
“No we can’t”
Impossibility of fast leader election

in chemical reaction networks
David Doty

Workshop on Advances in Numerical and Analytic Approaches for the Study of
Non-Spatial Stochastic Dynamical Systems in Molecular Biology

Isaac Newton Institute of Mathematical Sciences, University of Cambridge
April 5, 2016

WoAiNaAAftSoNSSDSiMB 2016!

Acknowledgments

2

David Soloveichik
University of Texas, Austin Anne Condon

Monir Hajiaghayi
co-author

David Anderson

Acknowledgments

2

David Soloveichik
University of Texas, Austin Anne Condon

Monir Hajiaghayi
co-author

David Anderson

The Software of Life

3

How does a cell
compute?

The Software of Life

3

How does a cell
compute?

chemistry / geometry

The Software of Life

3

How does a cell
compute?

chemistry / geometry

What is possible
to compute using

?

Chemical Reaction Network (CRN)

4

Chemical Reaction Network (CRN)

4

R P1+P2

Chemical Reaction Network (CRN)

4

R P1+P2

M1+M2 D

Chemical Reaction Network (CRN)

4

R P1+P2

M1+M2 D

C+X C+Y

Chemical Reaction Network (CRN)

4

R P1+P2

M1+M2 D

C+X C+Y

This is traditionally a descriptive modeling language…
let’s instead use it as a prescriptive programming language

Can we compute with chemistry?

5

“Not every CRN describes real chemicals!”, i.e. “where’s the compiler?”

Can we compute with chemistry?

5

“Not every CRN describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. [PNAS 2011] showed how to
physically implement any CRN using DNA strand displacement

Can we compute with chemistry?

5

“Not every CRN describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. [PNAS 2011] showed how to
physically implement any CRN using DNA strand displacement

X1+X2 X3

Can we compute with chemistry?

5

“Not every CRN describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. [PNAS 2011] showed how to
physically implement any CRN using DNA strand displacement

X1+X2 X3

Can we compute with chemistry?

5

“Not every CRN describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. [PNAS 2011] showed how to
physically implement any CRN using DNA strand displacement

X1+X2 X3

Can we compute with chemistry?

5

“Not every CRN describes real chemicals!”, i.e. “where’s the compiler?”

Response: Soloveichik et al. [PNAS 2011] showed how to
physically implement any CRN using DNA strand displacement

X1+X2 X3

+

+

+

+

+

+

↔





6

DNA strand displacement implementing A+BC

video courtesy Microsoft Research Cambridge

Science and Technology

DNA Join circuit

2014

Why compute with chemistry?

versus

7

Why compute with chemistry?

versus

speed?

7

Why compute with chemistry?

slow fast

versus

speed?

7

Why compute with chemistry?

10-100nm

slow fast

versus

speed?

component size?

7

Why compute with chemistry?

10-100nm

slow fast

versus

10-100nm

speed?

component size?

7

Why compute with chemistry?

10-100nm

slow fast

versus

10-100nm

yes not easily

speed?

component size?

compatible with
biological or other

“wet” environments?

7

Why compute with chemistry?

10-100nm

slow fast

versus

10-100nm

yes not easily

speed?

component size?

compatible with
biological or other

“wet” environments?

7

cells bioreactors
“smart” drug
released only in
certain cellular
conditions

“chemical controller” to
optimize yield of

metabolically produced
biofuels/drugs

Why compute with chemistry?

10-100nm

slow fast

versus

10-100nm

yes not easily

speed?

component size?

compatible with
biological or other

“wet” environments?

7

cells bioreactors
“smart” drug
released only in
certain cellular
conditions

“chemical controller” to
optimize yield of

metabolically produced
biofuels/drugs

opens to deliver only in presence
of two protein antigens

41t-specific latch

TE17-specific latch
Douglas et al, Science 2012

open

antibody Fab’
fragments

Theoretical Computer Science Approach

8

8

What computation is possible and
what is not?

Theoretical Computer Science Approach

8

What computations necessarily
take a long time and what can
be done quickly?
(Computational complexity)

What computation is possible and
what is not?

Theoretical Computer Science Approach

9

Outline

• (Stochastic, discrete) chemical reaction networks

• Time lower bound on one computational task:
leader election

• Open questions

Chemical Reaction Networks (CRNs)

• finite set of reactions: e.g.

• finite set of d species {A,B,C,D...}

• configuration x∈ℕd: molecular counts of each species

10

A+B → A+C
C → A+A

C+B → C

k1

k2

k3

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

x =

11

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

x =

11

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

⟹
α

(2, 1, 1)

x =

11

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

⟹
α

(2, 1, 1)

x =

11

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

x =

11

...

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

x =

11

...

Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

⟹

α
(4, 0, 1)...

x =

11

...

Stochastic kinetic model of CRNs

time until next reaction is exponentially distributed with rate ∑propi

Pr[next reaction is rxnj] = propj/∑propi

McQuarrie 1967, van
Kampen, Gillespie 1977, etc

System evolves via a continuous time Markov process:

Solution volume v

reaction type propi

k⋅ #A
k⋅ #A⋅ #B / v
k⋅ #A⋅(#A-1) / v

12

A  …k

A+B  …
A+A  …

k

k

Main result (informally)

“Leader election” (getting to count 1 of a species)
requires Ω(n) expected time

13

Doty, Soloveichik, “Stable leader election in population protocols requires linear time”
DISC 2015: International Symposium on Distributed Computing

L+L → L+F

Leader election: what’s the point?

14

Leader election: what’s the point?

Getting “precise” quantities of species (e.g. exactly 1 L)
from “uncontrolled” initial conditions (e.g. a lot of A).

• easy to add billions of molecules to test tube
• difficult to add 1

14

Leader election: what’s the point?

Getting “precise” quantities of species (e.g. exactly 1 L)
from “uncontrolled” initial conditions (e.g. a lot of A).

• easy to add billions of molecules to test tube
• difficult to add 1

14

Other kinds of computation require an initial leader.

Leader election: what’s the point?

Getting “precise” quantities of species (e.g. exactly 1 L)
from “uncontrolled” initial conditions (e.g. a lot of A).

• easy to add billions of molecules to test tube
• difficult to add 1

14

Other kinds of computation require an initial leader.

Versions of “leader election” in biology: centriole number,
choice of olfactory receptor expression, ...

Leader election: what’s the point?

Getting “precise” quantities of species (e.g. exactly 1 L)
from “uncontrolled” initial conditions (e.g. a lot of A).

• easy to add billions of molecules to test tube
• difficult to add 1

14

Other kinds of computation require an initial leader.

Versions of “leader election” in biology: centriole number,
choice of olfactory receptor expression, ...

First step towards establishing full theory of time
complexity in CRN computation (“in-house” result)

Defining stable leader election

15

Defining stable leader election

15

i
uniform initial
configuration

Defining stable leader election

15

i xreaction sequence

∀
any reachable
configuration

uniform initial
configuration

Defining stable leader election

15

i x oreaction sequence reaction sequence

∀ ∃
any reachable
configuration

uniform initial
configuration

single L

Defining stable leader election

15

i x o o’reaction sequence reaction sequence reaction sequence

∀ ∃
any reachable
configuration

uniform initial
configuration

single L single L

∀

Defining stable leader election

15

i x o o’reaction sequence reaction sequence reaction sequence

∀ ∃
any reachable
configuration

uniform initial
configuration

single L single L

∀

o is stable

Defining stable leader election

15

i x o o’reaction sequence reaction sequence reaction sequence

∀ ∃
any reachable
configuration

uniform initial
configuration

single L single L

∀

o is stable

If number of reachable configurations is finite, CRN
will reach such a configuration with probability 1

16

Speed of Stable Computation

16

Speed of Stable Computation

How to fairly assess speed?
Like any respectable computer scientist…
by ignoring constant factors

16

Speed of Stable Computation

rate constants ki bounded by 1

How to fairly assess speed?
Like any respectable computer scientist…
by ignoring constant factors

16

Speed of Stable Computation

rate constants ki bounded by 1

n = total molecular count
volume v = Θ(n)
i.e., require bounded concentration
(finite density constraint)

How to fairly assess speed?
Like any respectable computer scientist…
by ignoring constant factors

n molecules
volume v=Θ(n)

17

An Exponential Time Difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X

X X X

X

X

X

n molecules
volume v=Θ(n)

17

An Exponential Time Difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X

X X X

X

X

X

A+B→Y+B

expected time to
produce Y: Θ(n)

propensity: #A·#B / v = Θ(1/n)

n molecules
volume v=Θ(n)

17

An Exponential Time Difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X

X X X

Θ(log n)

B+X→B+B
A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: Θ(n)

propensity: #A·#B / v = Θ(1/n)

n molecules
volume v=Θ(n)

17

An Exponential Time Difference

A

B

X

X
X

X

X

X

X

X X

X
X

X

X

X

X

X

X X X

Θ(log n)

B+X→B+B
A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: Θ(n)

propensity: #A·#B / v = Θ(1/n)

B

B

B

B

B
B

B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+Finitial config = {n L}

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+Finitial config = {n L}

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+Finitial config = {n L}

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+Finitial config = {n L}

...

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+Finitial config = {n L}

...

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+F Θ(n) timeinitial config = {n L}

...

“2-bottleneck” reaction

18

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+F Θ(n) timeinitial config = {n L}

...

“2-bottleneck” reaction

18

Fast leader elimination L+F → F+F

Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+F Θ(n) timeinitial config = {n L}

...

“2-bottleneck” reaction

18

Fast leader elimination L+F → F+F

Θ(log n) time one of these is always count ≥ n/2

Main theorem

19

Any “reasonable” CRN stably electing a leader requires Ω(n)
time to reach a stable configuration. (L+L→L+F is optimal)

Main theorem

19

Any “reasonable” CRN stably electing a leader requires Ω(n)
time to reach a stable configuration. (L+L→L+F is optimal)

“reasonable” ≈ from initial configuration with n molecules, at most
O(n) additional molecules produced in initial O(1) time… implies
probably all species eventually produced

Main theorem

19

Any “reasonable” CRN stably electing a leader requires Ω(n)
time to reach a stable configuration. (L+L→L+F is optimal)

Holds for dense initial configurations: all species present have count Ω(n)

“reasonable” ≈ from initial configuration with n molecules, at most
O(n) additional molecules produced in initial O(1) time… implies
probably all species eventually produced

Main theorem

19

Any “reasonable” CRN stably electing a leader requires Ω(n)
time to reach a stable configuration. (L+L→L+F is optimal)

Holds for dense initial configurations: all species present have count Ω(n)

notion of denseness is compatible with “mass action limit”
a.k.a. “mean field approximation”

“reasonable” ≈ from initial configuration with n molecules, at most
O(n) additional molecules produced in initial O(1) time… implies
probably all species eventually produced

Entire proof?

20

Entire proof?

20

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

DC

Entire proof?

20

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

C

D

B

B

C
C

B

L

L

B
B

B

B

B
B

C

D
B

C

when L=2 and L+B→C+D occurs, B≫1 since it's not a bottleneck

B

C

DC

Entire proof?

20

C

D

B

B

C
C

B

L

L

B
B

B

B

B
B

C

D
B

C

B

C

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

when L=2 and L+B→C+D occurs, B≫1 since it's not a bottleneck

DC

Entire proof?

20

C

D

B

C
C

B

L

B
B

B

B

B
B

C

D
B

C

B

C

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

when L=2 and L+B→C+D occurs, B≫1 since it's not a bottleneck

DC

Entire proof?

20

C

D

B

C
C

B

L

B
B

B

B

B
B

C

D
B

C

B

C

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

when L=2 and L+B→C+D occurs, B≫1 since it's not a bottleneck

DC

Entire proof?

20

C

D

B

C
C

B

B
B

B

B

B
B

C

D
B

C

B

C

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

when L=2 and L+B→C+D occurs, B≫1 since it's not a bottleneck

DC

Entire proof?

20

C

D

B

C
C

B

B

B

B

B
B

C

D
B

C

B

C

This configuration might not be stable!
(CRN could produce a new leader)

Sublinear time implies ∃ reaction sequence resulting in 1 L
with no O(1)-bottleneck reactions

when L=2 and L+B→C+D occurs, B≫1 since it's not a bottleneck

21

#R = n1/4

#X = n–n1/4

#L = 0

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R
R

L K
X

R R

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K // produce L O(n1/2) time

R
R

L K
X

R R

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K // produce L O(n1/2) time

R
R

L K
X

R R

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K // produce L O(n1/2) time

R
R

L K
X

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

X

X

X

X

X

X

X

X

X
X

X

X

XX

R

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

KR

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

X

X
X

X

X

X

X

X
X

X

X

XX

K k
K

XX
X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

K k
K

X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete
R

R

L K
X

K k
K

X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete

L K
X

K k
K

X

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

L+L→L+K
X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete

// just in case 2nd L produced

L K
X

K k
K

X

// O(n) time if needed (likely not)

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

L
K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

L+L→L+K
X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete

// just in case 2nd L produced

L K
X

K k
K

X

// O(n) time if needed (likely not)

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

L+L→L+K
X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete

// just in case 2nd L produced

L K
X

K k
K

X

// O(n) time if needed (likely not)

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

21

K

K

K

K

K K

K K
K

K

K

K
K

K

K

K

K
k

K

K

#R = n1/4

#X = n–n1/4

#L = 0

R+R→L+K

L+L→L+K
X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L O(n1/2) time

// O(log n) time to complete

// just in case 2nd L produced

L K
X

K k
K

X

// O(n) time if needed (likely not)

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

total expected time O(n1/2 log n)
(proof not shown)

22

Large counts lemma

From uniform initial configuration i = {n A}, with probability > 99%,
after O(1) time, all species reach count Ω(n)

[Doty, SODA 2014: Symposium on Discrete Algorithms]

22

Large counts lemma

From uniform initial configuration i = {n A}, with probability > 99%,
after O(1) time, all species reach count Ω(n)

[Doty, SODA 2014: Symposium on Discrete Algorithms]

22

Large counts lemma

From uniform initial configuration i = {n A}, with probability > 99%,
after O(1) time, all species reach count Ω(n)

1 sec

[Doty, SODA 2014: Symposium on Discrete Algorithms]

23

Main lemma

23

Main lemma hypothesis of lemma

23

Main lemma
(in): uniform initial configurations (all n molecules are A)

i200

0

50

100

150

200

A B C L

hypothesis of lemma

23

Main lemma
(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(in): uniform initial configurations (all n molecules are A)

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

⇒

hypothesis of lemma

23

Main lemma
(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

(in): uniform initial configurations (all n molecules are A)

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

y200

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

23

Main lemma

Δ

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

y200

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

(in): uniform initial configurations (all n molecules are A)

23

Main lemma
(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

yn(L) = 1
⇒ L ∈ Δ

(in): uniform initial configurations (all n molecules are A)

Δ

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

y200

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

23

Main lemma

Lemma: xn ⇒ vn where vn(Δ) = 0
yn(L) = 1
⇒ L ∈ Δ

Δ

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

y200

0

50

100

150

200

A B C L

v200

Δ

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

(in): uniform initial configurations (all n molecules are A)

23

Main lemma

⇒ vn(L) = 0

Δ

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

y200

0

50

100

150

200

A B C L

v200

Δ

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

Lemma: xn ⇒ vn where vn(Δ) = 0
yn(L) = 1
⇒ L ∈ Δ

(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

(in): uniform initial configurations (all n molecules are A)

23

Main lemma

stable!

⇒ vn(L) = 0

Δ

≥i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

v200

Δ

0

50

100

150

200

A B C L

y300

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

Lemma: xn ⇒ vn where vn(Δ) = 0
yn(L) = 1
⇒ L ∈ Δ

(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

(in): uniform initial configurations (all n molecules are A)

23

Main lemma

⇒ vn(L) = 0

Δ

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

v200

Δ

0

50

100

150

200

A B C L

y300

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

i.e., leader not elected
with probability 1

stable!

≥

Lemma: xn ⇒ vn where vn(Δ) = 0
yn(L) = 1
⇒ L ∈ Δ

(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

(in): uniform initial configurations (all n molecules are A)

23

Main lemma

⇒ vn(L) = 0
There is an order on Δ = { D1, D2, …, Dk }, and
reactions Dj+R→P+P' where R,P,P' ∉ { D1, D2,…, Dj }.

Get from xn to vn using transitions
from Reaction Ordering Lemma:

[Chen, Cummings, Doty, Soloveichik, DISC 2014: Symposium on Distributed Computing]

Δ

i200

0

50

100

150

200

A B C L

x200

0

50

100

150

200

A B C L

v200

Δ

0

50

100

150

200

A B C L

y300

0

50

100

150

200

A B C L

⇒ ⇒

hypothesis of lemma

i.e., leader not elected
with probability 1

stable!

≥

Lemma: xn ⇒ vn where vn(Δ) = 0
yn(L) = 1
⇒ L ∈ Δ

(xn): in ⇒ xn where xn(S) ≥ 0.01n for all species S (large counts lemma)

(yn): xn ⇒ yn no bottleneck (fast), yn has stable leader (correct)

Definition. Δ = species with bounded counts in (yn) as n→∞

(in): uniform initial configurations (all n molecules are A)

24

Summary

24

Summary

Every (reasonable) CRN that stably elects a leader from a uniform initial
configuration (all molecules are same species) requires time Ω(n).

24

Summary

Every (reasonable) CRN that stably elects a leader from a uniform initial
configuration (all molecules are same species) requires time Ω(n).

More generally, negative result holds even if:

• initial configuration nonuniform but dense (each species present has count Ω(n))

24

Summary

Every (reasonable) CRN that stably elects a leader from a uniform initial
configuration (all molecules are same species) requires time Ω(n).

More generally, negative result holds even if:

• initial configuration nonuniform but dense (each species present has count Ω(n))

• goal is any positive number of leaders under some constant

24

Summary

Every (reasonable) CRN that stably elects a leader from a uniform initial
configuration (all molecules are same species) requires time Ω(n).

More generally, negative result holds even if:

• initial configuration nonuniform but dense (each species present has count Ω(n))

• goal is any positive number of leaders under some constant

• there are multiple leader species L1,L2, …,Lk and we want to stabilize to ∑#Li = 1

25

Open questions
Convergence versus stabilization

25

Open questions
Convergence versus stabilization

initial

25

Open questions
Convergence versus stabilization

initial convergence

...
L# =2 L# =1

25

Open questions
Convergence versus stabilization

initial convergence

...
L# =2 L# =1

...
stabilization

L# =1 L# =1 stable

25

Open questions
Convergence versus stabilization

Leader election takes Ω(n) time to stabilize; what about convergence?

initial convergence

...
L# =2 L# =1

...
stabilization

L# =1 L# =1 stable

25

Open questions
Convergence versus stabilization

What initial configurations allow sublinear leader election?
dense configurations like { n/2 A, n/4 B, n/4 C }: NO

non-dense configurations like { n-n1/4 X, n1/4 R }: YES

Leader election takes Ω(n) time to stabilize; what about convergence?

initial convergence

...
L# =2 L# =1

...
stabilization

L# =1 L# =1 stable

26

Take-home message
(engineer’s perspective)

26

Take-home message
(engineer’s perspective)

Ask not what nature does

26

Take-home message
(engineer’s perspective)

Ask not what nature does

Ask what nature could do…

Recruiting Ph.D. Students

27

David Soloveichik David Doty

	“No we can’t”�Impossibility of fast leader election in chemical reaction networks
	Acknowledgments
	Acknowledgments
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Theoretical Computer Science Approach
	Slide Number 28
	Theoretical Computer Science Approach
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Main result (informally)
	Leader election: what’s the point?
	Leader election: what’s the point?
	Leader election: what’s the point?
	Leader election: what’s the point?
	Leader election: what’s the point?
	Defining stable leader election
	Defining stable leader election
	Defining stable leader election
	Defining stable leader election
	Defining stable leader election
	Defining stable leader election
	Defining stable leader election
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Speed of naïve stable leader election
	Main theorem
	Main theorem
	Main theorem
	Main theorem
	Entire proof?
	Entire proof?
	Entire proof?
	Entire proof?
	Entire proof?
	Entire proof?
	Entire proof?
	Entire proof?
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Large counts lemma
	Large counts lemma
	Large counts lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Main lemma
	Summary
	Summary
	Summary
	Summary
	Summary
	Open questions
	Open questions
	Open questions
	Open questions
	Open questions
	Open questions
	Take-home message�(engineer’s perspective)
	Take-home message�(engineer’s perspective)
	Take-home message�(engineer’s perspective)
	Recruiting Ph.D. Students

