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Abstract- The field of quantitative morphology
has long been important in biological investiga-
tions. Various elements of an organism’s mor-
phology, such as size and shape, are easily quan-
tified, and standard methods for the analysis of
these components exist (i.e., geometric morpho-
metrics). However, methods for reliably quan-
tifying textures and patterns are currently lack-
ing. In this paper we propose a technique for
quantifying grayscale images of biological tex-
tures and patterns. With our method, the tex-
tural properties of an image are represented as
a foot pattern of 2-dimensional Cartesian coor-
dinates, obtained via an evolutionary algorithm
that minimizes pattern entropy. The pixels of
the foot pattern are then assigned labels using
one of two techniques: complete enumeration,
or by minimizing the differences between sets of
landmarks (using a heuristic search for the op-
timal assignment). The labeled landmark coor-
dinates are then treated as input data for stan-
dard quantitative morphometric analysis. With
this approach we were able to statistically dis-
tinguish between foot patterns generated from
two different textural images drawn from the
backs of salamanders. Thus, morphological tex-
tures and patterns may be quantified, and sets
of textures statistically compared.

1 Introduction

For centuries biologists have compared organisms based
on their anatomical features. These studies were his-
torically descriptive, where differences of particular
morphological components were described qualitatively
(e.g., species A has a longer neck and is more slen-
der than species B). As biology became increasingly
quantitative however, so too did morphological analy-
sis. Morphological studies soon included quantitative
data for one or more measurable traits, which were

statistically summarized and compared among species.
Thus, by the mid-twentieth century, quantitative de-
scription of morphological shape was combined with
statistical analysis describing patterns of shape varia-
tion within and among groups, and the modern field of
morphometrics began [1].

The morphology of a biological structure can be
thought of as a combination of factors, including: size,
shape, color, color patterns, and texture [2]. Size and
shape describe the geometric properties of an object,
while color, color patterns, and texture describe other
structural properties. Using the tools of geometric
morphometrics, size and shape can be reliably quanti-
fied, and patterns of shape variation and its covariation
with other variables documented. In stark contrast, the
rich information contained in biological textures and
patterns remains largely unexploited.

Textures and color patterns are extremely impor-
tant components of an organism’s morphology. Ex-
ternal surface texture is used by some organisms to
obtain moisture from early morning fog, while other
organisms use color patterns to enhance their survival
by blending in with their environment (crypsis), or by
mimicking other prey items that their predators avoid.
Several attempts have been made to compare biologi-
cal textures and patterns [3, 4], but quantifying them
in a consistent and repeatable fashion remains diffi-
cult. This has resulted in the use of ad hoc approaches
to quantify selected components of an organism’s tex-
ture or color pattern. Clearly, given the importance of
morphological textures and patterns on an organism’s
survival, developing a repeatable means of quantifying
these aspects of morphology is desirable.

In this paper we propose a new approach to ex-
tracting texture and pattern information from digital
images, so these features may be quantified more ac-
curately. The well-developed theory of shape analy-
sis and its quantification procedure serve as the tem-
plate on which we base the analysis of biological tex-
tures. Our approach extends existing texture classifi-



cation techniques using evolutionary algorithms, and
combines them with geometric morphometric method-
ology. We describe our method below, and illustrate
its use on a simple data set by quantitatively compar-
ing the textural images from Gyrinophilus porphyriti-
cus salamanders from two different populations.

2 Methods

2.1 Texture Quantification

For our approach, we quantified textures by extending
previous methods of texture classification that use foot
patterns optimized by evolutionary algorithms [5], and
combined this with methods for the analysis of biolog-
ical shape (see below). In this method, a foot pattern
is defined as a n x n window containing a set of k pix-
els (feet). Each n-k foot pattern may be represented
as a list of pixel positions within the window of the
foot pattern. How well a foot pattern matches an im-
age is defined in terms of entropy [6]. A foot pattern
with low entropy has a better ‘fit’ to the image than
a foot pattern with high entropy. To calculate a foot
pattern’s entropy, the n x n window is scanned along
the image, and at each position, the pattern of black
and white pixels under the k pixels of the foot pattern
are observed (this pattern is called a footprint). For
a given foot pattern, there are gk possible footprints,
where g is the number of gray values in the image. The
number of times each footprint, φ, occurs is counted,
generating an event histogram of footprints and their
frequency. This is normalized by the total number of
possible φ, providing an empirical probability distribu-
tion pφ [5]. The entropy (in bits) of that foot pattern
X relative to image Y is then calculated as the entropy
E(X, Y ) of the empirical probability distribution:

E (X, Y ) = −
∑

pφ ∗ log2 (pφ)

The goal is to find the foot pattern with the low-
est entropy (and hence best fit) relative to a particular
image. Unfortunately, finding the optimal foot pattern
is difficult, as an exhaustive search is computationally
unfeasible. For k = 7 pixels in a 10 x 10 window, ∼
6.40∗1014 calculations are required to find the optimal
foot pattern for a single black-and-white image. There-
fore, a heuristic search procedure using an evolutionary
algorithm is implemented [7]. For our procedure (see
figure 1), we used a generalization of the discrete n-k
foot patterns that allowed the x, y coordinates of each
foot to be coded as continuous, real numbers. To gen-
erate continuous (k, r, s) foot patterns, k real-valued
pixels (x, y) were chosen inside a circle of diameter r,
with a minimal pairwise distance (s) between points,

where s ≥ 1.5, to prevent two pixels from occupying
the same location.

In implementing the algorithm an initial population
of 400 continuous (k, r, s) foot patterns was created,
each consisting of k pairs of real numbers representing
the x, y coordinates of each foot. The foot patterns
were then improved by running a steady state evolu-
tionary algorithm using single tournament selection of
size four. For any foot pattern the entropy relative to
the image for that foot pattern was computed. Four
foot patterns were randomly selected to form a tour-
nament. The two foot patterns with the lowest en-
tropy were blended with uniform crossover to produce
new foot patterns, which replaced the worst two. If a
crossover produced pairs of points closer than 1.5 pixels
the results were deleted and a new crossover was per-
formed until all pairs of points were at distance at least
1.5. Random mutations were performed in the follow-
ing fashion. Either one of the points in the foot pat-
terns was moved or the entire foot pattern was rotated.
If a point (foot) was moved its proximity to other feet
was checked for a minimum distance 1.5. Movement
was repeated until the minimum distance requirement
was satisfied. Rotation was by a random angle in the
range [-0.1,0.1] radians, selected uniformly at random.
This procedure was repeated for 40,000 mating events.
With this approach, entropy minimization proceeded
over a sampling of all possible foot patterns, and all
possible foot pattern rotations with respect to the im-
age. As a final step, the optimal foot pattern was ro-
tated in small increments about its axis, to determine
if any fine-scale rotations improved its fit to the image.

2.2 Grayscale Textures

Texture analysis methods using foot patterns were pre-
viously only implemented for black and white images.
When used on gray-scale images, the method suffers
from a combinatorial explosion of possible footprints φ
used to generate the histogram, causing an entropy sur-
face that is effectively flat. Several possible generaliza-
tions of the approach for gray-scale images are possible
(see e.g., [8]). One solution is to convert the grayscale
image to black-and-white, by binning the shades of gray
into two bins: high and low. Alternatively, one could
decompose the gray-scale image into multiple black and
white images, which are then treated in parallel, using
a single foot pattern as before. Unfortunately, the most
logical procedure (pulling bits off the gray-scale values
sequentially) is ineffective, because these bits, in the
order they appear in a 256-shade (8 bit) gray picture,
yield sparse, large-scale, and random images in at least
some of the bit-layers. The reason is that the local ran-



Figure 1: Graphical illustration of the protocol for
identifying the optimal foot pattern for a given tex-
ture using a genetic algorithm. Each foot pattern is
scanned over the image, generating a histogram of foot-
prints. The foot pattern yielding the lowest-entropy
histogram is considered the best quantitative descrip-
tion of the image.

domness characterizing a texture is not apparent in the
individual bits of the gray-scale representation.

Another solution is to use a clustering algorithm,
such as k-means, on the footprints, and treat any foot-
print in the same cluster as the same. With k-means
clustering, we may set the number of clusters, and so we
could guarantee that the number of types of footprints
φ counted in the event histogram is less than the total
number of footprints counted when scanning the image.
However, this does discard some potentially useful in-
formation about the texture of the image, different sets
of pixel shades are treated as being the same. Further-
more, running this procedure after each foot pattern
is scanned over the image would be extremely time-
consuming.

Instead, the solution we propose is one that uses in-
cremental entropy. The key observation is that if we use
a small number of feet then the combinatorial explo-
sion does not overwhelm the search technique. Using a
small number of feet, say two, creates a different prob-
lem: the foot patterns are too simple to distinguish be-
tween different textures. For any given foot pattern we
compute the incremental entropy as follows. A prefix of
a foot pattern is an initial set of feet. The feet are or-
dered within the data structure and this is the ordering
used to compute the prefixes. For all the prefixes with

2 or more feet, and for the full foot pattern, the entropy
is computed in the same manner as for foot patterns in
general. These entropies are summed to obtain the in-
cremental entropy. The incremental entropy is used as
the fitness function in evolutionary algorithms search-
ing for foot patterns on gray scale textures.

It is worth examining the incremental entropy from
the point of view of fitness landscapes. The entropy
for a full foot pattern with enough feet for later use in
classification (and possibly synthesis) of textures forms
a fitness landscape that is a vast plane covered with
small-scale noise and possessing a hidden valley here
and there. The prefixes of a foot pattern have a much
simpler landscape in which the valleys are not so hidden
- but they are also much larger and contain less infor-
mation about the texture. Summing entropy across all
prefixes superimposes these landscapes. Optimization
takes place preferentially in the prefixes permitting the
algorithm to successively place the feet of the foot pat-
tern one after the other during the course of evolution.
This technique does not appear to have immediate gen-
eralizations to other optimization problems but it does
permit the location of low entropy foot patterns in spite
of the combinatorial explosion of footprints caused by
attempting to work in grayscale.

2.3 Landmark Assignment

Using the above procedure a low-entropy foot pattern
is identified for each image, consisting of the x, y co-
ordinates of k unlabeled feet. To use these as a set of
’texture variables’ for morphometric analysis however,
we must first identify correspondence between pixels in
different foot patterns. Because the only information
available is the set of x, y coordinates of the feet (here-
after called landmarks), we use the relative positions of
the landmarks themselves as a means of assigning their
correspondence to one another. We implemented two
methods for comparison.

The first method (Complete Enumeration) is based
on the method described by Dryden and Mardia [9],
which minimizes the differences between objects under
rigid transformations to identify the optimal labeling
of their landmarks. First, positional differences were
eliminated by translating each object so that its cen-
troid was located at the origin (i.e., mean centering).
Next, each object was scaled to unit size, where size was
defined as centroid size: the square root of the sum of
squared distances from each landmark to the centroid
[10]. The correspondence of landmarks between two
objects F and F ′ was then found by first assigning
labels arbitrarily, and then optimally rotating one con-
figuration on the second using a least squares superim-



position [11]. Fitness was defined as the square root of
the sum of squared differences between corresponding
landmarks, or Euclidean distance:

d(F, F ′) =
√∑

(x− x′)2 +
∑

(y − y′)2

This process was repeated for all possible landmark
labellings and each time the distance was calculated.
The landmark assignment that yielded the minimal dis-
tance:

min [d(F, F ′)]

was considered to be the correct landmark assignment.
For more than two objects, all objects were superim-
posed relative to one object in the data set, and its
landmark assignments were used as the global assign-
ment for all specimens.

A critical shortcoming with the Complete Enumer-
ation method is that as the number of landmarks in-
creases, assessing all possible k! landmark assignments
quickly becomes computationally impractical. The sec-
ond approach (Heuristic Assignment) uses heuristic
search to provide a solution to the landmark labeling
problem that can be found in polynomial time. This
method uses a variant of the Hungarian algorithm [12].
Typically, this linear programming method is used to
solve the “assignment” problem, where a set of n jobs
are assigned to n workers in a 1-to-1 mapping, so as to
minimize the total cost of the assignment (as specified
by the n by n worker-job matrix). In our implemen-
tation, we assigned landmarks in one foot pattern to
landmarks in a second pattern so as to minimize the
total squared Euclidean distance between them. First,
we mean-centered each foot pattern and scaled them
to unit centroid-size. For two foot patterns F and F ′

we then calculated the k by k matrix of squared Eu-
clidean distances between landmarks. This matrix was
subjected to the Hungarian algorithm, and the match-
ing which minimized the sum of squared Euclidean dis-
tances between landmarks was treated as the prelimi-
nary labeling of the landmarks:

min
[
d2(F, F ′)

]
Finally, to eliminate differences in rigid rotation be-
tween F and F ′, we rotated F in 30 equal degree incre-
ments, each time finding the optimal landmark assign-
ment using the above procedure. The optimal labeling
of landmarks in F and F ′ was then defined as the label-
ing from the rotation with the minimal sum of squared
Euclidean distances between landmarks:

arg min
[
d2(F, F ′)

]
One complication with the procedure described

above is that it only works for two objects. For more

than two foot patterns, a generalization of this ap-
proach must be used that identifies the optimal multi-
dimensional assignment of landmarks. The problem
is to find, for each foot pattern F ∈ T , a labeling to
every other foot pattern F ′ ∈ T , such that all the la-
bellings are consistent with each other. Because the
multi-dimensional assignment problem is NP-complete
[13], we used a polynomial time algorithm that ap-
proximates the optimal multi-dimensional assignment
within a factor of 2 [14]. First, we calculated the opti-
mal matching and minimal squared Euclidean distance
between F and all other Fi ∈ T :

min
[
d2(F, Fi)

]
Next, the sum of these minimal squared Euclidean

distances between F and all other Fi ∈ T was calcu-
lated for all F . The F with the minimal sum of squared
minimal distances was treated as the best approxima-
tion of the center star, F c, which is a measure of cen-
tral tendency for the set T (analogous to its mean). To
find the multi-dimensional landmark assignment, each
foot pattern in T was then matched to F c using the
Hungarian algorithm, and the labeling imposed by F c

was treated as the optimal labeling of landmarks for
each foot pattern. Because all foot patterns in T were
matched to F c, upon completion of this procedure they
were also optimally labeled with respect to each other.
To compare foot patterns from two different textures,
the center stars F c1 and F c2 were found for the two
sets of foot patterns, and the optimal matching be-
tween them was determined. Landmark assignments
for all specimens were then determined by matching
each foot pattern to its respective center star. This
procedure can be extended to more than two groups in
a similar fashion.

2.4 Morphometric Analysis

The minimum entropy foot pattern is the best avail-
able quantitative representation of the textural infor-
mation of an image. To compare these quantitatively,
the k labeled pixels for each foot pattern were treated
as primary data for a geometric morphometric anal-
ysis. In geometric morphometrics, a set of two- or
three-dimensional coordinates of corresponding points
are used to represent the shape of a morphological
structure. Variation in digitizing location, orientation,
and scale is removed from these values by translat-
ing each object to a common location, scaling to unit
size, and optimally rotating using a least squares (Pro-
crustes) superimposition [11]. The aligned objects are
then projected to a Euclidean space, where similar ob-
jects are close together and dissimilar objects are far



apart. Scores on the axes of this space represent a set
of shape variables, which may then be used in conven-
tional multivariate statistical analysis (e.g., [15], [16]).
For the quantitative analysis of texture, the foot pat-
terns were aligned using Procrustes superimposition,
were then projected to a Euclidean space, and scores
on the axes of this space were treated as “texture vari-
ables.” These scores were then treated as multivariate
data for statistical assessment of within and between
group texture variation.

3 Example Application

3.1 Data Collection and Analysis

To assess the efficacy of our approach, we quantified the
textural information present in images of the backs of
two Gyrinophilus porphyriticus salamanders, one from
each of two adjacent populations in the Cowee Moun-
tains in North Carolina (figure 2). The images were
converted to 8-level normalized grayscale to eliminate
light level variation and noise-level variations in shade.
To account for grayscale, the foot-pattern location ge-
netic algorithm used the successive pixel adding tech-
nique described in section 2.2, where incoming vectors
of grayscale data were placed in a tree with informa-
tion for each pixel stored on one level of the tree (a
TRIE data structure). The entropy for the first k pix-
els, k = 2-7 was computed and summed. This has
the effect of conditioning evolution on the level of the
tree where variation currently appears, with optimiza-
tion of the first i pixels blending smoothly into opti-
mization of the first i+1 pixels as evolution progresses,
i = 2-6. For each image, the optimal foot pattern
was obtained for 100 runs each, generating two pop-
ulations of 100 foot patterns. Landmarks were then
assigned labels using both of the methods described in
section 2.3 (Complete Enumeration and Heuristic As-
signment). Labeled landmark configurations (i.e. foot
patterns) were then treated as data for a morphomet-
ric analysis, where they were superimposed, and a set
of texture variables generated. These were then used
in multivariate statistical analysis. To distinguish be-
tween the groups we performed multivariate analysis of
variance (MANOVA) and discriminant function anal-
ysis (DFA). We also described patterns of variation
in foot patterns using principal components analysis
(PCA). Finally, to directly compare results between
landmark assignment methods we calculated the ma-
trix of Euclidean distances between foot patterns in
each data set for each method, and compared these
using a Mantel test of matrix correlation.

Figure 2: Images from a portion of the backs of two
Gyrinophilus porphyriticus salamanders. The left im-
age is from a salamander from the Cowee North popu-
lation, and the right image is from a salamander from
the Cowee South population.

3.2 Results

For both methods of assigning labels to landmarks,
foot patterns generated from the two images were dis-
tinguishable from one another. Using MANOVA, we
found numerically identical results from the Complete
Enumeration and the Heuristic Assignment methods:
(Wilks’ Λ = 0.706, F = 7.867, P � 0.0001). When an-
alyzed using DFA, the majority of foot patterns were
correctly classified to their population: Complete Enu-
meration (72%) and Heuristic Assignment (72%). This
showed that the textural information in the two images
was distinct, and that the foot pattern approach was
capable of quantifying this information.

Using PCA, 42.91% of the variation in texture vari-
ables was explained in the first two PC axes for both the
Complete Enumeration and the Heuristic Assignment
methods. When the texture data space was viewed
along these PC axes, foot patterns from the two groups
were ordered along PC1, with minimal entropy foot
patterns from Cowee North located towards one end of
PC1, and minimal entropy foot patterns from Cowee
South located towards the other end of PC1. There
was considerable overlap between the two populations
in the center of PC1 however, which likely corresponds
to foot patterns which were misclassified in the DFA.
(figure 3).

Using a Mantel test, we found a perfect correlation
between distances generated from the Complete Enu-
meration and the Heuristic Assignment methods (r =
1.0). This demonstrated that, for this data set, the tex-
tural information captured by each method was iden-
tical, and that the assignment of landmark labels was
consistent between the two methods.

4 Conclusions and Future Work

4.1 Conclusions

In this paper we proposed a technique for quantify-
ing grayscale images of biological textures and pat-



Figure 3: Results from principal components analysis
of texture variables from 100 minimum entropy foot
patterns from each of two images. Only data from the
Heuristic Assignment method are displayed, as results
from the Complete Enumeration method were numer-
ically identical. Cowee North = gray, Cowee South =
black.

terns using foot patterns optimized by evolutionary al-
gorithms. The pixels of each foot pattern were assigned
labels using one of two methods (Complete Enumer-
ation and Heuristic Assignment), and sets of labeled
foot patterns were then treated as input data for stan-
dard quantitative morphometric analysis. We demon-
strated our approach by comparing 100 low entropy
foot patterns generated from each of two morphological
textures from the backs of Gyrinophilus porphyriticus
salamanders.

Statistical results from MANOVA, PCA, and DFA
were numerically identical for data obtained by the
Complete Enumeration and Heuristic Assignment
methods. Therefore, for this data example, the heuris-
tic landmark assignment based on the Hungarian al-
gorithm is able to identify the correct labeling of pix-
els in the foot pattern. This finding is significant, as
the Heuristic Assignment method is considerably faster
than Complete Enumeration (about 60 times faster for
7 feet!). As these algorithms are of factorial and poly-
nomial time respectively, the difference in performance
greatly increases as more images are examined, or as
the number of pixels used the foot pattern is increased.
Therefore, we anticipate that the Heuristic Assignment
approach will be useful for most practical applications.

The evolutionary algorithm produced foot patterns
that could be used to successfully statistically distin-
guished the two populations of salamanders. Examin-
ing figure 3 it is clear that the two groups of salaman-
ders are distinguished in a manner involving more than

the first two principal components. The evolutionary
algorithm is thus finding relatively subtle features that
distinguish the salamander’s skin patterns.

We also found significant differences between sets of
foot patterns generated from the two images. From
this we conclude that our method of quantifying tex-
tural information using optimized foot patterns is ca-
pable of distinguishing between biological textures, and
shows its great potential to extract biologically sensible
characters from arbitrary biological texture data. This
result is also biologically interesting, as previous work
has shown that these two salamander populations are
genetically isolated [17], and are morphologically dis-
tinct [18]. This differentiation occurs in spite of the
fact that the two populations are adjacent (parapatric)
and have a narrow contact zone in the Cowee moun-
tains of North Carolina, and lends further support to
the suggestion that they are no longer following the
same evolutionary trajectory.

4.2 Future Work

Several aspects of our texture quantification protocol
require additional investigation. First, the incremental
entropy technique permits us to find foot patterns for
8 level grayscale, a substantial advance over the pre-
vious black-and-white work. However, the algorithm
should be tested with larger numbers of gray values.
The algorithm may already be practical at finer reso-
lutions of gray, or it may require additional tinkering.
Additional exploration of the characteristics of the fit-
ness landscape for incremental entropy should also be
made. Our nested valleys view is consistent with the
behavior of the algorithm on the current test case, but
is at best a hypothesis at present.

Finally, the original black-and-white foot pattern
work permitted not only texture classification but also
high fidelity synthesis of many textures. Such synthesis
is quite valuable in biology, virtual reality, and other
fields and is the focus of ongoing research. Synthe-
sis techniques that permit morphing between textures
would be especially valuable for exploring biological
questions concerning natural history and evolution.
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