
Leaderless deterministic chemical reaction networks

David Doty∗ Monir Hajiaghayi†

Abstract

This paper answers an open question of Chen, Doty, and Soloveichik [5], who showed that a
function f : Nk → Nl is deterministically computable by a stochastic chemical reaction network
(CRN) if and only if the graph of f is a semilinear subset of Nk+l. That construction crucially
used “leaders”: the ability to start in an initial configuration with constant but non-zero counts
of species other than the k species X1, . . . , Xk representing the input to the function f . The
authors asked whether deterministic CRNs without a leader retain the same power.

We answer this question affirmatively, showing that every semilinear function is determin-
istically computable by a CRN whose initial configuration contains only the input species
X1, . . . , Xk, and zero counts of every other species. We show that this CRN completes in
expected time O(n), where n is the total number of input molecules. This time bound is slower
than the O(log5 n) achieved in [5], but faster than the O(n log n) achieved by the direct con-
struction of [5] (Theorem 4.1 in the latest online version of [5]), since the fast construction of
that paper (Theorem 4.4) relied heavily on the use of a fast, error-prone CRN that computes
arbitrary computable functions, and which crucially uses a leader.

1 Introduction

In the last two decades, theoretical and experimental studies in molecular programming have shed
light on the problem of integrating logical computation with biological systems. One goal is to re-
purpose the descriptive language of chemistry and physics, which describes how the natural world
works, as a prescriptive language of programming, which prescribes how an artificially engineered
system should work. When the programming goal is the manipulation of individual molecules in a
well-mixed solution, the language of chemical reaction networks (CRNs) is an attractive choice. A
CRN is a finite set of reactions such as X + Y → X + Z among abstract molecular species, each
describing a rule for transforming reactant molecules into product molecules.

CRNs may model the “amount” of a species as a real number, namely its concentration (average
count per unit volume), or as a nonnegative integer (total count in solution, requiring the total
volume of the solution to be specified as part of the system). The latter integer counts model is
called “stochastic” because reactions that discretely change the state of the system are assumed
to happen probabilistically, with reactions whose reactants have high molecular counts more likely
to happen first than reactions whose molecular counts are smaller. The computational power of
CRNs has been investigated with regard to simulating boolean circuits [12], neural networks [10],
digital signal processing [11], and simulating bounded-space Turing machines with an arbitrary

∗California Institute of Technology, Pasadena, CA, USA, ddoty@caltech.edu. This author was supported by the
Molecular Programming Project under NSF grant 0832824 and by NSF grants CCF-1219274 and CCF-1162589.
†University of British Columbia, Vancouver, BC, Canada, monirh@cs.ubc.ca.

1

small, non-zero probability of error with only a polynomial slowdown [3]. CRNs are even efficiently
Turing-universal, again with a small, nonzero probability of error over all time [13]. Certain CRN
termination and producibility problems are undecidable [8, 16], and others are PSPACE-hard [15].
It is also difficult to design a CRN to “delay” the production of a certain species [6, 7]. Using a
theoretical model of DNA strand displacement, it was shown that any CRN can be transformed
into a set of DNA complexes that approximately emulate the CRN [4]. Therefore even hypothetical
CRNs may one day be reliably implementable by real chemicals.

While these papers focus on the stochastic behaviour of chemical kinetics, our focus is on
CRNs with deterministic guarantees on their behavior. Some CRNs have the property that they
deterministically progress to a correct state, no matter the order in which reactions occur. For
example, the CRN with the reaction X → 2Y is guaranteed eventually to reach a state in which
the count of Y is twice the initial count of X, i.e., computes the function f(x) = 2x, representing
the input by species X and the output by species Y . Similarly, the reactions X1 → 2Y and
X2 + Y → ∅, under arbitrary choice of sequence of the two reactions, compute the function
f(x1, x2) = max{0, 2x1 − x2}.

Angluin, Aspnes and Eisenstat [2] investigated the computational behaviour of deterministic
CRNs under a different name known as population protocols [1]. They showed that the input sets
S ⊆ Nk decidable by deterministic CRNs (i.e. providing “yes” or “no” answers by the presence
or absence of certain indicator species) are precisely the semilinear subsets of Nk.1 Chen, Doty,
and Soloveichik [5] extended these results to function computation and showed that precisely the
semilinear functions (functions f whose graph

{
(x,y) ∈ Nk+l | f(x) = y

}
is a semilinear set)

are deterministically computable by CRNs. We say a function f : Nk → Nl is stably (a.k.a.
deterministically) computable by a CRN C if there are “input” species X1, . . . , Xk and “output”
species Y1, . . . , Yl such that, if C starts with x1, . . . , xk copies of X1, . . . , Xk respectively, then
with probability one, it reaches a count-stable configuration in which the counts of Y1, . . . , Yl are
expressed by the vector f(x1, ..., xk), and these counts never again change [5].

The method proposed in [5] uses some auxiliary “leader” species present initially, in addition to
the input species. To illustrate their utility, suppose that we want to compute function f(x) = x+1
with CRNs. Using the previous approach, we have an input species X (with initial count x), an
output species Y and an auxiliary “leader” species L (with initial count 1). The following reactions
compute f(x):

X → Y

L→ Y

However, it is experimentally difficult to prepare a solution with a single copy (or a small
constant number) of a certain species. The authors of [5] asked whether it is possible to do away
with the initial “leader” molecules, i.e., to require that the initial configuration contains initial
count x1, x2, . . . , xk of input species X1, X2, . . . , Xk, and initial count 0 of every other species. It is
easy to “elect” a single leader molecule from an arbitrary initial number of copies using a reaction
such as L+ L→ L, which eventually reduces the count of L to 1. However, the problem with this
approach is that, since L is a reactant in other reactions, there is no way in general to prevent L
from participating in these reactions until the reaction L+ L→ L has reduced it to a single copy.

1Semilinear sets are defined formally in Section 2. Informally, they are finite unions of “periodic” sets, where the
definition of “periodic” is extended in a natural way to multi-dimensional spaces such as Nk.

2

Despite these difficulties, we answer the question affirmatively, showing that each semilinear
function can be computed by a “leaderless” CRN, i.e., a CRN whose initial configuration contains
only the input species. To illustrate one idea used in our construction, consider the function
f(x) = x + 1 described above. In order to compute the function without a leader (i.e., the initial
configuration has x copies of X and 0 copies of every other species), the following reactions suffice:

X → B + 2Y (1.1)

B +B → B +K (1.2)

Y +K → ∅ (1.3)

Reaction 1.1 produces x copies of B and 2x copies of Y . Reaction 1.2 consumes all copies of B
except one, so reaction 1.2 executes precisely x− 1 times, producing x− 1 copies of K. Therefore
reaction 1.3 consumes x− 1 copies of output species Y , eventually resulting in 2x− (x− 1) = x+ 1
copies of Y . Note that this approach uses a sort of leader election on the B molecules.

In Section 3, we generalize this example, describing a leaderless CRN construction to compute
any semilinear function. We use a similar framework to the construction of [5], decomposing the
semilinear function into a finite union of affine partial functions (linear functions with an offset;
defined formally in Section 2). We show how to compute each affine function with leaderless CRNs,
using a fundamentally different construction than the affine-function computing CRNs of [5]. This
result, Lemma 3.1, is the primary technical contribution of this paper. Next, in order to decide
which affine function should be applied to a given input, we employ the leaderless semilinear
predicate computation of Angluin, Aspnes, and Eisenstat [3]; this latter part of the construction is
actually identical to the construction of [5], but we include it because our time analysis is different.

Let n = ‖x‖ = ‖x‖1 =
∑k

i=1 x(i) be the number of molecules present initially, as well as
the volume of the solution. The authors of [5] showed, for each semilinear function f , a direct
construction of a CRN that computes f (using leaders) on input x in expected time O(n log n).
They then combined this direct, error-free construction in parallel with a fast (O(log5 n)) but error-
prone CRN that uses a leader to compute any computable function (including semilinear), using
the error-free computation to change the answer of the error-prone computation only if the latter
is incorrect. This combination speeds up the computation from expected time O(n log n) for the
direct construction to expected time O(log5 n) for the combined construction.

Since we assume no leaders may be supplied in the initial configuration, and since the problem
of computing arbitrary computable functions without a leader remains a major open problem [3],
this trick does not work for speeding up our construction. However, we show that with some care
in the choice of reactions, the direct stable computation of a semilinear function can be done in
expected time O(n), improving upon the O(n log n) bound of the direct construction of [5].

2 Preliminaries

Given a vector x ∈ Nk, let ‖x‖ = ‖x‖1 =
∑k

i=1 |x(i)|, where x(i) denotes the ith coordinate of x.
A set A ⊆ Nk is linear if there exist vectors b,u1, . . . ,up ∈ Nk such that

A = { b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } .

A is semilinear if it is a finite union of linear sets. If f : Nk → Nl is a function, define the graph of
f to be the set

{
(x,y) ∈ Nk × Nl

∣∣ f(x) = y
}
. A function is semilinear if its graph is semilinear.

3

We say a partial function f : Nk 99K Nl is affine if there exist kl rational numbers a1,1, . . . , ak,l ∈
Q and l + k nonnegative integers b1, . . . , bl, c1, . . . , ck ∈ N such that, if y = f(x), then for each
j ∈ {1, . . . , l}, y(j) = bj +

∑k
i=1 ai,j(x(i) − ci), and for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. In

matrix notation, there exist a k × l rational matrix A and vectors b ∈ Nl and c ∈ Nk such that
f(x) = A(x− c) + b.

This definition of affine function may appear contrived; see [5] for an explanation of its various
intricacies. For reading this paper, the main utility of the definition is that it satisfies Lemma 3.2.

Note that by appropriate integer arithmetic, a partial function f : Nk 99K Nl is affine if and only
if there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l+k nonnegative integers b1, . . . , bl, c1, . . . , ck, d1, . . . ,

dl ∈ N such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) = bj + 1
dj

∑k
i=1 ni,j(x(i)− ci), and

for each i ∈ {1, . . . , k}, x(i)− ci ≥ 0. Each dj may be taken to be the least common multiple of the
denominators of the rational coefficients in the original definition. We employ this latter definition,
since it is more convenient for working with integer-valued molecular counts.

2.1 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the set of functions
f : Λ→ N. Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with
each coordinate “labeled” by an element of Λ. Given X ∈ Λ and c ∈ NΛ, we refer to c(X) as the
count of X in c. We write c ≤ c′ to denote that c(X) ≤ c′(X) for all X ∈ Λ. Given c, c′ ∈ NΛ,
we define the vector component-wise operations of addition c + c′, subtraction c − c′, and scalar
multiplication nc for n ∈ N. If ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by
assuming c(X) = 0 for all X ∈ Λ \∆.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈ NΛ×NΛ×R+,
specifying the stoichiometry of the reactants and products, respectively, and the rate constant k. If
not specified, assume that k = 1 (this is the case for all reactions in this paper), so that the reaction
α = 〈r,p, 1〉 is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C}, the reaction
A + 2B → A + 3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a
pair C = (Λ, R), where Λ is a finite set of chemical species, and R is a finite set of reactions over Λ.
A configuration of a CRN C = (Λ, R) is a vector c ∈ NΛ. We also write #cX to denote c(X), the
count of species X in configuration c, or simply #X when c is clear from context.

Given a configuration c and reaction α = 〈r,p〉, we say that α is applicable to c if r ≤ c (i.e.,
c contains enough of each of the reactants for the reaction to occur). If α is applicable to c, then
write α(c) to denote the configuration c + p− r (i.e., the configuration that results from applying
reaction α to c). If c′ = α(c) for some reaction α ∈ R, we write c →C c′, or merely c → c′ when
C is clear from context. An execution (a.k.a., execution sequence) E is a finite or infinite sequence
of one or more configurations E = (c0, c1, c2, . . .) such that, for all i ∈ {1, . . . , |E| − 1}, ci−1 → ci.
If a finite execution sequence starts with c and ends with c′, we write c →∗C c′, or merely c →∗ c′

when the CRN C is clear from context. In this case, we say that c′ is reachable from c.
Turing machines, for example, have different semantic interpretations depending on the compu-

tational task under study (deciding a language, computing a function, etc.). Similarly, in this paper
we use CRNs to decide subsets of Nk (for which we reserve the term “chemical reaction decider”
or CRD) and to compute functions f : Nk → Nl (for which we reserve the term “chemical reaction
computer” or CRC). In the next two subsections we define two semantic interpretations of CRNs
that correspond to these two tasks. We use the term CRN to refer to either a CRD or CRC when

4

the statement is applicable to either type.
These definitions differ slightly from those of [5], because ours are specialized to “leaderless”

CRNs: those that can compute a predicate or function in which no species are present in the initial
configuration other than the input species. In the terminology of [5], a CRN with species set Λ and
input species set Σ is leaderless if it has an initial context σ : Λ \Σ→ N such that σ(S) = 0 for all
S ∈ Λ \ Σ. The definitions below are simplified by assuming this to be true of all CRNs.

We also use the convention of Angluin, Aspnes, and Eisenstat [2] that for a CRD, all species
“vote” yes or no, rather than only a subset of species as in [5], since this convention is convenient
for proving time bounds.

2.2 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced by Angluin, Aspnes,
and Eisenstat [2].2 Intuitively, the set of species is partitioned into two sets: those that “vote” yes
and those that vote no, and the system stabilizes to an output when a consensus vote is reached (all
positive-count species have the same vote) that can no longer be changed (no species voting the other
way can ever again be produced). It would be too strong to characterize deterministic correctness
by requiring all possible executions to achieve the correct answer; for example, a reversible reaction
such as A−⇀↽−B could simply be chosen to run back and forth forever, starving any other reactions.
In the more refined definition that follows, the determinism of the system is captured in that it is
impossible to stabilize to an incorrect answer, and the correct stable output is always reachable.

A (leaderless) chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ), where (Λ, R) is a
CRN, Σ ⊆ Λ is the set of input species, and Υ ⊆ Λ is the set of yes voters, with species in Λ \ Υ
referred to as no voters. An input to D will be an initial configuration i ∈ NΣ (equivalently, i ∈ Nk
if we write Σ = {X1, . . . , Xk} and assign Xi to represent the i’th coordinate); that is, only input
species are allowed to be non-zero. If we are discussing a CRN understood from context to have a
certain initial configuration i, we write #0X to denote i(X).

We define a global output partial function Φ : NΛ 99K {0, 1} as follows. Φ(c) is undefined if
either c = 0, or if there exist S0 ∈ Λ\Υ and S1 ∈ Υ such that c(S0) > 0 and c(S1) > 0. Otherwise,
either (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Υ) or (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Λ \Υ); in the former case,
the output Φ(c) of configuration c is 1, and in the latter case, Φ(c) = 0.

A configuration o is output stable if Φ(o) is defined and, for all c such that o→∗ c, Φ(c) = Φ(o).
We say a CRD D stably decides the predicate ψ : NΣ → {0, 1} if, for any initial configuration i ∈ Nk,
for all configurations c ∈ NΛ, i→∗ c implies c→∗ o such that o is output stable and Φ(o) = ψ(i).
Note that this condition implies that no incorrect output stable configuration is reachable from i.
We say that D stably decides a set A ∈ Nk if it stably decides its indicator function.

The following theorem is due to Angluin, Aspnes, and Eisenstat [2]:

Theorem 2.1 ([2]). A set A ⊆ Nk is stably decidable by a CRD if and only if it is semilinear.

The model they use is defined in a slightly different way; the differences (and those differences’
lack of significance to the questions we explore) are explained in [5].

2Those authors use the term “stably compute”, but we reserve the term “compute” to apply to the computation
of non-Boolean functions. Also, we omit discussion of the definition of stable computation used in the population
protocols literature, which employs a notion of “fair” executions; the definitions are proven equivalent in [5].

5

2.3 Stable computation of functions

We now define a notion of stable computation of functions similar to those above for predicates.
Intuitively, the inputs to the function are the initial counts of input species X1, . . . , Xk, and the
outputs are the counts of output species Y1, . . . , Yl. The system stabilizes to an output when the
counts of the output species can no longer change. Again determinism is captured in that it is
impossible to stabilize to an incorrect answer and the correct stable output is always reachable.

A (leaderless) chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ,Γ), where (Λ, R) is a
CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of output species, such that Σ ∩ Γ = ∅.
By convention, we let Σ = {X1, X2, . . . , Xk} and Γ = {Y1, Y2, . . . , Yl}. We say that a configuration
o is output stable if, for every c such that o→∗ c and every Yi ∈ Γ, o(Yi) = c(Yi) (i.e., the counts
of species in Γ will never change if o is reached). As with CRD’s, we require initial configurations
i ∈ NΣ in which only input species are allowed to be positive. We say that C stably computes a
function f : Nk → Nl if for any initial configuration i ∈ NΣ, i→∗ c implies c→∗ o such that o is an
output stable configuration with f(i) = (o(Y1),o(Y2), . . . ,o(Yl)). Note that this condition implies
that no incorrect output stable configuration is reachable from i.

If a CRN stably decides a predicate or stably computes a function, we say the CRN is stable
(a.k.a. deterministic).

2.4 Kinetic model

The following model of stochastic chemical kinetics is widely used in quantitative biology and
other fields dealing with chemical reactions between species present in small counts [9]. It ascribes
probabilities to execution sequences, and also defines the time of reactions, allowing us to study
the computational complexity of the CRN computation in Section 3.

In this paper, the rate constants of all reactions are 1, and we define the kinetic model with
this assumption. The rate constants do not affect the definition of stable computation; they only
affect the time analysis. Our time analyses remain asymptotically unaffected if the rate constants
are changed (although the constants hidden in the big-O notation would change). A reaction is
unimolecular if it has one reactant and bimolecular if it has two reactants. We use no higher-order
reactions in this paper.

The kinetics of a CRN is described by a continuous-time Markov process as follows. Given
a fixed volume v ∈ R+ and current configuration c, the propensity of a unimolecular reaction
α : X → . . . in configuration c is ρ(c, α) = #cX. The propensity of a bimolecular reaction
α : X + Y → . . ., where X 6= Y , is ρ(c, α) = #cX#cY

v . The propensity of a bimolecular reaction

α : X + X → . . . is ρ(c, α) = 1
2

#cX(#cX−1)
v . The propensity function determines the evolution of

the system as follows. The time until the next reaction occurs is an exponential random variable
with rate ρ(c) =

∑
α∈R ρ(c, α) (note that ρ(c) = 0 if no reactions are applicable to c).

The kinetic model is based on the physical assumption of well-mixedness valid in a dilute so-
lution. Thus, we assume the finite density constraint, which stipulates that a volume required to
execute a CRN must be proportional to the maximum molecular count obtained during execu-
tion [14]. In other words, the total concentration (molecular count per volume) is bounded. This
realistically constrains the speed of the computation achievable by CRNs. Note, however, that it
is problematic to define the kinetic model for CRNs in which the reachable configuration space
is unbounded for some start configurations, because this means that arbitrarily large molecular

6

counts are reachable.3 We apply the kinetic model only to CRNs with configuration spaces that
are bounded for each start configuration, choosing the volume to be equal to the reachable con-
figuration with the highest molecular count (in this paper, this will always be within a constant
multiplicative factor of the number of input molecules).

It is not difficult to show that if a CRN is stable and has a finite reachable configuration
space from any initial configuration i, then under the kinetic model (in fact, for any choice of rate
constants), with probability 1 the CRN will eventually reach an output stable configuration.

We require the following lemmas, which are proven in Appendix A.

Lemma 2.2. Let A = {A1, . . . , Am} be a set of species with the property that they appear only
in applicable reactions of the form Ai →

∑
lBl, where Bl 6∈ A. Then starting from a configuration

c in which for all i ∈ {1, . . . ,m}, #cAi = O(n), with volume O(n), the expected time to reach a
configuration in which none of the described reactions can occur is O(log n).

Lemma 2.3. Let A = {A1, . . . , Am} be a set of species with the property that they appear only in
applicable reactions of the form Ai +Aj → Ak +

∑
lBl, where Bl 6∈ A, and for all i, j ∈ {1, . . . ,m},

there is at least one reaction Ai + Aj → Then starting from a configuration c in which for all
i ∈ {1, . . . ,m}, #cAi = O(n), with volume O(n), the expected time to reach a configuration in
which none of the described reactions can occur is O(n).

Lemma 2.4. Let C = {C1, . . . , Cm} and A = {A1, . . . , Ap} be two sets of species with the property
that they appear only in applicable reactions of the form Ci+Aj → Ci+

∑
lBl, where Bl 6∈ A. Then

starting from a configuration c in which for all i ∈ {1, . . . ,m}, #cAi = O(n) and #0Ci = Ω(n), with
volume O(n), the expected time to reach a configuration in which none of the described reactions
can occur is O(log n).

3 Leaderless CRCs can compute semilinear functions

To supply an input vector x ∈ Nk to a CRN, we use an initial configuration with x(i) molecules of
input species Xi. Throughout this section, we let n = ||x||1 =

∑k
i=1 x(i) denote the initial number

of molecules in solution. Since all CRNs we employ have the property that they produce at most
a constant multiplicative factor more molecules than are initially present, this implies that the
volume required to satisfy the finite density constraint is O(n).

Suppose the CRC C stably computes a function f : Nk 99K Nl. We say that C stably computes
f monotonically if its output species are not consumed in any reaction.4

We show in Lemma 3.1 that affine partial functions can be computed in expected time O(n)
by a leaderless CRC. For its use in proving Theorem 3.4, we require that the output molecules
be produced monotonically. This is impossible for general affine partial functions. For example,
consider the function f(x1, x2) = x1 − x2 where dom f = { (x1, x2) | x1 ≥ x2 }. By withholding a
single copy of X2 and letting the CRC stabilize to the output value #Y = x1−x2 +1, then allowing
the extra copy of X2 to interact, the only way to stabilize to the correct output value x1 − x2 is to
consume a copy of the output species Y . Therefore Lemma 3.1 is stated in terms of an encoding
of affine partial functions that allows monotonic production of outputs, encoding the output value

3One possibility is to have a “dynamically” growing volume as in [14].
4Its output species could potentially be reactants so long as they are catalytic, meaning that the stoichiometry of

the species as a product is at least as great as its stoichiometry as a reactant, e.g. X +Y → Z+Y or A+Y → Y +Y .

7

y(j) as the difference between the counts of two monotonically produced species Y P
j and Y C

j , a
concept formalized by the following definition.

Let f : Nk 99K Nl be a partial function. We say that a partial function f̂ : Nk 99K Nl × Nl is
a diff-representation of f if dom f = dom f̂ and, for all x ∈ dom f , if (yP ,yC) = f̂(x), where
yP ,yC ∈ Nl, then f(x) = yP − yC , and yP = O(f(x)). In other words, f̂ represents f as the
difference of its two outputs yP and yC , with the larger output yP possibly being larger than the
original function’s output, but at most a multiplicative constant larger.

The following lemma is the main technical result required for proving our main theorem, The-
orem 3.4. It shows that every affine function can be computed (via a diff-representation) in time
O(n) by a leaderless CRC.

Lemma 3.1. Let f : Nk 99K Nl be an affine partial function. Then there is a diff-representation
f̂ : Nk 99K Nl × Nl of f and a leaderless CRC that monotonically stably computes f̂ in expected
time O(n).

Proof. If f is affine, then there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l + k nonnegative integers
b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈ N such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) =
bj + 1

dj

∑k
i=1 ni,j(x(i) − ci), and for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. Define the CRC as follows.

It has input species Σ = {X1, . . . , Xk} and output species Γ = {Y P
1 , . . . , Y

P
l , Y

C
1 , . . . , Y C

l }.
There are three main components of the CRN, separately handling the ci offset, the ni,j/dj

coefficient, and the bj offset.
The latter two components both make use of Y C

j molecules to account for production of Y P
j

molecules in excess of y(j) to ensure that #∞Y
P
j − #∞Y

C
j = y(j), which establishes that the

CRC stably computes a diff-representation of f . It is clear by inspection of the reactions that
#∞Y

P
j = O(y(j)).

Add the reaction

X1 → C1,1 +B1 +B2 + . . .+Bl + b1Y
P

1 + b2Y
P

2 + . . . blY
P
l (3.1)

The first product C1,1 will be used to handle the c1 offset, and the remaining products will be used
to handle the bj offsets. For each i ∈ {2, . . . , k}, add the reaction

Xi → Ci,1 (3.2)

By Lemma 2.2, reactions (3.1) and (3.2) take time O(log n) to complete.
We now describe the three components of the CRC separately.

ci offset: Reactions (3.1) and (3.2) produce x(i) copies of Ci,1. We must reduce this number by ci,
producing x(i)−ci copies of X ′i, the species that will be used by the next component to handle
the ni,j/dj coefficient. A high-order reaction implementing this is (ci + 1)Ci,1 → ciCi,1 +X ′i,
since that reaction will eventually happen exactly x(i)−ci times (stopping when #Ci,1 reaches
ci). This is implemented by the following bimolecular reactions.

For each i ∈ {1, . . . , k} and m, p ∈ {1, . . . , ci}, if m+ p ≤ ci, add the reaction

Ci,m + Ci,p → Ci,m+p.

If m+ p > ci, add the reaction

Ci,m + Ci,p → Ci,ci + (m+ p− ci)X ′i.

By Lemma 2.3, these reactions complete in expected time O(n).

8

ni,j/dj coefficient: For each i ∈ {1, . . . , k}, add the reaction

X ′i → Xi,1 +Xi,2 + . . .+Xi,l

This allows each output to be associated with its own copy of the input. By Lemma 2.2,
these reactions complete in expected time O(log n).

For each i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, add the reaction

Xi,j →
{
ni,jD

P
j,1, if ni,j > 0;

(−ni,j)DC
j,1, if ni,j < 0.

By Lemma 2.2, these reactions complete in expected time O(log n).

We must now divide #DP
j,1 and #DC

j,1 by dj . This is accomplished by the high-order reactions

djD
P
j,1 → Y P

j and djD
C
j,1 → Y C

j . Similarly to the previous component, we implement these
with the following reactions for dj ≥ 1.

We first handle the case dj > 1. For each j ∈ {1, . . . , l} and m, p ∈ {1, . . . , dj − 1}, if
m+ p ≤ dj − 1, add the reactions

DP
j,m +DP

j,p → DP
j,m+p

DC
j,m +DC

j,p → DC
j,m+p

If m+ p > ci, add the reactions

DP
j,m +DP

j,p → DP
j,m+p−dj + Y P

j

DC
j,m +DC

j,p → DC
j,m+p−dj + Y C

j

By Lemma 2.3, these reactions complete in expected time O(n).

When dj = 1, we only have the following unimolecular reactions.

DP
j,1 → Y P

j

DC
j,1 → Y C

j

By Lemma 2.2, these reactions complete in expected time O(log n).

These reactions will produce 1
dj

∑
ni,j>0 ni,j(x(i)−ci) copies of Y P

j and − 1
dj

∑
ni,j<0 ni,j(x(i)−

ci) copies of Y C
j . Therefore, letting #coefY

P
j and #coefY

C
j denote the number of copies of

Y P
j and Y C

j eventually produced just by this component, it holds that #coefY
P
j −#coefY

C
j =

1
dj

∑k
i=1 ni,j(x(i)− ci).

bj offset: For each j ∈ {1, . . . , l}, add the reaction

Bj +Bj → Bj + bjY
C
j (3.3)

By Lemma 2.3, these reactions complete in expected time O(n).

Reaction (3.1) produces bj copies of Y P
j for each copy of Bj produced, which is x(i). Reac-

tion (3.3) occurs precisely x(i)−1 times. Therefore reaction (3.3) produces precisely bj fewer
copies of Y C

j than reaction (3.1) produces of Y P
j . This implies that when all copies of Y C

j are

eventually produced by reaction (3.3), the number of Y P
j ’s produced by reaction (3.1) minus

the number of Y C
j ’s produced by reaction (3.3) is bj .

9

We require the following lemma, proven in [5].

Lemma 3.2 ([5]). Let f : Nk → Nl be a semilinear function. Then there is a finite set {f1 : Nk 99K
Nl, . . . , fm : Nk 99K Nl} of affine partial functions, where each dom fi is a linear set, such that, for
each x ∈ Nk, if fi(x) is defined, then f(x) = fi(x), and

⋃m
i=1 dom fi = Nk.

We require the following theorem, due to Angluin, Aspnes, and Eisenstat [3, Theorem 5], which
states that any semilinear predicate can be decided by a CRD in expected time O(n).

Theorem 3.3 ([3]). Let φ : Nk → {0, 1} be a semilinear predicate. Then there is a leaderless CRD
D that stably decides φ, and the expected time to reach an output-stable configuration is O(n).

The following is the main theorem of this paper. It shows that semilinear functions can be
computed by leaderless CRCs in linear expected time.

Theorem 3.4. Let f : Nk → Nl be a semilinear function. Then there is a leaderless CRC that
stably computes f in expected time O(n).

Proof. The CRC will have input species Σ = {X1, . . . , Xk} and output species Γ = {Y1, . . . , Yl}.
By Lemma 3.2, there is a finite set F = {f1 : Nk 99K Nl, . . . , fm : Nk 99K Nl} of affine partial
functions, where each dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x). We compute f on input x as follows. Since each dom fi is a linear (and therefore
semilinear) set, by Theorem 3.3 we compute each semilinear predicate φi = “x ∈ dom fi and
(∀i′ ∈ {1, . . . , i − 1}) x 6∈ dom fi′?” by separate parallel CRD’s each stabilizing in expected time
O(n). (The latter condition ensures that for each x, precisely one of the predicates is true, in case
the domains of the partial functions have nonempty intersection.)

By Lemma 3.1, for each i ∈ {1, . . . ,m}, there is a diff-representation f̂i of fi that can be stably
computed by parallel CRC’s. Assume that for each i ∈ {1, . . . ,m} and each j ∈ {1, . . . , l}, the
jth pair of outputs yP (j) and yC(j) of the ith function is represented by species Ŷ P

i,j and Ŷ C
i,j . We

interpret each Ŷ P
i,j and Ŷ C

i,j as an “inactive” version of “active” output species Y P
i,j and Y C

i,j .

For each i ∈ {1, . . . ,m}, for the CRD Di = (Λ, R,Σ,Υ) computing the predicate φi, let L1
i

represent any species in Υ, and L0
i represent any species in Λ \ Υ, and that once Di reaches an

output stable configuration, #Lbi = Ω(n), where b is the output of Di. Then add the following
reactions for each i ∈ {1, . . . ,m} and each j ∈ {1, . . . , l}:

L1
i + Ŷ P

i,j → L1
i + Y P

i,j + Yj (3.4)

L0
i + Y P

i,j → L0
i +Mi,j (3.5)

Mi,j + Yj → Ŷ P
i,j (3.6)

The latter two reactions implement the reverse direction of the first reaction – using L0
i as a catalyst

instead of L1
i – using only bimolecular reactions. Also add the reactions

L1
i + Ŷ C

i,j → L1
i + Y C

i,j (3.7)

L0
i + Y C

i,j → L0
i + Ŷ C

i,j (3.8)

and

Y P
i,j + Y C

i,j → Kj (3.9)

Kj + Yj → ∅ (3.10)

10

That is, a “yes” answer for function i activates the ith output and a “no” answer deactivates
the ith output. Eventually each CRD stabilizes so that precisely one i has L1

i present, and for all
i′ 6= i, L0

i′ is present. We now claim that at this point, all outputs for the correct function f̂i will
be activated and all other outputs will be deactivated. The reactions enforce that at any time,
#Yj = #Kj +

∑m
i=1(#Y P

i,j + #Mi,j). In particular, #Yj ≥ #Kj and #Yj ≥ #Mi,j at all times,
so there will never be a Kj or Mi,j molecule that cannot participate in the reaction of which it is
a reactant. Eventually #Y P

i,j and #Y C
i,j stabilize to 0 for all but one value of i (by reactions (3.5),

(3.6), (3.8)), and for this value of i, #Y P
i,j stabilizes to y(j) and #Y C

i,j stabilizes to 0 (by reaction
(3.9)). Eventually #Kj stabilizes to 0 by the last reaction. Eventually #Mi,j stabilizes to 0 since

L0
i is absent for the correct function f̂i. This ensures that #Yj stabilizes to y(j).

It remains to analyze the expected time to stabilization. Let n = ‖x‖. By Lemma 3.1, the
expected time for each affine function computation to complete is O(n). Since the Ŷ P

i,j are pro-

duced monotonically, the most Y P
i,j molecules that are ever produced is #∞Ŷ

P
i,j . Since we have m

computations in parallel, the expected time for all of them to complete is O(nm) = O(n) (since m
depends on f but not n). We must also wait for each predicate computation to complete. By The-
orem 3.3, each of these predicates takes expected time O(n) to complete, so all of them complete
in expected time O(mn) = O(n).

At this point, the Li1 leaders must convert inactive output species to active, and Li
′

0 (for i′ 6= i)
must convert active output species to inactive. By Lemma 2.4, reactions (3.4), (3.5), (3.7), and (3.8)
complete in expected time O(log n). Once this is completed, by Lemma 2.3, reaction (3.6) completes
in expected time O(n). Reaction (3.9) completes in expected time O(n) by Lemma 2.3. Once this
is completed, reaction (3.10) completes in expected time O(n) by Lemma 2.3.

4 Conclusion

The clearest shortcoming of our leaderless CRC, compared to the leader-employing CRC of [5],
is the time complexity. Our CRC takes expected time O(n) to complete with n input molecules,
versus O(log5 n) for the CRC of [5]. The major open question is, for each semilinear function
f : Nk → Nl, is there a leaderless CRC that stably computes f on input of size n in expected
time t(n), where t is a sublinear function? This may relate to the question of whether there is a
sublinear time CRN that solves the leader election problem, i.e., in volume n with an initial state
with n copies of species X and no other species initially present, produce a single copy of a species
L. However, it is conceivable that there is a direct way to compute semilinear functions quickly
without needing to use a leader election.

If this is not possible for all semilinear functions, another interesting open question is to precisely
characterize the class of functions that can be stably computed by a leaderless CRC in polylog-
arithmic time. For example, the class of linear functions with positive integer coefficients (e.g.,
f(x1, x2) = 3x1 + 2x2) has this property since they are computable by O(log n)-time unimolecular
reactions such as X1 → 3Y,X2 → 2Y . However, most of the CRN programming techniques used to
generalize beyond such functions seem to require some bimolecular reaction A+B → . . . in which
it is possible to have #A = #B = 1, making the expected time at least n just for this reaction.

Acknowledgement. We are indebted to Anne Condon for helpful discussions and suggestions.

11

References

[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta. Computation in
networks of passively mobile finite-state sensors. Distributed Computing, 18:235–253, 2006. Preliminary
version appeared in PODC 2004.

[2] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semilinear.
In PODC 2006: Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, pages 292–299, New York, NY, USA, 2006. ACM Press.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols with a
leader. Distributed Computing, 21(3):183–199, September 2008. Preliminary version appeared in DISC
2006.

[4] Luca Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–428, 2011.

[5] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with chemical
reaction networks. In DNA 18: Proceedings of The 18th International Meeting on DNA Computing and
Molecular Programming, volume 7433 of Lecture Notes in Computer Science, pages 25–42. Springer,
2012.

[6] Anne Condon, Alan Hu, Ján Maňuch, and Chris Thachuk. Less haste, less waste: On recycling and
its limits in strand displacement systems. Journal of the Royal Society Interface, 2:512–521, 2012.
Preliminary version appeared in DNA 17.

[7] Anne Condon, Bonnie Kirkpatrick, and Ján Maňuch. Reachability bounds for chemical reaction net-
works and strand displacement systems. In DNA 18: 18th International Meeting on DNA Computing
and Molecular Programming, volume 7433, pages 43–57. Springer, 2012.

[8] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of chemical
reaction networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and Erik Winfree,
editors, Algorithmic Bioprocesses, pages 543–584. Springer Berlin Heidelberg, 2009.

[9] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry, 81(25):2340–2361, 1977.

[10] Allen Hjelmfelt, Edward D. Weinberger, and John Ross. Chemical implementation of neural networks
and Turing machines. Proceedings of the National Academy of Sciences, 88(24):10983–10987, 1991.

[11] Hua Jiang, Marc Riedel, and Keshab Parhi. Digital signal processing with molecular reactions. IEEE
Design and Test of Computers, 29(3):21–31, 2012.

[12] Marcelo O. Magnasco. Chemical kinetics is Turing universal. Physical Review Letters, 78(6):1190–1193,
1997.

[13] David Soloveichik. Robust stochastic chemical reaction networks and bounded tau-leaping. Journal of
Computational Biology, 16(3):501–522, 2009.

[14] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with finite stochas-
tic chemical reaction networks. Natural Computing, 7(4):615–633, 2008.

[15] Chris Thachuk and Anne Condon. Space and energy efficient computation with DNA strand displace-
ment systems. In DNA 18: Proceedings of The 18th International Meeting on DNA Computing and
Molecular Programming, pages 135–149, 2012.

[16] Gianluigi Zavattaro and Luca Cardelli. Termination problems in chemical kinetics. CONCUR 2008-
Concurrency Theory, pages 477–491, 2008.

12

A Appendix

In this appendix, we prove some lemmas about the time complexity of certain common sequences
of reactions. Some of these are implicit or explicit in many earlier papers on stochastic CRNs, but
we include them for the sake of self-containment.

The lemmas are stated with respect to a certain “initial configuration” c that may not be the
initial configuration of an actual CRN we define. This is because the lemmas are employed to argue
about CRNs that are guaranteed to evolve to some configuration c that satisfies the hypothesis of
the lemma, and we use the lemma to bound the time it takes for the CRN to complete a sequence of
reactions, starting from c. Therefore terms such as “applicable reaction” refer to being applicable
from c and any configuration reachable from it, although some additional inapplicable reactions
may have been applicable prior to reaching the configuration c.

Lemma 2.2. Let A = {A1, . . . , Am} be a set of species with the property that they appear only
in applicable reactions of the form Ai →

∑
lBl, where Bl 6∈ A. Then starting from a configuration

c in which for all i ∈ {1, . . . ,m}, #cAi = O(n), with volume O(n), the expected time to reach a
configuration in which none of the described reactions can occur is O(log n).

Proof. Assume the hypothesis. Let c ∈ N be the constant such that
∑m

i=1 #cAi ≤ cn. After
each relevant reaction occurs, this sum is reduced by 1. Therefore no reactions can occur after
cn reactions have executed. If

∑m
i=1 #Ai = k, the expected time for any reaction to occur is 1

k .
By linearity of expectation, the expected time for cn reactions to execute is at most

∑cn
k=1

1
k =

O(log n).

Lemma 2.3. Let A = {A1, . . . , Am} be a set of species with the property that they appear only in
applicable reactions of the form Ai +Aj → Ak +

∑
lBl, where Bl 6∈ A, and for all i, j ∈ {1, . . . ,m},

there is at least one reaction Ai + Aj → Then starting from a configuration c in which for all
i ∈ {1, . . . ,m}, #cAi = O(n), with volume O(n), the expected time to reach a configuration in
which none of the described reactions can occur is O(n).

Proof. Assume the hypothesis. Let c ∈ N be a constant such that
∑m

i=1 #cAi ≤ cn, and let c′

be a constant such that the volume is at most c′n. After each relevant reaction occurs, this sum
is reduced by 1. Therefore no reactions can occur after cn − 1 reactions have executed. Now let
ρ(c, αij) be the propensity of the reaction Ai+Aj → Ak +

∑
lBl which is equal to ρ(c, αji) as well.

Since Ai can react with Aj for any i, j ∈ {1, . . . ,m}, given that
∑m

i=1 #Ai = k, the time for the
next reaction to occur is an exponential random variable with rate equal to the sum of the rates of

13

each possible reaction, i.e.,

m∑
i=1

m∑
j=1
j≥i

ρ(c, αij) =
1

2

m∑
i=1

m∑
j=1
j!=i

ρ(c, αij) +
m∑
i=1

ρ(c, αii)

=
1

2

m∑
i=1

m∑
j=1
j!=i

#Ai#Aj
c′n

+
m∑
i=1

#Ai(#Ai − 1)

2c′n

=
1

2c′n

 m∑
i=1

m∑
j=1

#Ai#Aj −
m∑
i=1

#A2
i

+
1

2c′n

m∑
i=1

#Ai(#Ai − 1)

=
1

2c′n

 m∑
i=1

#Ai

 m∑
j=1

#Aj

− m∑
i=1

#Ai

=

1

2c′n
(k2 − k)

so the expected time for the next reaction to occur is c′n
k2−k . By linearity of expectation, the expected

time for cn−1 reactions to execute is at most
∑cn−1

k=1
c′n
k2−k = c′n

∑cn−1
k=1 (1

k−1 −
1
k) = c′n(1− 1

cn−1) =
O(n).

Lemma 2.4. Let C = {C1, . . . , Cm} and A = {A1, . . . , Ap} be two sets of species with the
property that they appear only in applicable reactions of the form Ci + Aj → Ci +

∑
lBl, where

Bl 6∈ A. Then starting from a configuration c in which for all i ∈ {1, . . . ,m}, #cAi = O(n) and
#0Ci = Ω(n), with volume O(n), the expected time to reach a configuration in which none of the
described reactions can occur is O(log n).

Proof. Assume the hypothesis. Then the counts of each Ci do not decrease. (They may increase
if some Bl ∈ C, but this only strengths the conclusion.) Therefore this is similar to the proof of
Lemma 2.2, since the expected time of each reaction when

∑p
j=1 #0Aj = k is within a constant of

1
k .

14

	Introduction
	Preliminaries
	Chemical reaction networks
	Stable decidability of predicates
	Stable computation of functions
	Kinetic model

	Leaderless CRCs can compute semilinear functions
	Conclusion
	Appendix

