
An Oracle Strongly Separating Deterministic Time

from Nondeterministic Time, via Kolmogorov

Complexity

David Doty∗

Abstract

Hartmanis used Kolmogorov complexity to provide an alternate proof of the classical result
of Baker, Gill, and Solovay that there is an oracle relative to which P is not NP. We refine
the technique to strengthen the result, constructing an oracle relative to which a conjecture of
Lipton is false.

1 Introduction

Hartmanis [3] used time-bounded Kolmogorov complexity to provide an alternate proof of the
classical result of Baker, Gill, and Solovay [1] that there is an oracle separating P and NP.

We strengthen the result to obtain a stronger separation between deterministic time classes and
nondeterministic time classes. Lipton [5, 6] has conjectured that it may be possible to simulate an
arbitrary nondeterministic Turing machine running in time t(n) in much fewer than 2t(n) steps; for
instance, 1.1t(n). Our result implies that this conjecture, if true, requires non-relativizing techniques
to prove.

2 Construction of the Oracle

We use the notation and definitions of complexity classes and Kolmogorov complexity given in [2].

Definition 2.1. Say that n ∈ N is super if log∗ n is an integer; i.e., if n is in the range of the
function f : N→ N defined by the recursion f(0) = 0, and f(n) = 2f(n−1). T ⊂ {0}∗ is a supertally
set if, for all x ∈ T , |x| is super.

For example, the largest supertally set is T̂ = {λ, 0, 02, 04, 016, 065536, 0265536
, 02265536

, . . .}. The
supertally sets are precisely the subsets of T̂ . The property of supertally sets that will be useful is
that, for any n,m ∈ N that are both super, if n < m, then n ≤ logm.

Definition 2.2. Let U denote a universal Turing machine. For all t : N→ N and x ∈ {0, 1}∗, define
Kt(x) = min

π∈{0,1}∗
{ |π| | U(π) = x in t(|x|) steps } to be the t-time-bounded Kolmogorov complexity

of x.
∗University of Western Ontario, London, Ontario, Canada, ddoty@csd.uwo.ca

1

Definition 2.3. For all l, t : N→ N, define K[l, t] =
{
x ∈ {0, 1}∗

∣∣ Kt(x) ≤ l(|x|)
}

.

In other words, K[l, t] is the set of strings x that cannot be computed in time t(|x|) from a
program of length at most l(|x|). Note that, as is usually the case when dealing with Kolmogorov
complexity, both of the bounding functions are in terms of the length of the output of the program.

Lipton [6] conjectured the following.

Conjecture 2.4. For any ε > 0 and time bound t, NTIME(t(n)) ⊆ DTIME(2εt(n)).

Lipton [5] also posed the following question, a negative answer to which would be stronger than
the negation of Conjecture 2.4.

Question 2.5. Is there a constant c < 2 such that, for all time bounds t, every nondeterministic
Turing machine running in time t can be simulated by a deterministic Turing machine running in
time ct(n)?

The next theorem implies that non-relativizing techniques are required to give an affirmative
answer to Question 2.5. The proof is based on Hartmanis’ oracle [3] relative to which P is not
NP, constructed via Kolmogorov complexity (the first proof in [1] used diagonalization). Note
that Conjecture 2.4 is also false relative to this oracle. The oracle constructed (though devised
independently) appears to be similar to one constructed in Li and Vitanyi’s textbook [4, Theorem
7.3.3], which also strengthens Hartmanis’ technique, but for a different purpose, that of constructing
an exponentially low set (an A such that EA = E).

Theorem 2.6. There is an oracle A and language T such that T ∈ NTIMEA(n) and, for all δ > 0,
T 6∈ DTIMEA(2(1−δ)n).

Proof. Let T ∈ DTIME(22n)−DTIME(2n) be a supertally set. It is routine to construct such a set
as in the proof of the time hierarchy theorem.

Define the oracle A as follows. For each n ∈ N, if 0n 6∈ T , then A has no string of length n. If
0n ∈ T , then A contains exactly one string x of length n, chosen to be the first such string not in
K[n − 1, 2n]. In other words, x is the first element of {0, 1}n that cannot be computed in time at
most 2n from a program of length at most n− 1. The abundance of incompressible strings ensures
that such a string exists for all sufficiently large n.

Observe that A ∈ DTIME(22n). To see why, let x ∈ {0, 1}n be the string whose membership in
A is to be decided. If 0n 6∈ T , which can be checked in time 22n by our choice of T , then x 6∈ A. If
0n ∈ T , then we enumerate all programs of length at most n − 1 (of which there are at most 2n),
and simulate each of them for 2n steps. These simulations take at most 22n steps. Then, given
that 0n ∈ T , x ∈ A if and only if x is the first element of {0, 1}n that is not output by one of these
programs. This shows A ∈ DTIME(22n).

T ∈ NTIMEA(n) because x ∈ T if and only if x = 0n for some n ∈ N and there exists y ∈ {0, 1}n
such that y ∈ A. To complete the proof, let δ > 0 and suppose for the sake of contradiction
that T ∈ DTIMEA(2(1−δ)n), via an oracle Turing machine MA running in time 2(1−δ)n. We will
show that this implies T ∈ DTIME(2(1−δ)nn2), which contradicts our choice of T 6∈ DTIME(2n), by
showing how to eliminate the queries to A during the execution of MA.

Let n ∈ N and let q ∈ {0, 1}∗ be a string queried by MA on input 0n, where n is super (we
may assume M immediately rejects all inputs not of this form). If |q| is not super – which can be
checked in time |q| ≤ 2(1−δ)n – then q 6∈ A. So we first check whether |q| is super, and we know

2

that if not, then q 6∈ A. Since at most 2(1−δ)n such queries can be made by M , the totality of all
such checks will take time at most 2(1−δ)n.

Otherwise, if |q| is super and |q| < n, then |q| ≤ log n, since n is also super. Therefore, we can
run the decider for A to answer the query on q in time at most 22|q| ≤ n2. Since at most 2(1−δ)n

such queries can be made by M , the totality of all such executions of the decider for A will take
time at most 2(1−δ)nn2.

Finally, suppose |q| is super and |q| ≥ n. We claim that q 6∈ A, implying that this query
can also be eliminated and therefore T ∈ DTIME(2(1−δ)nn2). Otherwise, suppose for the sake of
contradiction that q ∈ A, and hence q 6∈ K[n−1, 2n]. Let s0, s1, . . . denote the standard enumeration
of {0, 1}∗. Then from the strings

• M (of constant length),

• sn (of length logn, from which M ’s input 0n can be produced), and

• si (i ∈ N representing the order in which q is first queried by M , out of all queries of length
at least n; then i ≤ 2(1−δ)n because of M ’s running time, implying |si| ≤ (1− δ)n),

we can build a program of length (1 − δ)n + log n + O(1) that outputs q in time 2(1−δ)nn2. This
program executes MA(0n) until it makes the ith query on a string of length at least n and outputs
that string. The first i− 1 queries of length at least n simply return “no” since q is the only string
of length at least n in A that is small enough to compute in time 2(1−δ)n (since the next largest
string in A has length at least 2n), and queries of length less than n are handled as described above
by using A’s decider if |q| is super, and simply answering “no” otherwise. For sufficiently large n,
this contradicts the fact that q 6∈ K[n− 1, 2n].

Corollary 2.7. There is an oracle A such that, for all c < 2, NTIMEA(n) 6⊆ DTIMEA(cn).

References

[1] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question. SIAM Journal on
Computing, 4:431–442, 1975.

[2] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II. Springer-Verlag, Berlin, 1990.

[3] J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations.
In Proceedings of the 24th IEEE Symposium on the Foundations of Computer Science, pages
439–445, 1983.

[4] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Springer-Verlag, Berlin, 1997. Second Edition.

[5] Richard Lipton. New ideas on nondeterministic simulation. http://rjlipton.wordpress.
com/2009/05/16/new-ideas-on-nondeterministic-simulation/.

[6] Richard Lipton. Simulation of nondeterministic machines. http://rjlipton.wordpress.com/
2009/05/11/simulation-of-nondeterministic-machines/.

3

