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What is possible 
to compute using

?
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Chemical Reaction Network (CRN)

4

R P1+P2

M1+M2 D

C+X C+Y

This is traditionally a descriptive modeling language… 
let’s instead use it as a prescriptive programming language
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DNA strand displacement implementing A+BC

video courtesy Microsoft Research Cambridge


Science and Technology

DNA Join circuit

2014
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slow fast

versus

10-100nm

yes not easily

speed?

component size?

compatible with 
biological or other 

“wet” environments?

7

cells bioreactors
“smart” drug 
released only in 
certain cellular 
conditions

“chemical controller” to 
optimize yield of 

metabolically produced 
biofuels/drugs

opens to deliver only in presence 
of two protein antigens

41t-specific latch

TE17-specific latch
Douglas et al, Science 2012

open

antibody Fab’ 
fragments 
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What computations necessarily 
take a long time and what can 
be done quickly?
(Computational complexity) 

What computation is possible and 
what is not?

Theoretical Computer Science Approach
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Outline

• (Stochastic, discrete) chemical reaction networks

• Time lower bound on one computational task: 
leader election

• Open questions



Chemical Reaction Networks (CRNs)

• finite set of reactions:   e.g.

• finite set of d species {A,B,C,D...}

• configuration x∈ℕd: molecular counts of each species  

10

A+B → A+C
C → A+A

C+B → C

k1

k2

k3
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Example Execution

A+B → A+C
C → A+A

α:

β:

(2, 2, 0)
A B C

⟹
α

(2, 1, 1)⟹

β
(4, 1, 0)

α

⟹

α
(4, 0, 1)...

x =

11

...



Stochastic kinetic model of CRNs

time until next reaction is exponentially distributed with rate ∑propi

Pr[next reaction is rxnj] = propj/∑propi

McQuarrie 1967, van 
Kampen, Gillespie 1977, etc

System evolves via a continuous time Markov process:

Solution volume v

reaction type propi

k⋅ #A
k⋅ #A⋅ #B / v
k⋅ #A⋅(#A-1) / v

12

A  …k

A+B  …
A+A  …

k

k



Main result (informally)

“Leader election” (getting to count 1 of a species) 
requires Ω(n) expected time

13

Doty, Soloveichik, “Stable leader election in population protocols requires linear time” 
DISC 2015: International Symposium on Distributed Computing

L+L → L+F
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Leader election: what’s the point?

Getting “precise” quantities of species (e.g. exactly 1 L) 
from “uncontrolled” initial conditions (e.g. a lot of A).

• easy to add billions of molecules to test tube
• difficult to add 1

14

Other kinds of computation require an initial leader. 

Versions of “leader election” in biology: centriole number, 
choice of olfactory receptor expression, ...

First step towards establishing full theory of time 
complexity in CRN computation (“in-house” result)
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15

i x o o’reaction sequence reaction sequence reaction sequence

∀ ∃
any reachable
configuration

uniform initial
configuration

single L single L

∀

o is stable

If number of reachable configurations is finite, CRN 
will reach such a configuration with probability 1
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Speed of Stable Computation

rate constants ki bounded by 1

n = total molecular count
volume v = Θ(n)
i.e., require bounded concentration 
(finite density constraint)

How to fairly assess speed?
Like any respectable computer scientist… 
by ignoring constant factors
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Speed of naïve stable leader election
initial configuration: uniform (all n molecules of the same species)
output: stable configuration with #L = 1

Naïve algorithm:
L+L → L+F Θ(n) timeinitial config = {n L}

...

“2-bottleneck” reaction

18

Fast leader elimination L+F → F+F

Θ(log n) time one of these is always count ≥ n/2
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Main theorem

19

Any “reasonable” CRN stably electing a leader requires Ω(n) 
time to reach a stable configuration. (L+L→L+F is optimal)

Holds for dense initial configurations: all species present have count Ω(n)

notion of denseness is compatible with “mass action limit”
a.k.a. “mean field approximation”

“reasonable” ≈ from initial configuration with n molecules, at most 
O(n) additional molecules produced in initial O(1) time… implies 
probably all species eventually produced
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L+L→L+K
X+K→K+K
R+K→K+K // stop 2nd L from being produced

// produce L           O(n1/2) time

//  O(log n) time to complete

// just in case 2nd L produced

L K
X

K k
K

X

//    O(n) time if needed (likely not)

Proof must reason about initial configuration
Sublinear time leader election from non-uniform initial configurations is possible!

total expected time O(n1/2 log n) 
(proof not shown)
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Large counts lemma

From uniform initial configuration i = {n A}, with probability > 99%, 
after O(1) time, all species reach count Ω(n)

[Doty, SODA 2014: Symposium on Discrete Algorithms]
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Large counts lemma

From uniform initial configuration i = {n A}, with probability > 99%, 
after O(1) time, all species reach count Ω(n)

1 sec

[Doty, SODA 2014: Symposium on Discrete Algorithms]
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Main lemma

⇒ vn(L) = 0
There is an order on Δ = { D1, D2, …, Dk }, and 
reactions Dj+R→P+P' where R,P,P' ∉ { D1, D2,…, Dj }.

Get from xn to vn using transitions 
from Reaction Ordering Lemma:

[Chen, Cummings, Doty, Soloveichik, DISC 2014: Symposium on Distributed Computing]
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Summary

Every (reasonable) CRN that stably elects a leader from a uniform initial 
configuration (all molecules are same species) requires time Ω(n).

More generally, negative result holds even if:

• initial configuration nonuniform but dense (each species present has count Ω(n))

• goal is any positive number of leaders under some constant

• there are multiple leader species L1,L2, …,Lk and we want to stabilize to ∑#Li = 1
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Open questions
Convergence versus stabilization

What initial configurations allow sublinear leader election?
dense configurations like  { n/2 A, n/4 B, n/4 C }: NO

non-dense configurations like { n-n1/4 X, n1/4 R }: YES

Leader election takes Ω(n) time to stabilize; what about convergence?

initial convergence

...
L# =2 L# =1

...
stabilization

L# =1 L# =1 stable
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Take-home message
(engineer’s perspective)

Ask not what nature does

Ask what nature could do…
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David Soloveichik David Doty
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