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Problem Definition

The general idea of hierarchical self-assembly (a.k.a., multiple tile [2], polyomino [8,10],
two-handed [3,5,6]) is to model self-assembly of tiles in which atachment of two multi-
tile assemblies is allowed, as opposed to all attachments being that of a single tile onto
a larger assembly. Several problems concern comparing hierarchical self-assembly to its
single-tile-attachment variant (called the “seeded” model of self-assembly), so we define
both models here. The model of hierarchical self-assembly was first defined (in a slightly
different form that restricted the size of assemblies that could attach) by Aggarwal,
Cheng, Goldwasser, Kao, Moisset de Espanes, and Schweller [2]. Several generalizations
of the model exist that incorporated staged mixing of test tubes, “dissolvable” tiles,
active signaling across tiles, etc., but here we restrict attention to the model closest
to the seeded model of Winfree [9], different from that model only in the absence of a
seed and the ability of two large assemblies to attach.
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Definitions

A tile type is a unit square with four sides, each consisting of a glue label (often
represented as a finite string) and a nonnegative integer strength. We assume a finite
set T of tile types, but an infinite number of copies of each tile type, each copy referred
to as a tile. An assembly is a positioning of tiles on the integer lattice Z2; i.e., a partial
function α : Z2 99K T . We write |α| to denote |dom α|. Write α v β to denote that α is
a subassembly of β, which means that dom α ⊆ dom β and α(p) = β(p) for all points
p ∈ dom α. We abuse notation and take a tile type t to be equivalent to the single-tile
assembly containing only t (at the origin if not otherwise specified). Two adjacent tiles
in an assembly interact if the glue labels on their abutting sides are equal and have
positive strength. Each assembly induces a binding graph, a grid graph whose vertices
are tiles, with an edge between two tiles if they interact. The assembly is τ -stable if
every cut of its binding graph has strength at least τ , where the weight of an edge is
the strength of the glue it represents. That is, the assembly is stable if at least energy
τ is required to separate the assembly into two parts.

We now define both the seeded and hierarchical variants of the tile assembly
model. A seeded tile system is a triple T = (T, σ, τ), where T is a finite set of tile types,
σ : Z2 99K T is a finite, τ -stable seed assembly, and τ is the temperature. If T has a
single seed tile s ∈ T (i.e., σ(0, 0) = s for some s ∈ T and is undefined elsewhere), then
we write T = (T, s, τ). Let |T | denote |T |. An assembly α is producible if either α = σ
or if β is a producible assembly and α can be obtained from β by the stable binding
of a single tile. In this case write β →1 α (α is producible from β by the attachment
of one tile), and write β → α if β →∗1 α (α is producible from β by the attachment of
zero or more tiles). An assembly is terminal if no tile can be τ -stably attached to it.

A hierarchical tile system is a pair T = (T, τ), where T is a finite set of tile types
and τ ∈ N is the temperature. An assembly is producible if either it is a single tile from
T , or it is the τ -stable result of translating two producible assemblies without overlap.
Therefore, if an assembly α is producible, then it is produced via an assembly tree, a full
binary tree whose root is labeled with α, whose |α| leaves are labeled with tile types,
and each internal node is a producible assembly formed by the stable attachment of
its two child assemblies. An assembly α is terminal if for every producible assembly β,
α and β cannot be τ -stably attached. If α can grow into β by the attachment of zero
or more assemblies, then we write α→ β.

In either model, let A[T ] be the set of producible assemblies of T , and let
A�[T ] ⊆ A[T ] be the set of producible, terminal assemblies of T . A TAS T is directed
(a.k.a., deterministic, confluent) if |A�[T ]| = 1. If T is directed with unique producible
terminal assembly α, we say that T uniquely produces α. It is easy to check that in the
seeded aTAM, T uniquely produces α if and only if every producible assembly β v α.
In the hierarchical model, a similar condition holds, although it is more complex since
hierarchical assemblies, unlike seeded assemblies, do not have a “canonical translation”
defined by the seed position. T uniquely produces α if and only if for every producible
assembly β, there is a translation β′ of β such that β′ v α. In particular, if there is a
producible assembly β 6= α such that dom α = dom β, then α is not uniquely produced.
Since dom β = dom α, every nonzero translation of β has some tiled position outside
of dom α, whence no such translation can be a subassembly of α, implying α is not
uniquely produced.

Power of hierarchical assembly compared to seeded

One sense in which we can conclude that one model of computation M is at least as
powerful as another model of computation M ′ is to show that any machine defined by
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M ′ can be “simulated efficiently” by a machine defined by M . In self-assembly, there
is a natural definition of what it means for one tile system S to “simulate” another T .
We now discuss intuitively how to define such a notion. There are several intricacies to
the full formal definition that are discussed in further detail in [3, 5].

First, we require that there is a constant k ∈ Z+ (the “resolution loss”) such
that each tile type t in T is “represented” by one or more k × k blocks β of tiles in S.
In this case, we write r(β) = t, where β : {1, . . . , k}2 99K S and S is the tile set of S.
Then β represents a k×k block of such tiles, possibly with empty positions at points x
where β(x) is undefined. We call such a k× k block in S a “macrotile.” We can extend
r to a function R that, given an assembly αS partitioned into k×k macrotiles, outputs
an assembly αT of T such that, for each macrotile β of αS , r(β) = t, where t is the tile
type at the corresponding position in αT .

Given such a representation function R indicating how to interpret assemblies of
S as representing assemblies of T , we now define what it means to say that S simulates
T . For each producible assembly αT of T , there is a producible assembly αS of S such
that R(αS) = T , and furthermore, for every producible assembly αS , if R(αS) = T ,
then T is producible in T . Finally, we require that R respects the “single attachment”
dynamics of T : there is a single tile that can be attached to αT to result in α′T if and
only if there is some sequence of attachments to αS that results in assembly α′S such
that R(α′S) = α′T .

With such an idea in mind, we can ask, “Is the hierarchical model at least as
powerful as the seeded model?”

Problem 1. For every seeded tile system T , design a hierarchical tile system S that
simulates T .

Another interpretation of a solution to Problem 1 is that, to the extent that the
hierarchical model is more realistic than the seeded model by incorporating the reality
that tiles may aggregate even in the absence of a seed, such a solution shows how to
enforce seeded growth even in such an unfriendly environment that permits non-seeded
growth.

Assembly time

We now define time complexity for hierarchical systems (this definition first appeared
in [4], where it is explained in more detail). We treat each assembly as a single molecule.
If two assemblies α and β can attach to create an assembly γ, then we model this as
a chemical reaction α + β → γ, in which the rate constant is assumed to be equal for
all reactions (and normalized to 1). In particular, if α and β can be attached in two
different ways, this is modeled as two different reactions, even if both result in the same
assembly.

At an intuitive level, the model we define can be explained as follows. We imagine
dumping all tiles into solution at once, and at the same time, we grab one particular
tile and dip it into the solution as well, pulling it out of the solution when it has
assembled into a terminal assembly. Under the seeded model, the tile we grab will be
a seed, assumed to be the only copy in solution (thus requiring that it appear only
once in any terminal assembly). In the seeded model, no reactions occur other than
the attachment of individual tiles to the assembly we are holding. In the hierarchical
model, other reactions are allowed to occur in the background (we model this using
the standard mass-action model of chemical kinetics [7]), but only those reactions with
the assembly we are holding move it “closer” to completion. The other background
reactions merely change concentrations of other assemblies (although these indirectly
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affect the time it will take our chosen assembly to complete, by changing the rate of
reactions with our chosen assembly).

More formally, let T = (T, τ) be a hierarchical TAS, and let ρ : T → [0, 1]
be a concentrations function, giving the initial concentration of each tile type (we
require that

∑
t∈T ρ(t) = 1, a condition known as the “finite density constraint”). Let

R+ = [0,∞), and let t ∈ R+. For α ∈ A[T ], let [α]ρ(t) (abbreviated [α](t) when ρ
is clear from context) denote the concentration of α at time t with respect to initial
concentrations ρ, defined as follows. Given two assemblies α and β that can attach to
form γ, we model this event as a chemical reaction R : α+ β → γ. Say that a reaction
α + β → γ is symmetric if α = β. Define the propensity (a.k.a., reaction rate) of R at
time t ∈ R+ to be ρR(t) = [α](t) · [β](t) if R is not symmetric, and ρR(t) = 1

2
· [α](t)2 if

R is symmetric.
If α is consumed in reactions α + β1 → γ1, . . . , α + βn → γn and produced

in asymmetric reactions β′1 + γ′1 → α, . . . , β′m + γ′m → α and symmetric reactions
β′′1 +β′′1 → α, . . . , β′′p +β′′p → α, then the concentration [α](t) of α at time t is described
by the differential equation

d[α](t)

dt
=

m∑
i=1

[β′i](t) · [γ′i](t) +

p∑
i=1

1

2
· [β′′i ](t)2 −

n∑
i=1

[α](t) · [βi](t), (1)

with boundary conditions [α](0) = ρ(r) if α is an assembly consisting of a single tile
r, and [α](0) = 0 otherwise. In other words, the propensities of the various reactions
involving α determine its rate of change, negatively if α is consumed, and positively if
α is produced.

This completes the definition of the dynamic evolution of concentrations of
producible assemblies; it remains to define the time complexity of assembling a terminal
assembly. Although we have distinguished between seeded and hierarchical systems,
for the purpose of defining a model of time complexity in hierarchical systems and
comparing them to the seeded system time complexity model of [1], it is convenient
to introduce a seed-like “timekeeper tile” into the hierarchical system, in order to
stochastically analyze the growth of this tile when it reacts in a solution that is itself
evolving according to the continuous model described above. The seed does not have
the purpose of nucleating growth, but is introduced merely to focus attention on a
single molecule that has not yet assembled anything, in order to ask how long it will
take to assemble into a terminal assembly. The choice of which tile type to pick will
be a parameter of the definition, so that a system may have different assembly times
depending on the choice of timekeeper tile.

Fix a copy of a tile type s to designate as a “timekeeper seed”. The assembly
of s into some terminal assembly α̂ is described as a time-dependent continuous-time
Markov process in which each state represents a producible assembly containing s, and
the initial state is the size-1 assembly with only s. For each state α representing a
producible assembly with s at the origin, and for each pair of producible assemblies
β, γ such that α+ β → γ (with the translation assumed to happen only to β so that α
stays “fixed” in position), there is a transition in the Markov process from state α to
state γ with transition rate [β](t).

We define TT ,ρ,s to be the random variable representing the time taken for
the copy of s to assemble into a terminal assembly via some sequence of reactions as
defined above. We define the time complexity of a directed hierarchical TAS T with
concentrations ρ and timekeeper s to be T(T , ρ, s) = E [TT ,ρ,s].

For a shape S ⊂ Z2 (finite and connected), define the diameter of S to be
diam(S) = max

u,v∈S
‖u− v‖1, where ‖w‖1 is the L1 norm of w.
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Problem 2. Design a hierarchical tile system T = (T, τ) such that every producible
terminal assembly α̂ has the same shape S, and for some s ∈ T and concentrations
function ρ : T → [0, 1], T(T , ρ, s) = o(diam(S)).

It is provably impossible to achieve this with the seeded model [1, 4], since all
assemblies in that model require expected time at least proportional to their diameter.

Key Results

Power of hierarchical assembly compared to seeded

Cannon, Demaine, Demaine, Eisenstat, Patitz, Schweller, Summers, and Winslow [3]
showed a solution to Problem 1. (They also showed several other ways in which the
hierarchical model is more powerful than the seeded model, but we restrict attention to
simulation here.) For the most part, temperature 2 seeded systems are as powerful as
those at higher temperatures, but the simulation results of [3] hold for higher tempera-
tures as well. In particular, they showed that every seeded temperature ≥ 4 tile system
T can be simulated by a hierarchical temperature 4 tile system (as well as showing it is
possible for temperature τ hierarchical tile systems to simulate temperature τ seeded
tile systems for τ ∈ {2, 3}, using similar logic to the higher-temperature construction).
The definition of simulation has a parameter k indicating the resolution loss of the
simulation. In fact, the simulation described in [3] requires only resolution loss k = 5.

Fig. 1. Simulation of a seeded tile system T of temperature ≥ 4 by a
hierarchical tile system S of temperature 4. Figure taken from [3]. Filled arrows
represent glues of strength 2, and unfilled arrows represent glues of strength 1.
In the seeded tile system, the number of dashes on the side of a tile represent
its strength.

Figure 1 shows an
example of S simulating T .
The construction enforces
the “simulation of dynam-
ics” constraint that if and
only if a single tile can at-
tach in T , then a 5 × 5
macrotile representing it in
S can assemble. It is crit-
ical that each tile type in
T is represented by more
than one type of macrotile
in S: each different type of
macrotile represents a dif-
ferent subset of sides that
can cooperate to allow the
tile to bind. To achieve this,
each macrotile consists of a central “brick” (itself a 3× 3 block composed of 9 unique
tile types with held together with strength-4 glues) surrounded by “mortar” (forming
a ring around the central brick). Figure 1 shows “mortar rectangles” but, similarly to
the brick, these are just 3×1 assemblies of 3 individual tile types with strength-4 glues.
The logic of the system is such that, if a brick B designed for a subset of cooperating
sides C ⊆ {N, S,E,W}, then only if the mortar for all sides in C is present can B attach.
Its attachment is required to fill in the remaining mortar representing the other sides
in {N, S,E,W} \C that may not be present. Finally, those tiles enable the assembly of
mortar in adjacent 5× 5 blocks, to be ready for possible cooperation to bind bricks in
those blocks.

Assembly time
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stage 1

stage 2

stage 3

Fig. 2. High-level overview of interaction of “vertical
bars” and “horizontal bars” to create the rectangle in the
solution to Problem 2 that assembles in time sublinear in
its diameter. Filler tiles fill in the empty regions. If glues
overlap two regions then represent a formed bond. If glues
overlap one region but not another, they are glues from the
former region but are mismatched (and thus “covered and
protected”) by the latter region.

Chen and Doty [4] showed a solution to
Problem 2, by proving that for infinitely
many n ∈ N, there is a (non-directed) hi-
erarchical TAS T = (T, 2) that strictly
self-assembles an n×n′ rectangle S, where
n′ = o(n) (hence diam(S) = Θ(n)), such
that |T | = O(log n) and there is a tile type
s ∈ T and concentrations function ρ : T →
[0, 1] such that T(T , ρ, s) = O(n4/5 log n).

The construction consists of m =
n1/5 stages shown in Figure 2, where each
stage consists of the attachment of two
“horizontal bars” to a single “vertical bar”
as shown in Figure 3. The vertical bar of
the next stage then attaches to the right
of the two horizontal bars, which cooper-
ate to allow the binding because they each
have a single strength 1 glue. All vertical
bars are identical when they attach, but
attachment triggers the growth of some tiles (shown in orange in Figures 2 and 3)
that make the attachment sites on the right side different from their locations in the
previous stage, which is how the stages “count down” from m to 1.

horizontal bar type A

width = w

vertical bar after "post-
binding processing" to 
place stage-specific 
right-side glues

partial vertical 
bar (will 
complete after 
binding to two 
horizontal bars)

horizontal bar type B
height = 
O(mk2)

mk identical glues 
spaced O(k) apart

previous stage lower 
horizontal bar attached 
to one of these k glues

k identical pairs of glues 
spaced O(1) apart; 
"group A glues"

k identical pairs of glues 
(different glues from top) 
spaced O(k) apart; "group 
B glues"

vertical bar as it 
appears before 
binding

Fig. 3. “Vertical bars” for the construction of a fast-
assembling square, and their interaction with horizontal
bars, as shown for a single stage of Figure 2. “Type B”
horizontal bars have a longer vertical arm than “Type A”
since the glues they must block are farther apart.

The bars themselves are assembled
in a “standard” way that requires time lin-
ear in the diameter of the bar, which is
w = n4/5 for a horizontal bar and mk2 =
n3/5 (where k is a parameter that we set
to be n1/5) for a vertical bar. The speedup
comes from the fact that each horizontal
bar can attach to one of k different bind-
ing sites on a vertical bar, so the expected
time for this to happen is factor k lower
than if there were only a single binding
site. The vertical “arm” on the left of each
horizontal bar has the purpose of prevent-
ing any other horizontal bars from bind-
ing near it. Each stage also requires filler
tiles to fill in the gap regions, but the time
required for this is negligible compared to
the time for all vertical and horizontal bars
to attach.

Note that this construction is not
directed: although every producible termi-
nal assembly has the shape of an n × n′

rectangle, there are many such terminal assemblies. Chen and Doty [4] also showed
that for a class of directed systems called “partial order tile systems,” no solution
to Problem 2 exists: provably any such tile system assembling a shape of diameter d
requires expected time Ω(d).
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Open problems

It is known [2] that the tile complexity of assembling an n × k rectangle in the

seeded aTAM, if k < logn
log logn−log log logn

, is asymptotically lower-bounded by Ω
(
n1/k

k

)
and upper-bounded by O(n1/k). For the hierarchical model, the upper bound holds as

well [2], but the strongest known lower bound is the information-theoretic Ω
(

logn
log logn

)
.

Question 1. What is the tile complexity of assembling an n × k rectangle in the hier-
archical model, when k < logn

log logn−log log logn
?
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