Also, for each i ∈ {1, . . . , k}, we have the transition ab(i), q → a
(1)
i , q, where b(i) is the i’th string

in the lexicographical ordering of {0, 1}l. If k is not a power of 2, then we will simply let ab(i) go

unused for i ∈ {k + 1, . . . , 2l}.
Note that each agent in state a eventually causes

∑l
j=1 2j = 2l+1 − 1 < 2k agents in state q to

be consumed as inputs to the above transitions, hence at least i(a)(2l+1 − 1) agents in state q are
required initially for the above to complete. Combined with the lower bound on i(q) associated to
the first set of transitions, at least i(a)(2l+1 − 1) +

∑k
i=1 pii(xi) ≤ 2ki(a) +

∑k
i=1 pii(xi) agents in

state q are required initially. Note that this is O(‖i � (Σ ∪ {a})‖).
Next, we approximately divide #yi by ri, using the state a

(1)
i produced by the second sequence

of transitions. If ri = 1, this is easily handled (exactly) by the transition yi, q → y, q. Otherwise,
for each i such that ri ≥ 2, we have the transitions that divide #yi by ri:

a
(1)
i , yi → a

(2)
i , y

a
(2)
i , yi → a

(3)
i , q

a
(3)
i , yi → a

(4)
i , q

. . .

a
(ri)
i , yi → a

(1)
i , q

which consumes ri copies of yi (of which there are pim(i)) for each y produced. Since for all i, the

first transition above outputs the same state y, the final count of y will be the sum
∑k

i=1

⌊
pi
ri

m(i)
⌋
,

i.e., the value f(m).
It remains to prove the stated bound on expected time. Above we stated a lower bound on

i(q) required for the protocol to be correct. To obtain the stated expected time, we double this
bound and add ‖i � (Σ ∪ {a})‖, which ensures that #q is always at least n/2 in any reachable
configuration. Note that n ≥

∑k
i=1 pim(i). Let p̂ = maxi pi.

We analyze a simpler process that stochastically dominates the actual Markov process. We
assume that the first set of transitions (multiplying #xi by pi) completes before the start of the
second (making copies of a for each input), and that these then complete before the start of the
third group (dividing #yi by ri). Also, transitions that can go in parallel within these groups
(such as the first set of transitions for different values of i) can have their expected times analyzed
independently and summed to obtain a loose bound on the time for them all to terminate.

40

Let i ∈ {1, . . . , k}. For the first group, we assume that for each x
(pi−j)
i , q → yi, x

(pi−j−1)
i

completes (consuming all available x
(pi−1)
i states) before the next x

(pi−j−1)
i , q → yi, x

(pi−j−2)
i starts,

since this process stochastically dominates the actual process that allows the transitions to go in

parallel. For notational brevity we just analyze the first transition xi, q → yi, x
(pi−1)
i . By our

choice of i(q), each interaction has probability at least 1
2 to have a q state, and conditioned on this,

probability at least #xi
n for the other state to be xi, so probability at least #xi

2n to be of the form

xi, q → yi, x
(pi−1)
i . Thus the expected number of interactions until this transition happens is at

most 2n
#xi

. By linearity of expectation, the expected number of interactions until all xi are consumed

is at most
∑m(i)

#xi=1
2n

#xi
≈ 2n ln m(i)). Thus the expected parallel time to complete these transitions

is 2 ln m(i). Thus for each i, the expected time for all pi of these transitions to complete is at most
2pi ln m(i), so the expected time for all to complete is at most 2

∑k
i=1 pi ln m(i) ≤ 2kp̂ lnn.

The second group of transitions can be analyzed similarly, by assuming they each complete
(consume all non-q input states) before the next starts. Each then takes ln i(a) expected time to
complete. There are 2l+1−1 < 2k total transitions so 2k ln i(a) ≤ 2k lnn expected time is required.

The third group of transitions is a bit different. Since we do not begin analysis until the second

group of transitions completes, we start with #a
(1)
i = i(a) and #yi = pim(i). Also note that

i(a) =
∑ri

j=1 #a
(j)
i in any subsequently reachable configuration. Thus, in any such configuration

the probability that the next transition involves an a
(j)
i state is i(a)

n , and conditioned on this, the

probability that the other input state is yi is #yi
n , so probability i(a)#yi

n2 that the next transition
is one of the ri transitions. Thus the expected number of transitions until such a transition
happens is n2

i(a)#yi
. By linearity of expectation, the expected number of interactions until all yi

are consumed is at most
∑pim(i)

#yi=1
n2

i(a)#yi
≈ n2

i(a) ln(pim(i)), so expected parallel time n
i(a) ln(pim(i)).

Thus the expected time for all k groups of transitions to complete is at most n
i(a)

∑k
i=1 ln(pim(i)) =

n
i(a)k ln(p̂n).

Thus, summing the above three bounds, the total expected time to stabilization is at most
2kp̂ lnn+ 2k lnn+ n

i(a)k ln(p̂n). Since k and p̂ are constant with respect to n and i(a), the bound

is dominated by the last term, which is O
(

n
i(a) lnn

)
.

8 Exact computation of nonlinear functions

In Section 6, we obtained a precise characterization of the linear functions stably computable in
sublinear time by population protocols and furthermore show that those not exactly computable
in sublinear time are not even approximable with sublinear error in sublinear time. However, the
class of functions stably computable (in any amount of time) by population protocols is known
to contain non-linear functions such as f(m1,m2) = max(m1,m2), or f(m) = m if m is even and
f(m) = 2m if m is odd. In fact a function is stably computable by a population protocol if and
only if its graph {(m, f(m)) | m ∈ Nk} is a semilinear set [5, 15]. A set A ⊆ Nk is semilinear
if and only if [23] it is expressible as a finite number of unions, intersections, and complements
of sets of one of the following two forms: threshold sets of the form {x |

∑k
i=1 ai · x(i) < b} for

some constants a1, . . . , ak, b ∈ Z or mod sets of the form {x |
∑k

i=1 ai · x(i) ≡ b mod c} for some
constants a1, . . . , ak, b, c ∈ N.

Say that a set P ⊆ Nk is a periodic coset if there exist b,p1, . . . ,pl ∈ Nk such that P =
{b + n1p1 + . . . + nlpl | n1, . . . , nl ∈ N}. (These are typically called “linear” sets, but we wish to
avoid confusion with linear functions.) Equivalently, a set is semilinear if and only if it is a finite

41

union of periodic cosets.
Although our technique fails to completely characterize the efficient computability of all semi-

linear functions, we show that a wide class of semilinear functions cannot be stably computed
in sublinear time: functions that are not eventually N-linear. The only exceptions, for which we
cannot prove linear time is required, yet neither is there known a counterexample protocol stably
computing the function in sublinear time, are functions whose “non-integral-linearities are near the
boundary of Nk”. For example, the function f(m) = 0 if m ≤ 3 and f(m) = m otherwise is non-
linear (although it is semilinear, so stably computable), but restricted to the domain of inputs > 3,
it is linear with positive integer coefficients. Thus it is an example of a function whose “population
protocol time complexity” is unknown.

Corollary 6.2 and Observation 7.1 imply that a linear function is stably computable in sublinear
time by a population protocol if and only if it is N-linear. Theorem 8.5 generalizes the forward
direction (restricted to nonlinear functions) to eventually N-linear functions.

8.1 Eventually affine functions

Say that a function f : Nk → N is eventually N-affine if there exist n0, c1, . . . , ck ∈ N and b ∈ Z
such that, for all m ∈ Nk≥n0

, f(m) = b+
∑k

i=1 cim(i).

The function f : Nk → Q is affine if and only if all points on the graph of f lie on a k-dimensional
hyperplane.13 This holds if and only if, for all m,v ∈ Nk, f(m+v)−f(m) = f(m+2v)−f(m+v).
In other words, the change in output resulting by moving by a vector v, starting from m, is the
same if we move by v a second time. The next lemma, due to Sungjin Im [25], shows that a function
f : Nk → N is eventually N-affine if the above holds for any sufficiently large input m and any
0/1-valued vector v ∈ {0, 1}k. In other words, if f “looks N-affine” when moving by small amounts
(each component at most 1), then it is N-affine. This appears obvious, but some care is needed: for
example, it is false if we assume that v are only unit vectors. For example, the non-affine function
f(m1,m2) = m1 ·m2 obeys f(m + u)− f(m) = f(m + 2u)− f(m + u) for each m ∈ N2 and each
u ∈ {(0, 1), (1, 0)}, but fails if u = (1, 1).

Lemma 8.1. Let f : Nk → N. Suppose there exists n0 ∈ N such that for all m ∈ Nk≥n0
and

v ∈ {0, 1}k, f(m + v)− f(m) = f(m + 2v)− f(m + v). Then f is eventually N-affine: there are
n0, b, c1, . . . , ck ∈ N such that, for all m ∈ Nk≥n0

, f(m) = b+
∑k

i=1 cim(i).

Proof. Assume the hypothesis and let v ∈ {0, 1}k and m ∈ Nk≥n0
. A straightforward induction

shows that, for all n ≥ 1, f(m + nv)− f(m + (n− 1)v) = f(m + v)− f(m), and thus

f(m + nv) = f(m) + n · (f(m + v)− f(m)). (8.1)

Let i ∈ {1, . . . , k}, fix values of m′i+1, . . . ,m
′
k ≥ n0, and define fi : Ni → N by fi(m1, . . . ,mi) =

f(m1, . . . ,mi−1,mi,m
′
i+1, . . . ,m

′
k). We show by induction on i that fi is N-affine on inputsm1, . . . ,mi ≥

n0, i.e., f(m1, . . . ,mi) = b+ c1m1 + . . .+ cimi for some b, c1, . . . , ci ∈ N.

Base case: For any fixed m′2, . . . ,m
′
k ≥ n0, let f1(m1) = f(m1,m

′
2, . . . ,m

′
k). We must show f1 is

an N-affine function of m1 (assuming m1 ≥ n0). Let v = (1, 0, . . . , 0) and let m = (n0,m
′
2 . . . ,m

′
k).

Then using eq. (8.1), we obtain that for any m1 ≥ n0,

f1(m1) = f(n0,m
′
2, . . . ,m

′
k) +

(m1 − n0) ·
[
f(n0 + 1,m′2, . . . ,m

′
k)− f(n0,m

′
2, . . . ,m

′
k)
]
,

13 We let the range be Q instead of N here to get a bidirectional implication, but the direction we are interested in
requires only range N: if f : Nk → N is affine, then all points lie on a k-dimensional hyperplane.

42

which is an affine function b+ cm1 of m1, with offset b = f(n0,m
′
2, . . . ,m

′
k)−

n0·[f(n0 + 1,m′2, . . . ,m
′
k)− f(n0,m

′
2, . . . ,m

′
k)] and coefficient c = f(n0+1,m′2, . . . ,m

′
k)−f(n0,m

′
2, . . . ,m

′
k).

Inductive case: Fix values m′i+1, . . . ,m
′
k ≥ n0. By the inductive hypothesis, fi(m1, . . . ,mi) =

f(m1, . . . ,mi,m
′
i+1, . . . ,m

′
k) is an N-affine function of m1, . . . ,mi (if all mj ≥ n0). We want to show

that fi+1(m1, . . . ,mi+1) = f(m1, . . . ,mi+1,m
′
i+2 . . . ,m

′
k) is an N-affine function of m1, . . . ,mi+1 (if

all mj ≥ n0).
Let m1, . . . ,mi+1 ≥ n0. By eq. (8.1), letting m = (m1, . . . ,mi, n0,m

′
i+2, . . . ,m

′
k) and v =

(0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0), we obtain that:

fi+1(m1, . . . ,mi+1)

= f(m1, . . . ,mi,mi+1,m
′
i+2, . . . ,m

′
k)

= f(m1, . . . ,mi, n0,m
′
i+2, . . . ,m

′
k) + (8.2)

(mi+1 − n0) ·
[
f(m1, . . .mi, n0 + 1,m′i+2 . . . ,m

′
k)− f(m1, . . .mi, n0,m

′
i+2, . . . ,m

′
k)
]

By the inductive hypothesis, defining fi,0, fi,1 : Ni → N by fi,0(m1, . . . ,mi) = f(m1, . . .mi, n0,m
′
i+2, . . . ,m

′
k)

and fi,1(m1, . . . ,mi) = f(m1, . . .mi, n0 + 1,m′i+2, . . . ,m
′
k), fi,0 and fi,1 are both N-affine. Thus for

some a1, . . . ai, b ∈ N and c1, . . . ci, d ∈ N,

fi,0(m1, . . . ,mi) = b+ a1m1 + . . .+ aimi (8.3)

fi,1(m1, . . . ,mi) = d+ c1m1 + . . .+ cimi (8.4)

Substituting (8.3) and (8.4) into (8.2), defining fi+1 : Ni+1 → N for all m1, . . . ,mi+1 by

fi+1(m1, . . . ,mi+1) = f(m1, . . . ,mi,mi+1,m
′
i+2, . . . ,m

′
k)

= (b+ a1m1 + . . .+ aimi) +

(mi+1 − n0) · [(d+ c1m1 + . . .+ cimi)− (b+ a1m1 + . . .+ aimi)] .

Let a′i+1 = d− b and b′ = b− a′i+1n0. For j ∈ {1, . . . , i}, let ej = cj − aj and a′j = aj − ejn0. Then

fi+1(m1, . . . ,mi+1)

= b+ a1m1 + . . .+ aimi + (mi+1 − n0) · [ai+1 + e1m1 + . . .+ eimi]

= b+ a1m1 + . . .+ aimi + ai+1mi+1 + e1m1mi+1 + e2m2mi+1 + . . .+ eimimi+1

−ai+1n0 − e1m1n0 − e2m2n0 − . . .− eimin0

= b− ai+1n0 +

i+1∑
j=1

ajmj +

i∑
j=1

ejmjmi+1 −
i∑

j=1

ejmjn0

= b′ +

i+1∑
j=1

a′jmj +

i∑
j=1

ejmjmi+1 (8.5)

To prove fi+1 is N-affine, we must show that e1 = e2 = . . . = ei = 0 and that a′i+1 ≥ 0 (the
inductive hypothesis impies that b, a1, . . . , ai ≥ 0, so if each ej = 0, then a′j = aj − ejn0 = aj ≥ 0).
First, we claim that e1, . . . , ei ≥ 0. To see why, suppose for the sake of contradiction that some
el < 0, and consider fixing mj for each j 6∈ {l, i + 1} and taking the limit of ml = mi+1 = n as
n → ∞. Equation (8.5) will be dominated by the quadratic term in n, i.e., elmlmi+1 = eln

2, and
thus fi+1 would be negative for large enough n, a contradiction.

43

We will eventually show that e1, . . . , ei = 0. Once this is shown, a similar argument shows that
a′i+1 ≥ 0, or else with increasing mi+1, fi+1 would become negative. (The assumption a′i+1 ≥ 0 is
not used subsequently in the proof of the inductive case; it is only needed at the conclusion.)

To show that e1 = e2 = . . . = ei = 0, define v = (1, . . . , 1︸ ︷︷ ︸
i+1

, 0, . . . , 0︸ ︷︷ ︸
k−i−1

) ∈ Nk. Let m =

(n0, . . . , n0︸ ︷︷ ︸
i+1

,m′i+2, . . . ,m
′
k). Let mi+1 = (n0, . . . , n0︸ ︷︷ ︸

i+1

) ∈ Ni+1 be the first i + 1 coordinates of m.

Similarly, let vi+1 = (1, . . . , 1︸ ︷︷ ︸
i+1

) ∈ Ni+1 be the first i+ 1 coordinates of v. Then f(m) = fi+1(mi+1),

f(m + v) = fi+1(mi+1 + vi+1), and f(m + 2v) = fi+1(mi+1 + 2vi+1), Applying the hypothesis of
the lemma and these identities,

fi+1(mi+1 + vi+1)− fi+1(mi+1) = fi+1(mi+1 + 2vi+1)− fi+1(mi+1 + vi+1)

Substituting eq. (8.5),

fi+1(mi+1 + vi+1)− fi+1(mi+1) =

b′ + i+1∑
j=1

a′j(n0 + 1) +

i∑
j=1

ej(n0 + 1)2

−

b′ + i+1∑
j=1

a′jn0 +

i∑
j=1

ejn
2
0

=

i+1∑
j=1

a′j +
i∑

j=1

ej(2n0 + 1)

Similarly, the difference f(m + 2v)− f(m + v) can be expressed as

fi+1(mi+1 + 2vi+1)− fi+1(mi+1 + vi+1) =

b′ + i+1∑
j=1

a′j(n0 + 2) +
i∑

j=1

ej(n0 + 2)2

−

b′ + i+1∑
j=1

a′j(n0 + 1) +

i∑
j=1

ej(n0 + 1)2

=

i+1∑
j=1

a′j +
i∑

j=1

ej(2n0 + 3)

Since the first difference equals the second,
∑i+1

j=1 ej(2n0 + 1) =
∑i+1

j=1 ej(2n0 + 3). Since each

ej ≥ 0, this implies each ej = 0, so a′j = aj . Thus fi+1(m1, . . . ,mi+1) = b′ +
∑i+1

j=1 ajmj , an
N-affine function, proving the inductive case.

The contrapositive of Lemma 8.1 states that if f is not eventually N-affine, then for all m0 ∈ N,
there is v ∈ {0, 1}k and m ∈ Nk≥m0

such that f(m + v) − f(m) 6= f(m + 2v) − f(m + v). Since

{0, 1}k is finite, by the pigeonhole principle, some infinite subset of such m’s can be found that
agree on the same v. Thus we have the following corollary.

Corollary 8.2. Let f : Nk → N. If f is not eventually N-affine, then there is v ∈ {0, 1}k such that
for all m0 ∈ N, there is m ∈ Nk≥m0

such that f(m + v)− f(m) 6= f(m + 2v)− f(m + v).

44

Finally, we need not only that we can find an infinite set of “arbitrarily large counter-examples
to affine” given by Corollary 8.2, but furthermore that this set is α-dense for some α > 0. This is
not true for arbitrary functions. For example, consider the function f(m1,m2) = m1 + m2 unless
m1 = 2m2 , in which case f(m1,m2) = 0 instead. However, if f is a semilinear function, then we
can find an infinite set of “counter-examples to affine” that is α-dense for some α > 0.

Lemma 8.3. Let f : Nk → N be semilinear but not eventually N-affine. Then there are v ∈ {0, 1}k,
α > 0, and infinitely many α-dense m ∈ Nk such that f(m + v)− f(m) 6= f(m + 2v)− f(m + v).

Proof. For all v ∈ {0, 1}k, let Cv = {m ∈ Nk | f(m + v) − f(m) 6= f(m + 2v) − f(m + v)}.
Corollary 8.2 tells us that there is v ∈ {0, 1}k such that, for all m ∈ N, we have Nk≥m ∩ Cv 6= ∅.

This implies that for all m ∈ N, |Cv ∩ Nk≥m| = ∞. Otherwise, since Nk≥m ⊂ Nk≥m+1 for all m,

if |Cv ∩ Nk≥m| < ∞, then for sufficiently large m′, Cv ∩ Nk≥m′ = ∅, contradicting the fact that C

intersects all Nk≥m′ .
We denote the graph of f by G(f) = {(m, f(m)) | m ∈ Nk} ⊂ Nk+1. Since f is semilinear,

G(f) is a semilinear set. Thus it is a finite union G(f) =
⋃p−1
j=0 Pj of p periodic cosets P0, . . . , Pp−1.

Intuitively, the lemma will be proven as follows. Cv, the “counterexamples to N-affineness”, occur
in these periodic cosets. Adding period vectors to a point keeps it in the same periodic coset.
However, if we add the same multiple of period vectors each time, and if their sum is positive on
all coordinates, then this sets a minimum α-denseness that we cannot fall below. This is how we
will show that Cv has infinitely many α-dense points.

For all m ∈ Nk, let mf = (m, f(m)) ∈ Nk+1 denote the point in G(f) corresponding to input
m. By the pigeonhole principle, there are x, y, z ∈ {0, . . . , p − 1} and an infinite subset CP ⊆ Cv

such that, for all m0, there is m ∈ CP ∩Nk≥m0
such that mf ∈ Px, (m + v)f ∈ Py, (m + 2v)f ∈ Pz.

For notational convenience we assume that x = 0, y = 1, z = 2.14 In other words, we can find an
infinite subset CP of Cv in which, in the finite union of periodic cosets defining G(f), mf is always
part of the same periodic coset P0, (m + v)f is always part of the same periodic coset P1, and
(m + 2v)f is always part of the same periodic coset P2.

Let mf
S,m

f
L ∈ CP such that min(mL − mS) ≥ 1; i.e., mL is strictly larger than mS on all

coordinates. By the fact that CP contains arbitrarily large points (i.e., points in Nk≥m for all m),
such mS and mL must exist.

Let b0,p
(1)
0 , . . . ,p

(l0)
0 ∈ Nk+1 be such that

P0 =
{

b0 + n(1)p
(1)
0 + . . .+ n(l0)p

(l0)
0

∣∣∣n(1), . . . , n(l0) ∈ N
}
,

and similarly for b1,p
(1)
1 , . . . ,p

(l1)
1 ,b2,p

(1)
2 , . . . ,p

(l2)
2 ∈ Nk+1 and P1, P2, respectively.

For i ∈ {0, 1, 2}, let dfi = (mL + iv)f − (mS + iv)f , and let di denote dfi restricted to the first

k coordinates, so that di = (mL + iv) − (mS + iv) = mL −mS. In other words, df0 ,d
f
1 ,d

f
2 differ

only on their last coordinate, representing f(mL + iv) − f(mS + iv). Then df0 =
∑l0

j=1 n
(j)
0 p

(j)
0

for some n
(1)
0 , . . . , n

(l0)
0 ∈ N since mf

S,m
f
L ∈ P0. Similarly, there must exist n

(1)
1 , . . . , n

(l1)
1 ∈ N and

n
(1)
2 , . . . , n

(l2)
2 ∈ N such that df1 =

∑l1
j=1 n

(j)
1 p

(j)
1 and df2 =

∑l2
j=1 n

(j)
2 p

(j)
2 .

For all n ∈ N, define mf
n = mf

S + ndf0 (note that mf
L = mf

1 and mf
S = mf

0), letting mn be

mf
n restricted to the first k coordinates. By the definition of P0, for all n ∈ N, mf

n ∈ P0, since
mf

S ∈ P0 and df0 is a nonnegative multiple of period vectors in P0. Our goal next is to show that

14 This can be assumed without loss of generality even if some of x, y, z are equal, since we can have “duplicate”
periodic cosets that are equal despite having different subscripts.

45

all sufficiently large mf
n are in CP ⊆ Cv. After showing that, we argue that mn are all α-dense for

some α > 0, proving the lemma.
For i ∈ {0, 1, 2}, let ∆yi = dfi (k + 1) = f(mL + iv) − f(mS + iv). Note that for all n ∈ N,

f(mS + iv + ndi) = f(mS + iv) + n∆yi.
We claim that for all n ∈ N, mn ∈ Cv. Let c0 = f(mS + v) − f(mS) and c1 = f(mS + 2v) −

f(mS + v). Note that c0 6= c1 since mS ∈ Cv. For all n ∈ N,

f(mn + v)− f(mn) = f(mS + v + nd1)− f(mS + nd0)

= f(mS + v) + n∆y1 − (f(mS) + n∆y0)

= c0 + n(∆y1 −∆y0),

and

f(mn + 2v)− f(mn + v) = f(mS + 2v + nd2)− f(mS + v + nd1)

= f(mS + 2v) + n∆y2 − (f(mS + v) + n∆y1)

= c1 + n(∆y2 −∆y1).

Thus

[f(mn + v)− f(mn)]− [f(mn + 2v)− f(mn + v)] = [c0 + n(∆y1 −∆y0)]− [c1 + n(∆y2 −∆y1)]

= (c0 − c1) + n(2∆y1 −∆y2 −∆y0).

There are two cases to complete the claim that mn ∈ Cv:

2∆y1 −∆y2 −∆y0 = 0: Then for all n, the above difference is c0−c1 6= 0, so f(mn+v)−f(mn) 6=
f(mn + 2v)− f(mn + v), implying mn ∈ Cv.

2∆y1 −∆y2 −∆y0 6= 0: Then for all sufficiently large n, (c0 − c1) + n(2∆y1 −∆y2 −∆y0) 6= 0, so
f(mn + v)− f(mn) 6= f(mn + 2v)− f(mn + v), implying mn ∈ Cv.

Letting α′ = min(d0)/‖d0‖, we have that for all n ∈ N, nd0 is α′-dense. Note that α′ > 0 since
we chose d0 = mL −mS to be positive on all coordinates. Let α = α′/2. Then for all sufficiently
large n, mn = mS + nd0 is α-dense. Since mn ∈ CP ⊆ Cv, this proves the lemma.

8.2 Time lower bounds for stably computing nonlinear functions

Recall that definition of N-linear functions from Section 6. We say a function f : Nk → N is
eventually N-linear if it is eventually N-affine with offset b = 0, i.e., if there are c1, . . . , ck ∈ N and
m0 ∈ N such that for all m ∈ Nk≥m0

, f(m) =
∑k

i=1 cim(i).
The following lemma is a special case of the main result of this Section, Theorem 8.5, showing

that the non-linear functions in a sense “closest” to being eventually N-linear, the eventually N-
affine functions, are not stably computable in sublinear time. This includes functions as simple as
f(m) = m− 1 (computable slowly via transition x, x→ x, y).

Theorem 8.4. Let f : Nk → N be eventually N-affine but not eventually N-linear. Then no
function-computing leaderless population protocol stably computes f in sublinear time.

Proof. Since f is eventually N-affine, therem0 ∈ N and b, c1, . . . , ck ∈ N such that, for all m ∈ Nk≥m0
,

f(m) = b +
∑k

i=1 cim(i). Since f is not eventually N-linear, b 6= 0. Thus, for all m ∈ Nk≥m0
,

f(2m) 6= 2f(m).

46

Let I be the set of all α-dense valid initial configurations i representing input in Nk≥m0
such

that f(2m) > 0. Let S = {o | (∃i ∈ Iα) i =⇒o and o is stable}. By hypothesis we have that for
each i ∈ I, T [i =⇒S] = o(n).

Apply Corollary 3.11. Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set
N ⊆ N, and infinite nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the
following holds. Let ∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆
and oΓ

n = on � Γ. Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such that n ≥ nb and all d∆ ∈ N∆

such that max(d∆) ≤ b, we have 2in + d∆ =⇒ 2oΓ
n + D̃1.o

∆
n + D̃2.d

∆.

Let b = 0; below we ensure that max(d∆) ≤ b. Let m = inb
� Σ. Let s0 = 2oΓ

nb
+ D̃1.o

∆
nb

.
Letting d∆ = 0, the above argument shows that 2inb

=⇒ s0. Since s0 ∈ NΓ, it is stable by
Observation 3.12. Since the protocol is correct, s0(y) = f(2m) > 0. Then 4inb

=⇒ 2s0, also stable,
with 2s0(y) = 2f(2m) 6= f(4m), a contradiction.

Finally, we can prove the main result of this section, that any protocol requires linear expected
time to stably compute a non-eventually-N-linear function.

Intuitively, the proof has a similar shape to that of Theorem 4.4. However, applying the surgery
lemmas to fool the population protocol is more difficult, since with the predicate output convention,
it is immediate that if two configurations have a well-defined output and share at least one state
in common, they must have the same output (equal to the vote of that state). With the integer-
count output convention, things are trickier. The surgery of Corollary 3.11 to consume additional
input states affects the count of the output state—how do we know that the effect of the surgery
on the output is not consistent with the desired output of the function? In order to arrive at a
contradiction we develop two techniques. The first involves showing that the slope of the change in
the count of the output state as a function of the input states is inconsistent. The second involves
exposing the semilinear structure of the graph of the function being computed, and forcing it to
enter the “wrong piece” (i.e., periodic coset).

Theorem 8.5. Let f : Nk → N, and let C be a function-computing leaderless population protocol
that stably computes f . If f is not eventually N-linear then C takes expected time Ω(n).

Proof. If f is eventually N-affine but not eventually N-linear, then Theorem 8.4 implies that f
requires expected time Ω(n) to stably compute. So assume that f is not eventually N-affine.

Since f is semilinear, Lemma 8.3 tells us that there is v ∈ {0, 1}k and α > 0 such that there
are infinitely many α-dense m ∈ Nk such that f(m + v)− f(m) 6= f(m + 2v)− f(m + v). Let C
be the set of all such m.

Note that for every point m′ ∈ Nk, there exists m ∈ Nk and u ∈ {0, 1}k such that m′ = 2m+u;
i.e., every point m′ is equal some point 2m with all even coordinates, plus some binary vector u
(to reach the odd coordinates in m′).

Let I be a set of α-dense valid initial configurations i representing an input m such that there
is some m′ ∈ C and u ∈ {0, 1}k such that m′ = 2m + u. Let S = {o | (∃i ∈ I) i =⇒o and o is
stable} be the set of stable configurations reachable from some initial configuration in I. Assume
for the sake of contradiction that for each i ∈ I, T [i =⇒S] = o(n).

Apply Corollary 3.11. Then there are matrices D̃1 ∈ ZΓ×∆ and D̃2 ∈ ZΓ×∆, an infinite set
N ⊆ N, and infinite nondecreasing sequences of configurations (in)n∈N and (on)n∈N such that the
following holds. Let ∆ = bdd((on)n∈N), d = |∆|, and Γ = Λ \∆. For each n ∈ N , let o∆

n = on � ∆
and oΓ

n = on � Γ. Then amax(D̃1), amax(D̃2) ≤ d22d+2 and

47

1. For all n ∈ N , in ∈ I, on ∈ S, ‖in‖ = ‖on‖ = n, and in =⇒on.

2. For all b ∈ N, there is nb ∈ N such that, for all n ∈ N such that n ≥ nb and all d∆ ∈ N∆

such that max(d∆) ≤ b, we have 2in + d∆ =⇒ 2oΓ
n + D̃1.o

∆
n + D̃2.d

∆.

Some of the inputs x1, . . . , xk are in ∆, and others are in Γ. Let u∆ = u � ∆, uΓ = u � Γ,
v∆ = v � ∆, and vΓ = v � Γ. Let b = 3; below we ensure that max(d∆) ≤ b. Let m ∈ Nk
be the input represented by inb

. Let m′ ∈ C and u ∈ {0, 1}k such that m′ = 2m + u. Let
s0 = 2oΓ

n + D̃1.o
∆
n + D̃2.u

∆. Letting d∆ = u∆ in Lemma 3.10, we have 2inb
+ u∆ =⇒ s0. By

correctness, since initial configuration 2inb
+ u represents input m′, we have s0(y) = f(m′).

Let s1 = s0 + D̃2.d
∆. Then letting d∆ = u∆ + v∆ in Lemma 3.10, we have that 2inb

+ u∆ +
d∆ =⇒ s1. By additivity this implies that 2inb

+ u∆ + uΓ + vΓ =⇒ s1 + uΓ + vΓ. By correctness,
s1(y) = f(m′ + v). By Corollary 3.13, s1 + uΓ + vΓ is stable.

Let s2 = s0 + 2D̃2.d
∆. Then letting d∆ = u∆ + 2v∆ in Lemma 3.9, we have that 2inb

+ u∆ +
2v∆ =⇒ s2. By additivity this implies that 2inb

+ u∆ + 2v∆ + uΓ + 2vΓ =⇒ s2 + uΓ + 2vΓ. By
Corollary 3.13, s1 + uΓ + 2vΓ is stable.

By linearity, s2(y) = s0(y)+2q(y). However, since f(m′+v)−f(m′) 6= f(m′+2v)−f(m′+v),
this implies s2(y) 6= f(m′ + 2v). However, since s2 is stable and reachable from 2im + u + 2v,
representing input m′ + 2v, this implies that the protocol stabilizes on the wrong output.

9 Conclusion

Some interesting questions remain open.

Time complexity of non-eventually-N-linear functions and non-eventually-constant pred-
icates. The most obvious open question is to determine the optimal stabilization time complexity
of computing semilinear functions and predicates not satisfying the hypotheses of Theorems 4.4
and 8.5; namely the eventually N-linear functions, (e.g., f(m) = 0 if m < 3 and f(m) = m oth-
erwise) and eventually constant predicates (e.g., φ(m) = 1 iff m ≥ 2). (See Sections 8 and 4
for formal definitions.) The only known examples of eventually N-linear functions computable in
sublinear time are the N-linear functions (e.g., f(m) = 2m), computable in logarithmic time by
Observation 7.1. The only known examples of eventually constant predicates that are computable
in sublinear time are the detection predicates studied in [14] (and observed to be decidable in log-
arithmic time): predicates whose value depends only on the presence or absence of certain inputs,
but not on their exact positive values (e.g., φ(m) = 1 iff m ≥ 1).

Allowing more than O(1) states. Alistarh, Aspnes, Eisenstat, Gelashvili, and Rivest [1] showed
time lower bounds for leader election and majority with superconstant states (i.e., the number of
states is allowed to grow with the population size). In this paper we have shown time lower
bounds for more general function and predicate computation with a constant set of states. It is
natural to ask whether more general function and predicate computation time lower bounds can
be proven for superconstant states using similar techniques. Notably, Chatzigiannakis, Michail,
Nikolaou, Pavlogiannis, and Spirakis [13] have shown that if the number of states λn = o(log n),
then the protocol’s computational power remains limited to computing semilinear predicates, the
same limitation that applies when λn = O(1).15 However, with λn = Ω(log n), the computational
ability of population protocols moves beyond semilinear predicates [13]. Thus, there is a wider

15The bound on states is described in [13] in terms of space available to a Turing machine that computes the
transition function, permitting o(log logn) space. Since a Turing machine with space s has 2O(s) configurations, this

48

class of functions and predicates under this relaxed constraint, which may require new techniques
to analyze their population protocol time complexity.

Convergence time without a leader. Although we measure computation time with respect
to stabilization—the ultimate goal of stable computation—some work uses a different goalpost
for completion. Consider a protocol stably computing a function, and consider one particular
transition sequence that describes its history. We can say the transition sequence converged at the
point when the output count is the same in every subsequently reached configuration. In contrast,
recall that the point of stabilization is when the output count is the same in every subsequently
reachable configuration (whether actually reached in the transition sequence or not). In other
words, after stabilization, even an adversarial scheduler cannot change the output. Measuring time
to stabilization in the randomized model, as we do here, measures the expected time until the
probability of changing the output becomes 0.

Our proof shows only that stabilization must take expected Ω(n) time for “most” predicates and
functions if there is no initial leader. However, convergence could occur much earlier in a transition
sequence than stabilization. Indeed, Kosowski and Uznański [27] show that all semilinear predicates
can be computed without an initial leader, converging in O(polylog n) time if a small probability of
error is allowed, and converging in O(nε) time with probability 1, where ε can be made arbitrarily
close to 0 by changing the protocol.

Stabilization time with a leader. It remains open to determine the optimal stabilization
time for stably computing semilinear predicates and functions with an initial leader. The stably
computing protocols converging in O(log5 n) time [6, 15] provably require expected time Ω(n) to
stabilize, and it is unknown whether faster stabilization is possible.

High-probability computation of non-semilinear functions/predicates without a leader.
Going beyond stable computation, the open question of Angluin, Aspnes, and Eisenstat [6] asks
whether their efficient high-probability simulation of a space-bounded Turing machine by a popu-
lation protocol could remove the assumption of an initial leader. That simulation has some small
probability ε > 0 of failure, so if one could elect a leader with a small probability ε′ > 0 of error
and subsequently use it to drive the simulation, by the union bound the total probability of error
would be at most ε+ ε′ (i.e., still close to 0). Recent work by Kosowski and Uznański [27] may be
relevant, which shows a protocol for leader election converging in O(polylog n) time with a small
probability of error.

Non-dense initial configurations without a leader. Our general negative result applies to α-
dense initial configurations. However, is sublinear time stable computation possible from other kinds
of initial configurations that satisfy our intuition of not having preexisting leaders? In particular,
our technique for proving time lower bounds fails when the input states themselves have counts
sufficiently skewed to prevent α-denseness, even without any other state initially present. For
example, given any function f : N → N computable quickly with a leader, imagine a function
f2 : N2 → N such that f2(m, 1) = f(m) for all m ∈ N. It is difficult to rule out the possibility of
a protocol using the unique agent in state x2 as a leader to simulate the fast protocol computing
f . However, it is not clear is how to ensure that f2 is computed correctly on other inputs where
m2 6= 1, since it is unknown how to compute whether m2 = 1 in sublinear time.

is equivalent to requiring that the number of states be at most o(logn) (and furthermore that the transition function
be uniformly computed by a single Turing machine.)

49

Functions approximable in unbounded time. We showed in Theorem 7.2 that linear func-
tions all coefficients in Q≥0 can be approximated in logarithmic time with linear error, but we
also showed in Theorem 6.1 that linear functions with some coefficient not in N cannot even be
approximated in sublinear time with sublinear error. However, this is the first study of approxi-
mate function computation with population protocols, so it is not even clear what functions can be
approximated at all with unbounded time. Clearly it is not limited to semilinear functions, or even
Turing-computable functions. For example, the identity function is a close approximation of the
uncomputable function f(m) = m if the m’th Turing machine halts and f(m) = m+ 1 otherwise.

A sensible way to formulate the question might be this: require (as we do) for a protocol on
input m ∈ Nk to stabilize, but nondeterministically to one of a set of possible outputs Ym ⊆ N.
Define the nondeterministic function it computes to be f : Nk → P(N) defined by f(m) = Ym.
What range of such functions can be computed? This is applicable to approximation when the
output set is a small interval.

It might also be interesting to consider multi-valued nondeterministic functions, where the
protocol has ` different output states y1, . . . , y` and computes a function f : Nk → P(N`). In
fact, this question is interesting even when there is no input, in the generalized model of chemical
reaction networks that permit some reactions (transitions) such as x → y, y or x1, x2 → x1 to
alter the population size. The system starts with a single x, and it nondeterministically stabilizes
to some counts of y1, . . . , y`. It might appear as though the set of counts that can be reached is
semilinear, but in fact non-semilinear sets are possible [24].

Alternate Boolean output conventions. The standard model by which a population protocol
reports a Boolean output is by consensus: each state “votes” 0 or 1, and output is defined only if
all states present in a configuration vote unanimously. Brijder, Doty, and Soloveichik [10] showed
that under some reasonable alternative output conventions, the class of Boolean predicates stably
computable remains the semilinear predicates. However, it may not be the case that the efficiency
of predicates remains unchanged. For example, one alternative is the democratic output convention:
the output is b ∈ {0, 1} if the b voters outnumber the 1−b voters. In this case, the majority predicate
becomes trivially computable in constant time, merely by having each input state x1 and x2 vote
for itself, and no transitions are even required: the initial configuration already reports the correct
answer.

Acknowledgements. The authors are grateful to Sungjin Im for the proof of Lemma 8.1. We
also thank anonymous reviewers for their helpful comments.

References

[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-
space trade-offs in molecular computation. In SODA 2017: Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2017. to appear.

[2] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population pro-
tocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2221–2239. SIAM, 2018.

[3] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols.
In ICALP 2015: Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming, Kyoto, Japan, 2015.

50

[4] Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18:235–253, 2006.
Preliminary version appeared in PODC 2004.

[5] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semi-
linear. In PODC 2006: Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, pages 292–299, New York, NY, USA, 2006. ACM Press.

[6] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3):183–199, September 2008. Preliminary version
appeared in DISC 2006.

[7] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

[8] Alexandre Baccouche, Kevin Montagne, Adrien Padirac, Teruo Fujii, and Yannick Rondelez.
Dynamic dna-toolbox reaction circuits: a walkthrough. Methods, 67(2):234–249, 2014.

[9] James M Bower and Hamid Bolouri. Computational modeling of genetic and biochemical
networks. MIT press, 2004.

[10] Robert Brijder, David Doty, and David Soloveichik. Robustness of expressivity in chemical
reaction networks. In DNA 2016: Proceedings of the 22th International Meeting on DNA
Computing and Molecular Programming, pages 52–66, 2016.

[11] Robert Brijder, David Doty, and David Soloveichik. Democratic, existential, and consensus-
based output conventions in stable computation by chemical reaction networks. Natural Com-
puting, 17(1):97–108, 2018. Special issue of invited papers from DNA 2016.

[12] E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential space complete problems
for Petri nets and commutative semigroups (preliminary report). In STOC 1976: Proceedings
of the 8th annual ACM Symposium on Theory of Computing, pages 50–54. ACM, 1976.

[13] Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogiannis, and Paul G.
Spirakis. Passively mobile communicating machines that use restricted space. Theoretical
Computer Science, 412(46):6469–6483, October 2011.

[14] Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. Speed faults in compu-
tation by chemical reaction networks. Distributed Computing, 2015. to appear. Special issue
of invited papers from DISC 2014.

[15] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural Computing, 13(4):517–534, 2014. Preliminary version
appeared in DNA 2012.

[16] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

[17] Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n
distinct prime factors. American Journal of Mathematics, 35(4):413–422, October 1913.

51

[18] David Doty. Timing in chemical reaction networks. In SODA 2014: Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 772–784, January 2014.

[19] David Doty and Monir Hajiaghayi. Leaderless deterministic chemical reaction networks. Nat-
ural Computing, 14(2):213–223, 2015. Preliminary version appeared in DNA 2013.

[20] David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. Distributed Computing, 31(4):257–271, 2018. Special issue of invited papers from
DISC 2015.

[21] Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in population
protocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
2653–2667, 2018.

[22] Leszek Gasieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-time
space optimal leader election in population protocols. CoRR, abs/1802.06867, 2018.

[23] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

[24] John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135–159, 1979.

[25] Sungjin Im. Personal communication.

[26] Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969.

[27] Adrian Kosowski and Przemyslaw Uznanski. Brief announcement: Population protocols are
fast. In PODC 2018: Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, pages 475–477. ACM, 2018.

[28] Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982.

[29] Othon Michail and Paul G Spirakis. How many cooks spoil the soup? In International
Colloquium on Structural Information and Communication Complexity, pages 3–18. Springer,
2016.

[30] Carl A Petri. Communication with automata. Technical report, DTIC Document, 1966.

[31] Niranjan Srinivas. Programming chemical kinetics: Engineering dynamic reaction networks
with DNA strand displacement. PhD thesis, California Institute of Technology, 2015.

[32] Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless DNA strand displacement
systems. In DNA 2015: Proceedings of the 21st International Conference on DNA Computing
and Molecular Programming, pages 133–153. Springer, 2015.

[33] Vito Volterra. Variazioni e fluttuazioni del numero dindividui in specie animali conviventi.
Mem. Acad. Lincei Roma, 2:31–113, 1926.

[34] David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry, 3(2):103–113, 2011.

52

	Introduction
	Introduction to the model
	Contributions
	Essential proof techniques
	Related work
	Organization of this paper

	Preliminaries
	Population Protocols
	Time Complexity

	Technical tools
	Bottleneck transitions take linear time
	Transition ordering lemma
	Sublinear time from dense configuration implies bottleneck free path from dense configuration with every state present
	Path manipulation
	Stable configurations and unbounded states

	Predicate computation
	Definition of predicate computation
	Eventually constant predicates
	Time lower bound for non-eventually-constant predicates

	Definition of function computation with population protocols
	Issues with definition of approximation and computation
	Definition of exact function computation
	Definition of function approximation

	Sublinear-time, sublinear-error approximation of linear functions with negative or non-integer coefficients is impossible
	Logarithmic-time, linear-error approximation of linear functions with nonnegative rational coefficients is possible
	Exact computation of nonlinear functions
	Eventually affine functions
	Time lower bounds for stably computing nonlinear functions

	Conclusion

