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Abstract

This paper explores the use of negative (i.e., repulsive) interactions in the abstract Tile As-
sembly Model defined by Winfree. Winfree in his Ph.D. thesis postulated negative interactions
to be physically plausible, and Reif, Sahu, and Yin studied them in the context of reversible
attachment operations. We investigate the power of negative interactions with irreversible at-
tachments, and we achieve two main results. Our first result is an impossibility theorem: after
t steps of assembly, Ω(t) tiles will be forever bound to an assembly, unable to detach. Thus
negative glue strengths do not afford unlimited power to reuse tiles. Our second result is a
positive one: we construct a set of tiles that can simulate an s-space-bounded, t-time-bounded
Turing machine, while ensuring that no intermediate assembly grows larger than O(s), rather
than O(s · t) as required by the standard Turing machine simulation with tiles. In addition to
the space-bounded Turing machine simulation, we show another example application of nega-
tive glues: reducing the number of tile types required to assemble “thin” (n×o(log n/ log log n))
rectangles.

1 Introduction

Tile-based self-assembly is a model of “algorithmic crystal growth” in which square “tiles” represent
molecules that bind to each other via highly-specific bonds on their four sides, driven by random
mixing in solution but constrained by the local binding rules of the tile bonds. Erik Winfree [13],
based on experimental work of Seeman [10], modified Wang’s mathematical model of tiling [12]
to add a physically plausible mechanism for growth through time. Winfree defined a model of
tile-based self-assembly known as the abstract Tile Assembly Model (aTAM). The fundamental
components of this model are un-rotatable, but translatable square “tile types” whose sides are
labeled with “glues” representing binding sites. Two tiles that are placed next to each other are
attracted with strength determined by the glues where they abut, and in the aTAM, a tile binds to
an assembly if it is attracted on all matching sides with total strength at least a certain threshold
value τ .1 Assembly begins from a “seed” tile and progresses until no more tiles may attach.

∗An extended abstract of this paper appeared as [3]. This research was supported in part by Natural Sciences
and Engineering Research Council of Canada (NSERC) Discovery Grant R2824A01 and the Canada Research Chair
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1The threshold τ models the temperature at which insufficiently strong chemical bonds will break, such as those

formed by Watson-Crick complementarity in DNA-based implementations of tiles.
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We study a variant of this model in which glue strengths are allowed to be negative as well as
positive. This leads to the situation in which a stable assembly may become unstable through the
addition of a tile that, while binding strongly enough to the assembly to remain attached itself,
exerts a repulsive force on a neighboring tile, which is sufficiently strong to detach some portion
of the assembly. This is formally modeled by allowing an assembly to break into two parts any
time that the two parts have total connection strength less than τ (i.e., if there is a cut of the
interaction graph of strength less than τ). Negative glue strengths were discussed as a plausible
mechanism in Winfree’s thesis [13], and explored theoretically in a more general model of graph-
based self-assembly by Reif, Sahu and Yin [7]. We compare the results of [7] to the present paper
in more detail later in this section.

This paper has two main contributions, an impossibility result and a positive result. The
impossibility result is that under the irreversible model, negative glue strengths are not sufficient
to achieve perfect reuse of tiles as in [7]. It is tempting to believe that with negative glue strengths,
the monotonic growth of the aTAM could be overcome to such a degree that a bounded set of
tiles could be reused for arbitrarily long computations,2 hence implementing the observation that
“you can reuse space but you can’t reuse time”. Alas, you can’t reuse space (tiles) too much
with irreversible reactions. We show that under the irreversible model of tile assembly, even with
negative glue strengths, many tiles will be forever bound to an assembly, unable to detach. In fact,
this number is linear in the number of assembly operations, so that after t operations, Ω(t) tiles
will be permanently bound to some assembly.

The positive result is a construction attempting to make do with this limitation. For concrete-
ness, our construction shows how to simulate a single-tape Turing machine. But the idea applies
to the iterated computation of any function f that can be “computed with constant height” by
a tile assembly system (a formal definition is given in Section 4). The function fM mapping the
configuration of a Turing machine M to its next configuration is an example of one such function.
Other examples include the incrementing or decrementing of a counter, or the selection of a uni-
formly distributed random number from a finite set {1, 2, . . . , n} using flips of a fair coin via von
Neumann’s rejection method, as shown in [4].

Our construction achieves the following property: if the Turing machine M being simulated on
input x (with n = |x|) has space bound s(n) and time bound t(n), then O(t(n) ·s(n)) tiles (meaning
total count of tiles, which is greater than the number of unique tile types), mixed in solution, will
simulate the computation of M on input x, and no intermediate assembly will grow to size larger
than O(s(n)). The impossibility result can be interpreted to imply that external energy must be
supplied to break bonds between tiles in these intermediate assemblies if we wish to reuse them for
computation. If we wish to limit the volume of a solution, and therefore the number of molecules it
can contain (by the finite density constraint, see [11]) to O(s(n)), then we cannot allow intermediate
assemblies to grow larger than this value. Of course, by the impossibility result, many more than
s(n) different such assemblies will form if t(n)� s(n) (for instance, when simulating a linear-space,
cubic-time computation). With a mechanism to “vacuum” away junk assemblies and supply the
external energy needed to break them up (a mechanism not modeled in the aTAM), these tiles
could be reused, bringing down the required number of tiles from O(t(n) · s(n)) to O(s(n)).

The main difference between [7] and the present paper is that [7] employs reversible reactions,

2This is subject, of course, to computational complexity constraints such as DTIME(t(n)) ⊆ DSPACE(2t(n)), based
on the observation that configurations cannot repeat during the course of a halting computation.
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and the present paper employs irreversible reactions.3 Within the aTAM, the main difference
between our model and [7] amounts to a difference in the definition of a legal attachment operation.
In [7], the authors define a tile attachment to be legal if the tile attaches with strength τ − 1 (in
fact, they define it a bit differently but restricting attention to our construction and that of [7],
this definition is equivalent). This is a phenomenon not modeled by the aTAM, but it is physically
plausible to suppose that it occurs, though with less frequency than strength τ attachments (see the
kinetic TAM of [13]). Therefore the tile may detach after attaching since it is held with insufficient
strength. But, if it first causes another tile or group of tiles to be bound with total strength less than
τ , then those tiles may also fall off, possibly resulting in stabilization of the original attachment. In
the present paper, we define attachments to be legal only if they have strength at least τ , whereas
detachments may only happen between assemblies attached with strength at most τ − 1. This
difference implies that our impossibility result does not apply to [7], which can be considered an
advantage of reversible interactions. But this advantage does not come without disadvantages: due
to the second law of thermodynamics, their construction must necessarily be implemented as an
unbiased random walk with equal rates of forward and reverse reaction, lest the entropy of the
system increase with time if one direction is more favorable. Therefore their construction takes
expected time n2 to go forward n steps.

We should also note that although [7] uses a more general model of graph-based self-assembly,
this does not imply that their construction of an assembly system simulating a space-bounded
Turing machine simulation is a stronger result than our construction. The more general model
affords more power to aid in a construction, such as allowing non-planar interactions, in addition
to the extra power of reversible interactions. Therefore, we emphasize that our positive construction
is not merely a specialization of the construction of [7] to grid graphs. The construction of [7] is
inherently non-planar and reversible.

Another use of negative glue strengths for enhancing the power of “temperature 1” systems
was shown by Patitz, Schweller, and Summers [6]. Temperature-1 systems are those in which the
binding strength threshold is 1, so that it is not possible (in the standard nonnegative strength
model) to implement cooperative binding in which two glues must match before a tile can bind.
They show that under a more restricted model of negative glues than we consider, in which 1) all
glue strengths are -1, 0, or 1, 2) there is only a single type of negative glue, and 3) only equal glues
may interact with non-zero strength, it is possible to achieve Turing universality and assembly of
n × n squares from O(log n) tile types, the latter result being exponentially better than the best
known upper bound of 2n− 1 tile types [8] in the standard temperature-1 model.

This paper is organized as follows. Section 2 gives an description of the aTAM with negative
glue strengths and discusses some issues associated with choosing a proper model of negative
interactions in self-assembly. Section 3 states and proves our impossibility result. Section 4
provides the construction for our main positive result. Section 5 shows another simple application
of negative glues: reducing the number of tile types required to uniquely assemble a “thin” rectangle
(an n × k rectangle with k < log n/(log log n − log log log n)). Section 6 concludes the paper and
discusses the utility of negative glue strengths in general.

For color figures, see http://arxiv.org/abs/1002.2746.

3 [7] also uses a more general graph-based model of self-assembly, but this difference is less crucial than the
reversibility issue.
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2 Abstract Tile Assembly Model

This section gives a brief definition of the abstract Tile Assembly Model (aTAM, [13]) with negative
glue strengths. This not a tutorial on the aTAM; for readers unfamiliar with the model, please
see [8] for an excellent introduction.

2.1 Issues with Choice of Model

There are many variations on the model of tile self-assembly with negative glue strengths. We
identify six (somewhat) independent binary choices to be made.

Seeded/Unseeded. In the seeded model, assembly starts from a specially designated seed tile.
In the unseeded model, assembly may start with any tile.

Single-tile addition/Hierarchical assembly. In the single-tile addition model, tiles are added
one at a time to an assembly. In hierarchical assembly [1], two assemblies, each possibly consisting
of multiple tiles, may attach to each other.

Irreversible/Reversible. In the irreversible model, for a tile/assembly to attach to an assembly,
it must bind with strength ≥ τ (though it may cause another cut of the resulting assembly to have
strength < τ). In the reversible model (used by Reif, Sahu, and Yin [7]), a tile/assembly may
attach with strength < τ , implying that it may detach (reverse), but may also cause another cut
to detach. In [7], most attachment events have the property that they cause precisely two cuts to
have strength τ − 1, that of the attachment event itself, and another desired cut, and if the latter
cut detaches, then the former cut now has strength τ . Hence, on the assumption that each cut is
equally likely, assembly proceeds in a unbiased random walk (thus taking expected time n2 to go
forward n steps).

Detachment precedes attachment/Detachment and attachment in arbitrary order. If
detachment precedes attachment, this means we assume that whenever a negative-strength glue
creates an unstable cut, every detachment event that can occur, will occur, until we are left with
nothing but stable assemblies, before the next attachment event occurs. The more realistic model,
detachment and attachment in arbitrary order, assumes that the operations of attach and detach
are both legal at any stage. Therefore, if a negative-strength glue creates an unstable cut, but this
cut could be stabilized if an attachment secures it in place before it can detach, then we assume
that this could happen.

Finite tile counts/Infinite tile counts. Most models of tile self-assembly assume an infinite
number of tile types, since a very large number can be easily created in a short time. However,
if we wish to use negative glue strengths to implement space-bounded computation, and the finite
density constraint (see [11]) implies that the solution volume must be proportional to the number
of molecules it contains, then we must constrain the number of molecules. See the next point for a
discussion of another practical issue with using bounded space for computation with tile assembly.
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Tagged result/Tagged junk. This choice relates to how we designate what is the “result” of
assembly. In the tagged result model, we designate a subset of tile types to be “black”, and state
that a result assembly is any terminal assembly with a black tile in it. This allows us to separate
the junk from the result after assembly is complete, but does not allow junk to be removed during
assembly, since the black tile may not be attached to the result assembly until the very end of the
assembly process. In the tagged junk model, we say that any assembly (terminal or not) with a
black tile is junk and may be removed.4 Furthermore, every producible assembly must have the
property that it may either grow into the result, or will grow into an assembly tagged with a black
tile as junk. That is, at any point in the assembly process, we could “vacuum” away all assemblies
tagged with a black tile, knowing that anything remaining is not (yet) junk and can be re-used.
This allows a computation with space bound s and running time t� s to be done in volume O(s),
so long as one uses detachment to ensure that no intermediate assembly grows larger than O(s),
by supplying just enough copies of tiles that are not swept away, and periodically sweeping away
the tagged junk while supplying fresh unattached tiles to carry out more work.5

Note that neither of these tagging models are typically used in other tile self-assembly papers,
but the special implications of negative glue strengths imply that we cannot simply follow the
convention that the seed identifies the result, as discussed below.

Of these, the first three choices are incomparable in terms of power: each choice affords both
advantages and disadvantages in terms of designing a tile assembly system. The latter three choices
are more clear: for each choice, one option makes implementing a correct design strictly more
difficult, but results in a more robust and realistically implementable construction. Respectively,
these choices are 1) detachment and attachment in arbitrary order, 2) finite tile counts, and 3)
tagged junk.

These choices are not completely independent. For instance, there are two (mathematical) uses
for a seed tile: 1) to identify legal attachment events in single-tile addition: attachment is legal
if it is between a single tile and an assembly containing the seed, and 2) to identify the result of
assembly with hierarchical growth: one must allow attachment of tiles separate from the seed, but
identifies legal results as terminal assemblies containing the seed. We separate out these uses by
making the method of “tagging” the result independent of the seed tile, using the seed only to
define which assemblies are producible. With negative glues implying the ability to remove the
seed from an assembly, we must take care to allow attachment events in the seeded model not only
with assemblies containing the seed, but with those derived from the seed.

For this paper we use the model of single-tile addition, irreversible, seeded, detachment and
attachment in arbitrary order, infinite tile counts, and tagged result.

4Actually it is more realistic to assume something like two different black tiles, placed at a certain recognizable
orientation (such as next to each other) to enforce that individual black tiles in solution are not interpreted as
identifying junk until they actually attach to something, but we do not dwell on this issue since we use the tagged
result model.

5To implement such an idea, it may be necessary to obey nontrivial constraints on the tile type composition of the
junk assemblies. For instance, if a Turing machine simulation with tape alphabet {a, b, c, d} has all a and b characters
on the tape for a long time period [t1, t2], then all c and d characters on the tape for another long time period [t3, t4],
then the experimenter would need to supply a and b tile types in time period [t1, t2] but not c and d tile types until
time period [t3, t4], to avoid filling the tube with excess of the tile types that are not being used.
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2.2 Definition of Model

Z and Z+ denote the set of integers and positive integers, respectively. Let G be a finite alphabet of
glues. A tile type is a tuple t ∈ G4, i.e., a unit square with a glue on each side. Associated with the
tile types is a glue strength function str : G×G→ Z that indicates, given two glues g1 and g2, the
strength str(g1, g2) with which they interact. Unlike the standard model [8, 13], our glue strength
function is non-diagonal, meaning that we allow str(g1, g2) 6= 0 even when g1 6= g2. We assume a
finite set T of tile types, but an infinite number of copies of each tile type, each copy referred to
as a tile. Let G(T ) denote the set of all glues of tile types in T . An assembly (a.k.a., supertile)
is a positioning of tiles on the integer lattice Z2 (i.e., a partial function α : Z2 99K T , where 99K
denotes that the function is partial). Each assembly induces a binding graph, a grid graph whose
vertices are tiles, with an edge between two tiles if they are adjacent (i.e., are Euclidean distance
1 apart).6 The assembly is τ -stable, or simply stable if τ is understood from context, if every cut
of its binding graph has weight (strength) at least τ , where the weight of an edge is the strength
of the glue it represents. That is, the assembly is stable if at least energy τ is required to separate
the assembly into two parts. In this paper, where not stated otherwise, we assume that τ = 2.

A tile assembly system (TAS) is a 4-tuple T = (T, str, σ, τ), where T is a finite set of tile
types, str : G(T )×G(T ) → Z is the glue strength function, σ : Z2 99K T is the finite and τ -stable
seed assembly, and τ ∈ Z+ is the temperature. Given a TAS T = (T, str, σ, τ), an assembly α is
producible if either (base case) α = σ, or (recursive case 1) α results from the τ -stable attachment
of a single tile to a producible assembly (“τ -stable attachment” meaning that the cut separating
the tile from the rest of the assembly has strength ≥ τ), or (recursive case 2) α consists of one side
of a cut of strength < τ of a producible assembly. Note in particular that a producible assembly
need not be stable, but may be stabilized by attachments before it can break apart. An assembly
α is terminal if α is τ -stable (so no detachments are possible) and no tile can be τ -stably attached
to α. To formally define our notion of “tagged result” from Section 2.1, let B ⊆ T be a set of
“painted black” tile types. T is B-directed (a.k.a., B-deterministic, B-confluent) if it has exactly
one terminal, producible assembly containing one or more tiles from B.7

To define reversible assembly at temperature τ = 2 (as in [7]), it suffices to define attachment
events with strength threshold τ − 1 = 1, rather than strength threshold τ = 2. This behavior is
illustrated in Figure 1(a), and can be compared with our new notion, whose evolution is shown in
Figure 1(b).

To define unseeded assembly, it suffices to drop σ from the definition of TAS, and define the base
case of a producible assembly as any individual tile. To define hierarchical assembly (a.k.a., two-
handed, multiple tile [1]), it suffices to change the first recursive case to state that legal attachment
events are between any two producible assemblies, such that they can be positioned in such a way
that the cut separating them has strength ≥ τ (i.e., can be stably attached). Then, an assembly α
is terminal if it is τ -stable and for every producible assembly β, α and β cannot be stably attached.
Figure 2 illustrates the new behaviors allowed by the hierarchical variant.

6Previous papers model the binding graph as having edges only between tiles that interact with positive strength.
In the present paper, the presence of negative glue strengths means that we must consider every possible interaction
between adjacent tiles, whether positive, negative, or 0.

7We define this notion of B-directedness but do not henceforth discuss it explicitly, since our main construction
simulates a general “computation”, and B would depend on the goals of the computation being simulated. In our
example construction in Section 4 of simulating steps of a Turing machine, B could, for instance, consist of the tile
types that represent a halting state, so that only a terminal assembly representing the configuration of a halted Turing
machine would be considered the result.
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(a) Reversible model, as defined in [7].
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(b) Irreversible model.

Figure 1: Two different implementations of negative interactions at temperature 2. The slanted
bonds represent a strength of −1. In the reversible model, the tile t3 can attach with a total
strength of 1 (one bond of strength 2 and one of strength −1) and hence is unstable, while with
our definition, t′3 is attached with a total strength of 2 and forces t0 to detach.
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t0
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t2
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t1

(d)
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Figure 2: Typical example of hierarchical assembly, at temperature τ = 2. The segments between
tiles represent the bonds, the number of segments encodes the strength of the bond (here, 1 or 2).
In the seeded, single tile model with seed σ = t0, the assembly at step (b) would be terminal.

3 Limitation of Tile Reuse with Irreversible Reactions

If α is an assembly and p, q ∈ dom α are two adjacent positions in α, with glues gp and gq touching
where the tiles α(p) and α(q) meet, define gα(p, q) = str(gp, gq) to be the strength of their interac-
tion. Let gα(p, q) = 0 if p and q are not adjacent positions. Define Φ(α) = 1

2

∑
p,q∈dom α gα(p, q),

the (negative) free energy of α, to be the sum of all glue strengths between adjacent tiles in the
assembly (the fraction 1

2 corrects for the double counting of pairs of positions).8 In particular, an
assembly consisting of a single tile has free energy 0. If S is a multiset of assemblies (such as that
produced by a TAS with negative glue strengths, considering even the “junk” assemblies that are
discarded after a cut), define the (negative) free energy of S to be the sum of the free energies of
each assembly in S, denoted Φ(S). Note that even postulating an infinite count of tiles, after a
finite number of operations, only finitely many assemblies in S consist of more than one tile, and
each of these is a finite assembly. Therefore Φ(S) <∞ for any multiset S of assemblies producible
by a TAS, even in the case that |S| = ∞ (such as the initial multiset consisting of a countably
infinite number of copies of each individual tile type).

When we discuss the “number of steps” for the assembly process of a TAS, we mean the total
number of attachment and detachment operations. We do not claim that this is a proper model of
“running time”, but it is convenient to think of attachment and detachment events as discrete and
equally-spaced steps, even though they may happen in parallel or with interval times governed by

8The standard definition of free energy is the negative of this quantity, but as in [8] we use its negation so that
the quantity will be positive for stable assemblies. Intuitively, it is the energy required to separate α into individual
tiles, whereas the standard definition is the energy released by such a separation.

7



a continuous distribution.

Theorem 3.1. Let T be a TAS, and let S be a multiset of assemblies producible by T after t ∈ N
steps. Then Φ(S) ≥ t/2.

Proof. Suppose that T has a seed of size 1; otherwise, the free energy we derive for step t will
be even higher, so this assumption does not harm the proof. For i ∈ {0, 1, . . . , t}, let Si denote
the multiset of assemblies after the first i operations, so that St = S and S0 is the multiset of
individual unattached tiles (with a countably infinite number of copies of each tile type). Note that
Φ(S0) = 0. Let A ⊆ {1, 2, . . . , t} be the indices of attachment operations in the first t operations,
and let D = {1, 2, . . . , t} −A be the indices of detachment operations, so that operation i changes
Si−1 to Si.

Each attachment operation increases the free energy by at least τ for a system operating at
temperature τ , since we require a tile attachment to have the property that the cut between the
tile and the rest of the assembly has strength at least τ , and the edges of this cut previously
each contributed 0 to the free energy since they were all unbound. So for Si−1 leading to Si via
attachment, Φ(Si) − Φ(Si−1) ≥ τ . For each detachment operation, the greatest strength cut that
could be broken to create the detachment has strength τ − 1; stronger cuts cannot be broken. This
implies the free energy decreases by at most τ − 1 during a single detachment operation.9 So for
Si−1 leading to Si via detachment, Φ(Si)− Φ(Si−1) ≥ −(τ − 1). Amortizing over all operations,10

we have that

Φ(S) =

t∑
i=1

(Φ(Si)− Φ(Si−1))

=
∑
i∈A

(Φ(Si)− Φ(Si−1)) +
∑
i∈D

(Φ(Si)− Φ(Si−1))

≥
∑
i∈A

τ +
∑
i∈D
−(τ − 1)

= |A|τ − |D|(τ − 1).

Although we posit an infinite number of copies of each tile type, during the first t steps at most
t+1 tiles, denoted as the multiset S′0, can actually participate in assembly operations. Let ci denote
the total number of assemblies in Si that consist of tiles from S′0, so that c0 is simply the total
number of initial tiles that will participate in the first t steps. Each attachment event decreases ci
by one, and each detachment event increases ci by one. Since ci ≤ c0 for all i (we cannot have more
assemblies than there are tiles), this implies that for all i, the number of attachment events in the
first i steps is at least the number of detachment events in the first i steps. Therefore |A| ≥ |D|
and since |A|+ |D| = t, we conclude |A| ≥ t/2, whence the above inequality tells us that

9A single attachment of a tile with negative glue strength can potentially cause a cascade of detachments that,
put together, lead to a large decrease in free energy. However, these are each considered separate detachment events.

10See [2, Section 17.3] for a discussion of amortized analysis, which is a fancy phrase for writing the following sum
in this form.
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Φ(S) ≥ |A|τ − |D|(τ − 1)

≥ |A|τ − |A|(τ − 1)

= |A|
≥ t/2.

The proof works for hierarchical systems, and since single-tile addition systems are simply
hierarchical systems with an extra constraint on legal attachment operations, the proof applies to
single-tile addition systems as well. The proof also works both for seeded and unseeded systems.
As there is no property of the 2D plane or grid graphs employed in our proof, the proof applies to
the irreversible version of the graph-based self-assembly model studied in a reversible context by
Reif, Sahu, and Yin [7].

Since the glue strengths in any given tile system have some maximum value s ∈ Z+, an imme-
diate consequence of Theorem 3.1 is that after t steps, at least t/(2s) sides of tiles are bound. With
the finite tile count assumption, once t is sufficiently large that t/(2s) exceeds the total number of
sides available (i.e., 4 times the total number of tiles in solution), no more sides are available for
binding, and self-assembly necessarily grinds to a halt. This is the sense in which a finite number
of tiles cannot be reused indefinitely.

An interesting question is how tight Theorem 3.1 can be in general. For example, is there
a tile system T that for infinitely many t ∈ N reaches a multiset of assemblies St such that
Φ(St) ≤ t/2 + o(t)?

Some seemingly straightforward attempts to prove Theorem 3.1 fail in ways that illustrate
potentially nonintuitive properties of negative glue strengths. It is not true, for instance, that the
free energy increases monotonically, since it drops whenever a cut of positive strength is detached,
so a straightforward inductive argument fails. Furthermore, it is not even true that the free energy
decreases by at most a constant in between consecutive periods of increase. Even with fixed glue
strengths (4 suffices), for each n ∈ N, it is possible to construct a tile set with the property that there
are two states of the system Si and Sj , with state Si preceding Sj , such that Φ(Si) ≥ Φ(Sj) + n.
But, Theorem 3.1 implies that any attempt to create such a cascade of detachments that drops
the free energy by n requires first attaching even stronger – and ultimately unbreakable – bonds
required to set up the state Si. That is, the free energy can fall arbitrarily far, but in order to
do so it must first climb more than twice as high as it will eventually fall. This phenomenon is
illustrated in Figure 3, where the last stable addition of a tile leads to an arbitrary decrease of the
free energy. This was made possible by the use of stronger strength-4 bonds prior to this event.

There is a natural thermodynamic interpretation of Theorem 3.1: work done by tiles on tiles, in
an irreversible manner, increases the entropy of the system by the second law of thermodynamics,
thus decreasing the potential energy available to do more work. Therefore, any potential energy
stored in the unattached glues is eventually permanently used up if external energy is not supplied
to break these bonds. In our main construction, many junk assemblies are created that are no
longer useful once the tiles in them have been used once. Theorem 3.1 tells us that no amount of
cleverness will allow us to break up those assemblies and reuse the tiles solely through design of
tile types with negative glues; some external force must be supplied to break them apart using a
mechanism not modeled in the aTAM.

Of course, Theorem 3.1, interpreted in light of the molecular interactions that are being modeled
by the aTAM, should not be surprising to any physicist. But we believe it is important to formally
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σ

n tiles

(a) Starting from the seed σ, n − 1 tiles attach
on the left, before a gray tile can be attached
at the bottom.

σ

n tiles

(b) From the gray tile, n− 1 light gray tiles at-
tach on the right, using the bonds on the
top and on the left. The assembly also goes
around these new tiles counter-clockwise,
until σ is reached and forced to detach.

n tiles

(c) Starting from σ, the initial tiles are removed
by negative bonds of strength −2, and re-
placed by n new tiles.

t

n tiles

(d) Once tile t is attached, the final step is the
detachment of the gray tile, followed by the
detachment of the n− 1 light gray tiles one
after the other.

Figure 3: A possible evolution where the stable addition of one tile (marked t) can lead to n tiles
detaching one after the other (black arrows), hence reducing the free energy by n. As usual, the
strength of bonds is represented by the number of segments between tiles, slanted bonds indicating
a negative strength. Note that this is only one among many possible evolutions, since there may
be several cuts of strength lower than τ that can be removed. In particular, at the last step, all
the gray and light gray tiles can detach as one unique big cut, which will in turn break into pieces.

establish the truth of such a statement within the model. One develops more confidence in a
model of reality when it tells us something already known about reality (e.g., the Positive Mass
Theorem [9]).

Theorem 3.1 does not apply to the negative glue strength construction of Reif, Sahu, and Yin [7],
because their model allows reversible reactions. Attempting to apply our proof to their model would
result in the first inequality Φ(Si+1)−Φ(Si) ≥ τ being replaced by Φ(Si+1)−Φ(Si) ≥ τ − 1, which
would result in a final lower bound of 0, instead of t/2, for Φ(S). Intuitively, the reversibility
of reactions implies that attachment and detachment have symmetric effects on the free energy.
But this also implies that their system requires driving the system forward through an unbiased
random walk, taking n2 steps on average to proceed by n net forward steps. Any attempt to speed
up the reaction to make the forward rate of reaction faster than the reverse rate of reaction would
introduce the imbalance in their respective effects on free energy that allows our proof to work.
Therefore this tradeoff in speed versus reusability of tiles is fundamental.
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4 Turing Machine Simulation

seed
assembly

x x

computation

f(x)

x

f(x)

x

f(x)

data computation scaffold cleanup negative glue

(a) (b) (c)

Figure 4: High-level overview of assembly for computation of constant-row computable function f .

Throughout this section, fix some finite alphabet Σ. This section describes the main construction
of this paper, that of a simulation of a s-space-bounded Turing machine with a tile system that
allows no assembly to grow larger than size O(s). The actual construction is a bit more general,
describing the computation of a class of functions, of which the transition function of a Turing
machine is one example. Intuitively, the class of functions are those computable by a constant
number of rows of assembly (although the number of columns is unbounded) in the standard
aTAM. See [8], for a formal definition of the standard aTAM model with nonnegative glue strengths.
Briefly, the standard aTAM is the same as the model defined in Section 2, but glue strengths are
non-negative and are only positive between equal glues.

Definition 4.1. Let T be a set of tile types, and let e : T → Σ. We say that a row of tiles
(a connected subassembly of some assembly of height 1) t1, t2, . . . , tk e-encodes a string x ∈ Σk

if e(t1) = x[1], e(t2) = x[2], . . . , e(tk) = x[k], where x[i] ∈ Σ is the ith symbol in x. A function
f : Σ∗ → Σ∗ is constant-row computable if there exist a tile set T , a function e : T → Σ, and a
constant c such that, for each x ∈ Σ∗, there is a height-1 stable assembly σx : Z2 99K T e-encoding
x such that the tile assembly system T = (T, str, σx, 2) (with str(g1, g2) > 0 ⇐⇒ g1 = g2) has
the unique terminal assembly α, the height of α is c, the bottom row of α is σx, the top row of α
e-encodes f(x), and the leftmost column of any row of α is no further left than the bottom row.

The widths of the rows representing the input and output may be different (i.e., possibly
|x| 6= |f(x)|). In this case, we require only that the leftmost and rightmost tiles of each row have
their glues specially marked to distinguish them from the tile types interior to the row.

Our construction shows how to design a tile set that will compute iterations of any constant-
row computable function f , ensuring that no intermediate assembly grows larger than the size
of the input or output processed by any individual invocation of f . Examples of such functions
include the function f that, given a configuration of a single-tape Turing machine outputs the next
configuration of this Turing machine, or that increments a counter represented in binary.

Figure 4 shows a high-level overview of the entire construction, in terms of a general constant-
row computable function f . For concreteness, think of f as the function that, given a configuration
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data computation scaffoldcopy

10 _ 0q

10 _ 0q

10 _ 0q

10 _ 0q

0 1 _ 0q pre-computation copy

0 1 _ 1 _p transition (compute f)

post-computation copy0 1 _ 1 _p

configuration x = 
- tape 01_0
- state q
- tape head on 4th cell

configuration f(x)
10 _ 1

10 _ 1

_p

_p

(q,0) → (p,1,R)

configuration x

Figure 5: Example of tiles implementing the computation step. Arrows within tiles show order of
growth. In this case f is constant-row computable with constant c = 1. The first and last copy rows,
shown in lighter shade than the center computation tiles, are always present no matter the function
f , and their placement is initiated by the scaffold tiles. However, there is no interaction between the
center computation and scaffold tiles. Note that the data tiles are two rows with strength 1 glues;
this is to make them stable at temperature 2 but not producible (without additional scaffolding)
as they would be if they were a single row connected with strength 2 glues.

of a t-time-bounded, s-space-bounded, single-tape Turing machine, outputs the next configuration
of this Turing machine (extending the tape on the right side only). The construction proceeds as
follows, each label corresponds to a picture in Figure 4.

(a) First, the scaffold tiles (green) connect to the x data assembly (white). The scaffold tiles
initiate the computation of f (blue).

(b) The scaffold “detects” when the computation is finished, in the sense that the green row
above f(x) tiles cannot complete until all of f(x) is present. Then the scaffold tiles grow back
to the first scaffold tile to initiate the removal of f(x) from the tiles surrounding f(x).

(c) Each cleanup tile (red) uses a negative glue strength against the tile “in front of” (on the
path show by the arrows) the cleanup tile, and once this tile is removed, a new cleanup tile
grows in its place to continue the cleanup. The path and bond placements and strengths are
carefully chosen to ensure that no portion of f(x) is removed, until the last step when f(x)
detaches whole from the rest of the tiles.

Note that since f is constant-row computable, the height of the scaffold and cleanup parts are
bounded by a constant and therefore may be hard-coded into the tile set, whereas special glues
mark the horizontal endpoints so that a constant set of tiles may be used for the whole horizontal
length of x and f(x), without constraining their length to be constant.

The simulation of the Turing machine for t steps will then consist of executing this assembly
process for t iterations, using the output assembly f(x) of each iteration as the input assembly x for
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10 _ 0q

10 _ 0q

0 1 _ 0q

0 1 _ 1 _p

0 1 _ 1 _p

10 _ 1

10 _ 1

_p

_p

data computation scaffold cleanup strength -3 glue

10 _ 0q

10 _ 0q

0 1 _ 0q

0 1 _ 1 _p

0 1 _ 1 _p

10 _ 1

10 _ 1

_p

_p

only cut of 
strength < 2

Figure 6: Tiles that position the cleanup tiles. Here the “copy” tiles from Figure 5 are depicted in
the same shade as the computation tiles; now that f(x) has been computed our goal is to remove all
of them from the subassembly representing f(x). The order of growth of the scaffold tiles ensures
that cleanup does not begin until all of f(x) is present.

the next iteration. After each iteration, the width of the remaining “junk” assembly is a constant
plus O(1) + max{|x|, |f(x)|}, and the height is constant since f is constant-row computable, so the
size of the intermediate assemblies is O(max{|x|, |f(x)|}).

Figures 5, 6, and 7 give some more details for the three main steps of Figure 4, respectively
(a), (b), and (c), using the specific example of f mapping a configuration of a single-tape Turing
machine to its next configuration.

Figure 5 shows an example of tiles implementing step (a) of Figure 4, i.e., the computation
of f . The example shows one transition of a single-tape Turing machine, with tape contents 01 0
( standing for blank), in state q, with tape head on the rightmost cell, transitioning to state p,
moving the tape head right, changing the cell’s symbol from 0 to 1, and encountering a blank on the
new rightmost cell. In this case, a new rightmost cell is needed, illustrating how our construction
handles dynamically changing space requirements, but if the tape head were further left in the
row, it would simply fill in copy tiles to the right, just as to the left as shown above, and the row
would stay the same width. At the start and end of a computation, the configuration is copied so
that any strength > 1 bonds used in the computation are on the interior of the computation tiles,
ensuring that only strength-1 bonds must later be broken to separate the data tiles. Each data
assembly on either end of the computation tiles is represented by a two-row assembly with only
single-strength bonds on its interior, which ensures that when detached, the data assembly will be
stable, but that it cannot form on its own without help from the scaffold tiles (which would happen
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10 _ 0q

10 _ 0q
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negative N/S glues 
used to implement 
"cooperation" to 
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Figure 7: Tiles that “clean up” the connections between the output data and the scaffold and
computation tiles to separate them and allow the data tiles to be computed on again. Note that
we use the non-diagonality of the strength function at several points. For example, the west glue
of the tile to which the scaffold tile of Figure 5 initially binds has strength 2 when binding to the
scaffold tile but only strength 1 when binding to the cleanup tiles, to ensure that only the scaffold
can bind initially.

if it were only a single row connected with strength-2 bonds). Each vertical position is hard-coded
into the tile set; i.e., the scaffold tile set “knows” the required height to compute f . However, the
absolute horizontal positions are not encoded into the tiles, only the leftmost and rightmost tiles
of the configuration are specially marked, and all interior tile types representing the same data are
identical.

Figure 6 shows the tiles implementing step (b) of Figure 4, positioning the tiles for cleanup.
The top two rows must use cooperation to tell where is the end of the row underneath, since the
width of the output row is unknown. This is necessary to ensure that cleanup does not proceed
until the computation of f(x) is complete. The strengths of bonds on the leftmost downward-
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growing column must be sufficiently large to ensure that only the proper cut is made when the first
negative-strength glue is applied.

Figure 7 shows the tiles implementing step (c) of Figure 4, “cleaning up” by removing the
output f(x) from the scaffold, computation, and x data tiles. Though not shown, negative strength
interactions are necessary between the second-to-top row of computation tiles and some of the right-
growing cleanup tiles, to ensure that the right end of the row is properly detected. That is, there are
two types of cleanup tiles growing right, one to detach the interior tiles, and one to detach the final
rightmost computation tile. Since the east-west bonds between cleanup tiles are greater than 1, the
negative north-south glue strengths between interior cleanup tiles and the second-to-rightmost blue
tile – and between the rightmost cleanup tile and the interior computation tiles – must be strength
-2 to ensure that the second-to-rightmost blue tile cannot stably attach except where intended.

By designating the halting tile type(s) as “black”, we enforce that the only “result” assembly
is the one representing the final configuration of the Turing machine.

5 Reducing Tile Complexity for Thin Rectangles

In this section we show another simple application of negative glue strengths using techniques
similar to those used in the construction of Section 4.

Aggarwal, Cheng, Goldwasser, Kao, Espanés, and Schweller [1] studied the tile complexity
(number of tile types required to uniquely assembly a shape) of “thin” rectangles. They showed
that for all n and all k < log n/(log log n − log log log n), any tile system that uniquely assembles

an n × k rectangle must have at least Ω(n
1/k

k ) unique tile types. With the model of negative glue
strengths (using both the negativity and the non-diagonality of the strength function) we achieve
tile complexity O

(√
log n

)
. Since we use a non-diagonal glue strength function, by Theorem 6.2

of [1] (which generalizes from n× n squares to any shape that encodes the number n), this upper
bound is asymptotically optimal.11 Curiously, it is easier to create a thick rectangle than a thin
rectangle; we first build a thick rectangle and use negative glues to “cut out” a thinner rectangle of
the same length. By placing a “black” tile in the thin rectangle, the tile system is B-directed by the
definition given in Section 2, so in this sense the tile system uniquely produces the thin rectangle.

Figure 8 shows the details of this construction. The decoding tile types on the left are identical
to the tile types in Figure 5.2 of [1] that encode a natural number n (actually n/2; see below) using
O(
√

log n) tile types (rotated clockwise by 90 degrees). The next group of tiles (“copy”) create a
copy of n to arrange the position of strength-1 glues that will later help to cleanly detach the thin
rectangle. The next group of tiles (“n counter”) count horizontally eastward from n/2 down to 0
(decrementing once every two columns to create n total columns, and using an additional column if
the least significant bit of n is 1) to measure the length of the rectangle. Letm = blog(blog nc+ 1)c+
1. The next group of tiles (“k counter”) counts vertically southward from 2m − k/2 up to 2m, to
determine the height k at which to start cutting the rectangle. For these k counter tiles the most
significant bit is on the right. This can be encoded using m = O(log log n) = o(

√
log n) tile types.

Finally, a constant number of tile types, similar to those of Figure 7, cut out the thin rectangle on
the bottom. The copy rows between the decoding tiles and the first counter are intended to place
strength-1 and strength-2 glues in such a way as to ensure that the final cut separates the thin
rectangle, with no additional tiles attached to it. As with the construction of Section 4, we use

11We note that both the negativity of the glue strengths and the fact that the glue strength function is non-diagonal
are required to achieve this bound.
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Figure 8: Tile system that produces a thin n × k rectangle from the asymptotically optimal
O(
√

log n) unique tile types. The different groups of tile types are listed left-to-right in the legend
in the order they appear during assembly, and the arrows in the assembly help to illustrated when
and where these tiles are placed.

cooperation at the top left of the thin rectangle to allow the red “cut” tiles to know where to turn
southward. Despite the fact that the last cut tile in the row above the rectangle attaches to its east
neighbor with strength 2, because the north glue has only strength 1 (unlike the previous cut tiles
that attached to the north with strength 2), additional cooperative binding strength is required
from the west neighbor to overcome the negative glue on the bottom, which is how we switch to
south-growing cut tiles.
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6 Conclusion

We have shown two main results in the aTAM with negative glue strengths, under the standard
assumption of irreversible attachment, meaning attachments that only occur with strength at least
the temperature τ , versus detachments that can occur on any cut of strength at most τ − 1. The
first result is that the amount of tile reuse afforded by the ability to detach tiles with negative glue
strengths is fundamentally limited. After t steps of assembly, Ω(t) tiles are permanently bound,
unable to detach via negative glue strengths, and can only be detached by supplying external
energy. The second result is a positive result that attempts to make do with this limitation: an
s-space-bounded Turing machine may be simulated for arbitrarily many steps, while ensuring that
no intermediate assembly grows larger than O(s).

Space-bounded computation as an end goal is not the only application of negative glue strengths.
We showed one example application in Section 5: assembly of a thin rectangle from a small number
of tile types. There are other potential applications. Doty, Lutz, Patitz, Summers, and Woods [4]
study the problem of generating uniform random distributions on the finite sets using the inde-
pendent flips of a fair coin afforded by the random selection of competing tile types in the aTAM
(a non-trivial problem when the cardinality of the set is not a power of the number of competing
tile types), and find a tradeoff between the closeness to uniformity of the distribution obtained
and the space required for sampling. They exhibit a construction imposing a perfectly uniformly
distribution on the set {0, 1, . . . , n−1} that assembles a structure of width blog nc+ 1 and expected
height at most 2, essentially implementing von Neumann’s rejection method of flipping blog nc+ 1
fair coins repeatedly and stopping the first time that they encode a number smaller than n. It
is very unlikely (probability at most 2−20) to take more than (say) 20 attempts. But using this
method in a construction such as that of [5],12 in which many (perhaps more than 220) copies of this
experiment repeat throughout assembly, could increase the likelihood of growing too high (suppose
that exceeding 20 rows is too high). Even a single occurrence of a too-high subassembly will destroy
the entire construction. Techniques similar to those in the present paper may be useful to augment
the construction of [5] (which uses a variant of the random number selector of [4]) with negative
glue strengths to implement perfectly uniform selection of random numbers, thus improving the
fidelity of the simulation of [5], while providing an absolute guarantee on the space bound. More
generally, negative glues could be useful in situations in which it is desirable to erase a history of
failed random attempts to self-assemble a structure, so that in the final assembled structure, it
appears as though a correct “guess” was made on the first attempt.

An open problem is to study the capabilities of negative glue strengths with a more constrained
strength function. In our constructions, we heavily used the capability that a tile t uses one glue to
repulse another tile t′ and dislodge it from the assembly, and then uses that same glue to help attach
a new tile. This strategy necessarily implies that the glue must interact with negative strength in
the first case but positive strength in the second, forcing the glue strength function to be non-
diagonal. It may be possible, however, to modify our construction to use a glue strength function
that has all of its non-zero entries confined to the diagonal, so that any interaction, whether positive

12The main construction of [5] shows how a “universal” tile set can be constructed that can be “programmed”
through appropriate selection of a seed assembly to simulate the growth of any tile assembly system in a wide class of
systems termed “locally consistent” (see [5] for details). In this discussion, we are concerned only with the fact that
the construction of [5] 1) requires random numbers to be generated in a bounded space at many points throughout
assembly, and 2) would be improved if the distribution of these numbers were perfectly uniform instead of “close to
uniform” as in [5].
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or negative, is between equal glues. It seems intuitively that diagonal strength functions would be
easier to implement experimentally. This remains an open problem.

It also seems intuitively more plausible to experimentally implement “non-specific” negative
strengths, through some mechanism in which a protrusion on a glue pushes on a neighboring tile,
but it pushes with the same strength regardless of the glue to which it is adjacent. Formally this is
modeled by a strength function str : G×G→ Z with the constraint that if str(g, g′) < 0 for some
g, g′ ∈ G (indicating that g pushes on g′), then for all g′′ ∈ G, str(g, g′′) = str(g, g′) (indicating that
g pushes on all other glues g′′). It remains an open problem to modify our main Turing machine
construction to use a strength function obeying this constraint.

The previous two constraints are formally incompatible. If we assume that negative glues are
easier to implement nonspecifically (due to the use of steric forces or “pushing”), and positive glues
are easier to implement with a diagonal strength function (due to the use of Watson-Crick base
pairing to identify matching glues), then a way to combine the previous two properties is as follows.
If str(g, g′) < 0 for some g, g′ ∈ G, then for all g′′ ∈ G, str(g, g′′) = str(g, g′), and if str(g, g′) > 0,
then g = g′.

Another interesting constraint, considered by Patitz, Schweller, and Summers [6], is that there
is only a single negative glue, and it only repels itself. This is motivated by the idea of implementing
negative glues with magnets, which would push on each other but would not push or pull on the
DNA sticky ends implementing positive strength glues.

Our main construction in Section 4 requires eight different nonzero strength values that range
from −3 to 5. One would expect this to be more difficult to implement experimentally than a
smaller range; indeed, present experimental work struggles with errors even while using only two
strengths, 1 and 2. It is an open question to find the smallest interval of strengths in a temperature
2 system that achieves the result of Section 4.

Other questions related to this work include the experimental aspects of such a model, for
example, how repulsive forces can be realized with DNA tiles, and how to “recycle” the junk
introduced during the assembly.
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