
Probability 1 computation with chemical reaction networks∗

Rachel Cummings† David Doty‡ David Soloveichik§

Abstract

The computational power of stochastic chemical reaction networks (CRNs) varies signifi-
cantly with the output convention and whether or not error is permitted. Focusing on prob-
ability 1 computation, we demonstrate a striking difference between stable computation that
converges to a state where the output cannot change, and the notion of limit-stable computation
where the output eventually stops changing with probability 1. While stable computation is
known to be restricted to semilinear predicates (essentially piecewise linear), we show that limit-
stable computation encompasses the set of predicates φ : N → {0, 1} in ∆0

2 in the arithmetical
hierarchy (a superset of Turing-computable). In finite time, our construction achieves an error-
correction scheme for Turing universal computation. We show an analogous characterization of
the functions f : N → N computable by CRNs with probability 1, which encode their output
into the count of a certain species. This work refines our understanding of the tradeoffs between
error and computational power in CRNs.

1 Introduction

Recent advances in the engineering of complex artificial molecular systems have stimulated new
interest in models of chemical computation. How can chemical reactions process information,
make decisions, and solve problems? A natural model for describing abstract chemical systems
in a well-mixed solution is that of (finite) chemical reaction networks (CRNs), i.e., finite sets of
chemical reactions such as A + B → A + C. Subject to discrete semantics (integer number of
molecules) the model corresponds to a continuous time, discrete state, Markov process. A state of
the system is a vector of non-negative integers specifying the molecular counts of the species (e.g.,
A, B, C), a reaction can occur only when its reactants are present, and transitions between states
correspond to reactions (i.e., when the above reaction occurs the count of B is decreased by 1 and
the count of C increased by 1). CRNs are used extensively to describe natural biochemical systems
in the cellular context. Other natural sciences use the model as well: for example in ecology
an equivalent model is widely employed to describe population dynamics [18]. Recently, CRNs
began serving as a programming language for engineering artificial chemical systems. In particular,
DNA strand displacement systems have the flexibility to realize arbitrarily complex interaction
rules [4, 6, 17], demonstrating that arbitrary CRNs have a chemical implementation. Outside of
chemistry, engineering of sensor networks and robot swarms often uses CRN-like specification rules
to prescribe behavior [2].

∗The first author was supported by NSF grants CCF-1049899 and CCF-1217770, the second author was supported
by NSF grants CCF-1219274 and CCF-1162589 and the Molecular Programming Project under NSF grant 1317694,
and the third author was supported by NIGMS Systems Biology Center grant P50 GM081879.
†Northwestern University, Evanston, IL, USA, rachelc@u.northwestern.edu
‡California Institute of Technology, Pasadena, CA, USA, ddoty@caltech.edu
§University of California, San Francisco, San Francisco, CA, USA, david.soloveichik@ucsf.edu

1

The exploration of the computational power of CRNs rests on a strong theoretical foundation,
with extensive connections to other areas of computing. Similar models have arisen repeatedly in
theoretical computer science: Petri nets [12], vector addition systems [10], population protocols [2],
etc. They share the fundamental feature of severely limited “agents” (molecules), with complex
computation arising only through repeated interactions between multiple agents. In population
protocols it is usually assumed that the population size is constant, while in CRNs molecules could
be created or destroyed1 — and thus different questions are sometimes natural in the two settings.

Informally speaking, we can identify two general kinds of computation in CRNs. In non-uniform
computation, a single CRN computes a function over a finite domain. This is analogous to Boolean
circuits in the sense that any given circuit computes only on inputs of a particular size (number
of bits), and to compute on larger inputs a different circuit is needed. Conversely, in uniform
computation, a single CRN computes on all possible input vectors. This is analogous to Turing
machines that are expected to handle inputs of arbitrary size placed on their (unbounded) input
tape. In this work we focus entirely on uniform computation.

Previous research on uniform computation has emphasized the difference in computational
power between paradigms intended to capture the intuitive notions of error-free and error-prone
computation [7]. In contrast to many other models of computing, a large difference was identified
between the two settings for CRNs. We now review the previously studied probability 1 and
probability < 1 settings. In the main result of this paper we develop an error correction scheme
that reduces the error of the output with time and achieves probability 1 computation in the limit.
Thus, the large distinction between probability 1 and probability < 1 computation surprisingly
disappears in a “limit computing” setting.

The best studied type of probability 1 computation incorporates the stable output criterion
(Table 1, prob correct = 1, stable) and was shown to be limited to semilinear predicates [1] (later
extended to functions [5]). For example, consider the following CRN computing the parity predicate
(a semilinear predicate). The input is encoded in the initial number of molecules of X, and the
output is indicated by species Y (yes) and N (no):

X + Y →N

X +N→Y

Starting with the input count n ∈ N of X, as well as 1Y , the CRN converges to a state where a
molecule of the correct output species is present (Y if n is even and N if n is odd) and the incorrect
output species is absent. From that point on, no reaction can change the output.

1A CRN where reactions can increase or decrease the count of molecules may not be consistent with the conser-
vation of mass for a closed system. In that case the CRN represents the behavior of an open system with an implicit,
potentially unbounded (or replenishable) reservoir.

2

committing stable limit-stable

prob correct = 1 (constant) semilinear [1] ∆0
2 [this work]

prob correct < 1 computable [16] (computable) (∆0
2)

Table 1: Categorizing the computational power of CRNs by output convention and allowed error
probability. In all cases we consider the class of total predicates φ : Nk → {no, yes} (“total”
means φ must be defined on all input values). The input consists of the initial molecular counts
of input species X1, . . . , Xk. Committing : In this output convention, producing any molecules of
N indicates that the output of the whole computation is “no”, and producing any molecules of
Y indicates “yes”. Stable: Let the output of a state be “no” if there are some N molecules and
no Y molecules (and vice versa for “yes”). In the stable output convention, the output of the
whole computation is b ∈ {no, yes} when the CRN reaches a state with output value b from which
every reachable state also has output value b. Limit-stable: The output of the computation is
considered b ∈ {no, yes} when the CRN reaches a state with output b and never changes it again
(even though states with different output may remain reachable). The parenthetical settings have
not been explicitly formalized; however the computational power indicated naturally follows by
extending the results from other settings.2

Motivated by such examples, probability 1 stable computation admits the changing of output as
long as the system converges with probability 1 to an output stable state — a state from which no
sequence of reactions can change the output. In the above example, the states with X absent are
output stable. (Although the limits on stable computation were proven in the population protocols
model [1] they also apply to general CRNs where infinitely many states may be reachable.)

A more stringent output convention requires irreversibly producing N or Y to indicate the
output (i.e., “Y is producible from initial state x” ⇐⇒ “N is not producible from x” ⇐⇒
φ(x) = yes). We term such output convention committing. However, probability 1 committing
computation is restricted to constant predicates (see Table 1, prob correct = 1, committing, and
the footnote therein).

Intuitively, committing computation “knows” when it is done, while stable computation does
not. Nonetheless, stable computation is not necessarily impractical. All semilinear predicates can be
stably computed such that checking for output stability is equivalent to simply inspecting whether
any further reaction is possible — so an outside observer can easily recognize the completion
of computation [3]. While stable CRNs do not know when they are done computing, different
downstream processes can be catalyzed by the N and Y species. As long as these processes can be

2Probability 1 committing computation: Suppose there are two inputs x1,x2 ∈ Nk such that φ(x1) = no and
φ(x2) = yes. Consider any input x3 such that x3 ≥ x1 and x3 ≥ x2. From state x3 we can produce N by
the sequence of reactions from φ(x1), and Y by the sequence of reactions from φ(x2). Both sequences occur with
some non-zero probability, and so the probability of error is non-zero for non-constant predicates. Probability < 1
stable computation: To show that this output convention admits no more than computable predicates, note that the
question of whether there is a sequence of reactions to change the output is computable. Thus, if we are guaranteed
that with probability larger than 1/2 we reach the correct output stable state, then by computing the probabilities
of the (infinite) Markov chain of all reachable states far enough, we are guaranteed to identify the correct output.
Probability < 1 limit-stable computation: Our negative result for probability 1 limit-stable computation can be
modified to apply.

Note that particulars of input encoding generally make a difference for the weaker computational settings. For
instance, probability 1 committing computation can compute more than constant predicates if they are not required
to be total (e.g. a committing CRN can certainly distinguish between two ≤-incomparable inputs). Indeed, from a
non-uniform perspective, this setting is in some sense maximally powerful since arbitrary Boolean circuits can be
computed (with a “dual-rail” encoding of signals).

3

undone by the presence of the opposite species, the overall computation can be in this sense stable
as well. A canonical downstream process is signal amplification in which a much larger population
of N̂ , Ŷ is interconverted by reactions N̂ + Y → Ŷ + Y and Ŷ +N→ N̂ +N . Finally all semilinear
predicates can be stably computed quickly (polylogarithmic in the input molecular counts).

In contrast to the limited computational abilities of the probability 1 settings just now dis-
cussed, tolerating a positive probability of error significantly expands computational power. Indeed
arbitrary computable functions (Turing universal computation) can be computed with the commit-
ting output convention [16]. Turing universal computation can also be fast — the CRN simulation
incurs only a polynomial slowdown. However, error is unavoidable and is due fundamentally to the
inability of CRNs to deterministically detect the absence of species. (Note that Turing universal
computation is only possible in CRNs when the reachable state space, i.e., molecular count, is
unbounded — and is thus not meaningful in population protocols.)

When a CRN is simulating a Turing machine, errors in simulation cannot be avoided. However,
can they be corrected later? In this work we develop an error correction scheme that can be applied
to Turing universal computation that ensures overall output error decreases the longer the CRN
runs. Indeed, in the limit of time going to infinity, with probability 1 the answer is correct.

To capture Turing-universal probability 1 computation with such an error correction process,
a new output convention is needed, since the committing and stable conventions are limited to
much weaker forms of probability 1 computation (Table 1). Limit-stability subtly relaxes the
stability requirement: instead of there being no path to change the output, we require the system
to eventually stop taking such paths with probability 1. To illustrate the difference between the
original notion of stability and our notion of limit-stability, consider the reachability of the empty
state (without any molecules of Y , in which the output is undefined) in the CRN:

∅ 1→Y

Y
1→∅

Y
2→ 2Y

From any reachable state, the empty state is reachable (just execute the second reaction enough
times). However, with probability 1, the empty state is visited only a finite number of times.3 If,
as before, we think of the presence of Y indicating a yes output, then the yes output is never stable
(the empty state is always reachable), but with probability 1 a yes output will be produced and
never change — i.e., it is limit-stable. Thus the above CRN computes the constant predicate φ = 1
under the limit-stable convention but not the stable convention.4

We show that with the limit-stable output convention, errors in Turing universal computation
can be rectified eventually with probability 1. Our construction is based on simulating a register
machine (a.k.a. Minsky counter machine) over and over in an infinite loop, increasing the number of

3The second and third reactions are equivalent to the gambler’s ruin problem [8], which tells us that, because the
probability of increasing the count of Y is twice that of decreasing its count, there is a positive probability that Y ’s
count never reaches 0. The first reaction can only increase this probability. Since whenever Y ’s count reaches 0, we
have another try, eventually with probability 1 we will not stop visiting the state {0Y }.

4The notions of stable and limit-stable are incomparable in the sense that a CRN can compute a predicate under
one convention but not the other. The previous paragraph showed a CRN that limit-stably computes a predicate
but does not stably compute it. To see the other direction, consider removing the first reaction and starting in state
{1N, 1Y }, i.e., a no voter and a yes voter. This state has undefined output, as does any state with positive count of
Y , since there is always an N present. The state {1N, 0Y } is has defined output “no” and is stable (since we removed
the first reaction). Since that state is always reachable, the CRN stably computes the predicate φ = 0. However,
there is a positive probability that {1N, 0Y } is never reached, so the predicate is not computed under the limit-stable
convention.

4

simulated steps each time (dovetailing). Each time the CRN updates its answer to the answer given
by the most recently terminated simulation. While errors may occur during these simulations, our
construction is designed such that with probability 1 only a finite number of errors occur (by the
Borel-Cantelli Lemma), and then after some point the output will stay correct forever. The main
difficulty is ensuring that errors “fail gracefully”: they are allowed to cause the wrong answer to
appear for a finite time, but they cannot, for instance, interfere with the dovetailing itself. We also
show that the expected time to stabilize to the correct output is polynomial in the running time of
the register machine (which, however, is exponentially slower than a Turing machine). This implies
that an outside observer can read out the output after time that is polynomial in the number of
steps of the register machine and be guaranteed the correct output with high probability (as in the
probability < 1 setting), but waiting longer eventually pushes that probability arbitrarily close to
1.

In computability theory, if a Turing machine is allowed to change its output a finite (but
unknown) number of times, then it can decide more than the Turing-computable predicates. Rather,
Turing machines “limit computing” in this manner can decide the larger class of predicates known
as ∆0

2 (the second level of the arithmetical hierarchy [13, 15]). Since in limit-stable probability
1 computation, the CRN can change its output, it is natural to wonder whether the class of
predicates computed also corresponds to ∆0

2. Indeed, we show that the class of predicates limit-
stable computable by CRNs with probability 1 is exactly the ∆0

2 predicates. Note that since
we do not know when the CRN will stop changing its answer5, the output to which a limit-
stable computation converges cannot be practically read out in finite time (analogously to limit
computation with Turing machines).

Relaxing the definition of probability 1 computation further does not increase computational
power. An alternative definition of probability 1 limit-stable computation is to require that as
time goes to infinity, the probability of expressing the correct output approaches 1. In contrast to
limit-stability, the output may change infinitely often, so long as the frequency of time the output
is incorrect approaches 0. Note that this is exactly the distinction between almost sure convergence
and convergence in probability. Our proof that probability 1 limit-stable computation is limited to
∆0

2 predicates applies to this weaker sense of convergence as well, bolstering the generality of our
result. Interestingly, it is still unclear whether in CRNs there is a natural definition of probability
1 computation that exactly corresponds to the class of Turing-computable functions.

In the remainder of this paper we focus on the type of probability 1 computation captured by
the notion of limit-stability, reserving the term probability 1 computation to refer specifically to
probability 1 limit-stable computation.

To our knowledge, the first hints in the CRN literature of probability 1 Turing universal com-
putation occur in ref. [19], where Zavattaro and Cardelli showed that the following question is
uncomputable: Will a given CRN with probability 1 reach a state where no further reactions are
possible? Although their construction relied on repeated simulations of a Turing machine, it did
not use the Borel-Cantelli Lemma, and could not be directly applied to computation with output.

2 Preliminaries

Our main technique uses the following classical result, known as the Borel-Cantelli Lemma:

5Consider the contrast to stable CRN computation. Although stably computing CRNs do not know when they
are finished, an outside observer can compute if the CRN is done – i.e., no sequence of reactions can change the
output, since this is easily reduced to the problems of deciding whether one state is reachable from another, known
to be decidable [11], and deciding if a superset of a state is reachable from another, also decidable [10].

5

Lemma 2.1 (Borel-Cantelli Lemma). Let E0, E1, . . . be an infinite sequence of events in some

probability space, such that
∞∑
i=0

Pr[Ei] <∞. Then Pr[finitely many Ei occur] = 1.

2.1 Computability theory

We use the term predicate (a.k.a. language, decision problem) interchangeably to mean a subset
L ⊆ Nk, or equivalently a function φ : Nk → {0, 1}, such that φ(x) = 1 ⇐⇒ x ∈ L.

We say that a predicate φ : Nk → {0, 1} is limit computable if there is a computable function
r : Nk × N → {0, 1} such that, for all x ∈ Nk, lim

t→∞
r(x, t) = φ(x). The following equivalence is

known as the Shoenfield limit lemma [15]; it is not required to understand our main theorem or
proofs, but it provides an alternative characterization of the limit computable predicates that gives
evidence that the definition is “natural.”

Lemma 2.2 ([14]). A predicate φ is limit computable if and only if it is Turing reducible to the
halting problem.

We write ∆0
2 to denote the class of all limit computable predicates.

2.2 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the set of functions
f : Λ → N. Equivalently, assuming some canonical ordering of the elements of Λ, we view an
element c ∈ NΛ as a vector c ∈ N|Λ| of |Λ| nonnegative integers, with each coordinate “labeled”
by an element of Λ. Given S ∈ Λ and c ∈ NΛ, we refer to c(S) as the count of S in c. We write
c ≤ c′ if c(S) ≤ c′(S) for all S ∈ Λ, and c < c′ if c ≤ c′ and c 6= c′. Given c, c′ ∈ NΛ, we define
the vector component-wise operations of addition c + c′ and subtraction c− c′. For a set ∆ ⊂ Λ,
we view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by assuming c(S) = 0 for all S ∈ Λ \∆.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈ NΛ ×
NΛ×R+, specifying the stoichiometry (amount consumed/produced) of the reactants and products,

respectively, and the rate constant k. For instance, given Λ = {A,B,C}, the reaction A+2B
7.5→A+

3C is represented by the triple 〈(1, 2, 0), (1, 0, 3), 7.5〉. If not specified, assume that the rate constant
k = 1. A chemical reaction network (CRN) is a pair N = (Λ, R), where Λ is a finite set of chemical
species, and R is a finite set of reactions over Λ. A state of a CRN N = (Λ, R) is a vector c ∈ NΛ.

Given a state c and reaction α = 〈r,p〉, we say that α is applicable to c if r ≤ c (i.e., c contains
enough of each of the reactants for the reaction to occur). If α is applicable to c, then write α(c)
to denote the state c+p−r (i.e., the state that results from applying reaction α to c). If c′ = α(c)
for some reaction α ∈ R, we write c→1 c′. An execution sequence E is a finite or infinite sequence
of states E = (c0, c1, c2, . . .) such that, for all i ∈ {1, . . . , |E| − 1}, ci−1 →1 ci. If a finite execution
sequence starts with c and ends with c′, we write c→ c′, and we say that c′ is reachable from c.

2.3 Stable decidability by CRNs

We now review the definition of stable decidability of predicates introduced by Angluin, Aspnes,
and Eisenstat [1]. Although our main theorem concerns probability 1 decidability, not stable
decidability, many of the definitions of this section will be required, so it it useful to review.
Intuitively, some species “vote” for a yes/no answer, and a CRN is a stable decider if it is guaranteed
to reach a consensus vote that cannot change.

6

A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ, φ, s), where (Λ, R) is a CRN,
Σ ⊆ Λ is the set of input species,6 Υ ⊆ Λ is the set of voters, φ : Υ→ {0, 1} is the (Boolean) output
function, and s ∈ NΛ\Σ is the initial context. An input to D is a vector x ∈ NΣ, or equivalently
x ∈ Nk if |Σ| = k; D and x define an initial state i ∈ NΛ as i = s + x (when i and x are considered
as elements of NΛ).7 When i is clear from context, we say that a state c is reachable if i→ c.

We extend φ to a partial function Φ : NΛ 99K {0, 1} as follows. Φ(c) is undefined if either
c(V) = 0 for all V ∈ Υ, or if there exist N,Y ∈ Υ such that c(N) > 0, c(Y) > 0, φ(N) = 0 and
φ(Y) = 1. Otherwise, (∃b ∈ {0, 1})(∀V ∈ Υ)(c(V) > 0 =⇒ φ(V) = b); in this case, the output
Φ(c) of state c is b. In other words Φ(c) = b if some voters are present and they all vote b.

If Φ(y) is defined and every state y′ reachable from y satisfies Φ(y) = Φ(y′), then we say that y
is output stable, i.e., if y is ever reached, then no sequence of reactions can ever change the output.
We say that D stably decides the predicate φ : Nk → {0, 1} if, for all input states x ∈ Nk, for every
state c reachable from x, there is an output stable state y reachable from c such that Φ(y) = φ(x).
In other words, no sequence of reactions (reaching state c) can prevent the CRN from being able
to reach the correct answer (since c→ y and Φ(y) = φ(x)) and staying there if reached (since y is
output stable).

At first glance, this definition appears too weak to claim that the CRN is “guaranteed” to reach
the correct answer. It merely states that the CRN is guaranteed stay in states from which it is
possible to reach the correct answer. If the set of states reachable from the initial state x is finite
(as with all population protocols since the total molecular count is bounded), however, then it is
easy to show that with probability 1, the CRN will eventually reach an output stable state with
the correct answer, assuming the system’s evolution is governed by stochastic chemical kinetics,
defined later.

Why is this true? By the definition of stable decidability, for all reachable states c, there exists
a reaction sequence rc such that some output stable state y is reached after applying rc to c. If
there are a finite number of reachable states, then there exists ε > 0 such that for all reachable
states c, Pr[rc occurs upon reaching c] ≥ ε. For any such state c visited ` times, the probability
that rc is not followed after all ` visits is at most (1−ε)`, which approaches 0 as `→∞. Since some
state c must be visited infinitely often in a reaction sequence that avoids an output stable state
y forever, this implies that the probability is 0 that rc is never followed after reaching c, showing
that “stable computation” implies “probability 1 computation” if the reachable state space is finite.
To see the converse, suppose that a reachable state c exists from which no correct output-stable
state is reachable. Since c is reached with positive probability, the CRN has probability strictly
less than 1 to reach a correct output stable state. Thus, with a finite reachable state space, “stable
computation” and “probability 1 computation” are equivalent.

6In Section 3 and beyond, we restrict attention to the case that |Σ| = 1, i.e., single-integer inputs. Since our main
result will show that the predicates computable with probability 1 by a CRN encompass all of ∆0

2, this restriction
will not be crucial, since any computable encoding function e : Nk → N that represents k-tuples of integers as a single
integer, and its inverse decoding function d : N → Nk, can be computed by the CRN to handle a k-tuples of inputs
that is encoded into the count of a single input species X. Such encoding functions are provably not computable
by semilinear functions, so this distinction is more crucial in the realm of stable computation by CRDs, which are
limited to semilinear predicates and functions [1, 5].

7In other words, species in Λ \Σ must always start with the same counts, and counts of species in Σ are varied to
represent different inputs to D, similarly to a Turing machine that starts with different binary string inputs, but the
Turing machine must always start with the same initial state and tape head position.

7

2.4 Probability 1 decidability by CRNs

In order to define probability 1 computation with CRNs, we first review the model of stochastic
chemical kinetics. It is widely used in quantitative biology and other fields dealing with chemical re-
actions between species present in small counts [9]. It ascribes probabilities to execution sequences,
and also defines the time of reactions.

A reaction is unimolecular if it has one reactant and bimolecular if it has two reactants. We
use no higher-order reactions in this paper.

The kinetics of a CRN is described by a continuous-time Markov process as follows. The system
has some volume v ∈ R+ that affects the transition rates, which may be fixed or allowed to vary over
time; in this paper we assume a constant volume of 1.8 In state c, the propensity of a unimolecular

reaction α : X
k→ . . . in state c is ρ(c, α) = k · c(X). The propensity of a bimolecular reaction

α : X + Y
k→ . . ., where X 6= Y , is ρ(c, α) = k · c(X)·c(Y)

v . The propensity of a bimolecular reaction

α : X + X
k→ . . . is ρ(c, α) = k

2 ·
c(X)·(c(X)−1)

v . The propensity function governs the evolution of
the system as follows. The time until the next reaction occurs is an exponential random variable
with rate ρ(c) =

∑
α∈R ρ(c, α) (note ρ(c) = 0 if and only if no reactions are applicable to c). The

probability that next reaction will be a particular αnext is ρ(c,αnext)
ρ(c) .

We now define probability 1 computation by CRDs. Our definition is based on the limit-stable
output convention as discussed in the introduction. Let D = (Λ, R, Σ, Υ, φ, s) be a CRD. Let
E = (c0, c1, . . .) be an execution sequence of D. In general E could be finite or infinite, depending
on whether D can reach a terminal state (one in which no reaction is applicable); however, in this
paper all CRDs will have no reachable terminal states, so assume E is infinite. We say that E has
a defined output if there exists b ∈ {0, 1} such that, for all but finitely many i ∈ N, Φ(ci) = b.9 In
other words, E eventually stabilizes to a certain answer. In this case, write Φ(E) = b; otherwise,
let Φ(E) be undefined.

If x ∈ Nk, write E(D,x) to denote the random variable representing an execution sequence of
D on input x, resulting from the Markov process described previously. We say that D decides
φ : Nk → {0, 1} with probability 1 if, for all x ∈ Nk, Pr[Φ(E(D,x)) = φ(x)] = 1.

3 Turing-decidable predicates

This section describes how a CRD can decide an arbitrary Turing-decidable predicate with proba-
bility 1. This construction also contains most of the technical details needed to prove our positive
result that CRDs can decide arbitrary ∆0

2 predicates with probability 1. The proof is via simulation
of register machines, which are able to simulate arbitrary Turing machines if at least 3 registers are
used. This section describes the simulation and gives intuition for how it works. Section 4 proves
its correctness. Section 5 shows how to extend the construction to handle ∆0

2 predicates and prove
that no more predicates can be decided with probability 1 by a CRD.

8A common restriction is to assume the finite density constraint, which stipulates that arbitrarily large mass
cannot occupy a fixed volume, and thus the volume must grow proportionally with the total molecular count. With
some minor modifications to ensure relative rates of reactions stay the same (even though all bimolecular reactions
would be slowed down in absolute terms), our construction would work under this assumption, although the time
analysis would change. For the sake of conceptual clarity, we present the construction assuming a constant volume.
The issue is discussed in more detail in Section 4.

9Note that this is equivalent to requiring limi→∞ Φ(ci) = b, hence the term “limit” in the phrase “limit-stable”
comes from this requirement on infinite executions with a well-defined limit output.

8

3.1 Register machines

A register machine M has m registers r1, . . . , rm that can each hold a non-negative integer. M
is programmed by a finite sequence (lines) of instructions. There are four types of instructions:
accept, reject, inc(r), and dec(r,k). For simplicity, we describe our construction for single-
input register machines and thus predicates φ : N → {0, 1}, but it can be easily extended to more
inputs. The input n ∈ N to M is the initial value of register r1, and the remaining m− 1 registers
are used to perform a computation on the input, which by convention are set to 0 initially. The
semantics of execution of M is as follows. The initial line is the first instruction in the sequence.
If the current line is accept or reject, then M halts and accepts or rejects, respectively. If the
current line is inc(r), then register r is incremented, and the next line in the sequence becomes
the current line. If the current line is dec(r,k), then register r is decremented, and the next line
in the sequence becomes the current line, unless r = 0, in which case it is left at 0 and line k
becomes the current line. In other words, M executes a straight-line program, with a “conditional
jump” that occurs when attempting to decrement a 0-valued register. For convenience we assume
there is a fifth type of instruction goto(k), meaning “unconditionally jump to line k”. This can
be indirectly implemented by decrementing a special register r0 that always has value 0, or easily
implemented in a CRN directly. Assuming the machine halts on all inputs, the set of input values
n that cause the machine to accept is then the language/predicate decided by the machine. For
example, the following register machine decides the parity of the initial value of register r1:

1: dec(r1,5)

2: dec(r1,4)

3: goto(1)

4: accept

5: reject

Chemical reaction networks can be used to simulate any register machine through a simple yet
error-prone construction, which is similar to the simulation described in [16]. We now describe the
simulation and highlight the source of error. Although this simulation may be error-prone, the
effect of the errors has a special structure, and our main construction will take advantage of this
structure to keep errors from invalidating the entire computation. Specifically, there is a possibility
of an error precisely when the register machine performs a conditional jump.

For a register machine with l lines of instructions and m registers, create molecular species
L1, . . . , Ll and R1, . . . , Rm, and to represent input n, the initial configuration is {nR1, 1L1}. The
presence of molecule Li is used to indicate that the current line is i. Since the register machine
can only be in one line at a time, there will be exactly one molecule of the form Li present in
the solution at any time. The count of species Rj represents the current value of register rj . The
following table shows the reactions to simulate an instruction of the register machine, assuming the
instruction occurs on line i:

accept Li → HY

reject Li → HN

goto(k) Li → Lk
inc(rj) Li → Li+1 +Rj
dec(rj,k) Li +Rj → Li+1

Li → Lk

The first four reactions are error-free simulations of the corresponding instructions. The final
two reactions are an error-prone way to decrement register rj . If rj = 0, then only the latter

9

reaction is possible, and when it occurs it is a correct simulation of the instruction. However, if
rj > 0 (hence there are a positive number Rj molecules in solution), then either reaction is possible.
While only the former reaction is correct, the latter reaction could still occur. The semantic effect
this has on the register machine being simulated is that, when a decrement dec(rj,k) is possible
because rj > 0, the machine may nondeterministically jump to line k anyway. Our two goals in
the subsequently described construction are 1) to reduce sufficiently the probability of this error
occurring each time a decrement instruction is executed so that with probability 1 errors eventually
stop occurring, and 2) to set up the simulation carefully so that it may recover from any finite
number of errors.10

3.2 Simulating register machine

We will first describe how to modify M to obtain another register machine S that is easier for the
CRD to simulate repeatedly to correct errors. There are two general modifications we make to M
to generate S. The first consists of adding several instructions before M ’s first line and at the end
(denoted line h below). The second consists of adding some instructions before every decrement
of M in order to limit the number of decrements M is allowed to perform. We now describe these
modifications in more detail.

Intuitively, S maintains a bound b ∈ N on the total number of decrements M is allowed to
perform, and S halts if M exceeds this bound.11 Although M halts if no errors occur, an erroneous
jump may take M to a configuration unreachable from the initial configuration, so that M would
not halt even if simulated correctly from that point on. To ensure that S always halts, it stores b in
such a way that errors cannot corrupt its value. S similarly stores M ’s input n in an incorruptible
way. Since we know in advance that M halts on input n but do not know how many steps it will
take, the CRD will simulate S over and over again on the same input, each time incrementing the
bound b, so that eventually b is large enough to allow a complete simulation of M on input n,
assuming no errors.

If the original register machine M has m registers r1, . . . , rm, then the simulating register
machine S will have m + 4 registers: r1, . . . , rm, rin, r

′
in, t, t

′. The first m registers behave exactly
as in M , and the additional 4 registers will be used to help S maintain the input n and bound b.

The registers rin and r′in are used to store the input value n. The input value n is given to S,
and initially stored in rin, and passed to r′in and r1 before any other commands are executed. This
allows the input n to be in register r1 for use by M , while retaining the input value n in r′in for the
next execution of S. We want to enforce the invariant that, even if errors occur, rin + r′in = n, so
that the value n can be restored to register rin when S is restarted. To ensure that this invariant is
maintained, the values of registers rin and r′in change only with one of the two following sequences (or
equivalent CRN implementations of the sequence): dec(rin,k);inc(r′in) or dec(r′in,k);inc(rin).

S is simulated multiple times by the CRD. To make it easier for the CRD to “reset” S by simply
setting the current instruction to be the first line, S assumes that the work registers r2, . . . , rm are

10If the error takes the register machine M to a configuration from which it halts but possibly produces the wrong
answer, then, assuming (1) is accomplished by other means, it is easy to ensure (2): the CRD can simply simulate M
over and over again in an infinite loop, always updating the CRD’s output to be the most recent output of M . Since
(1) ensures that errors eventually stop occurring, all but finitely many simulations of M give the correct answer,
causing the CRD to stabilize on this answer. Most of the complexity of the construction described in the subsequent
sections is to handle the case that the error takes M to a configuration from which it does not halt if simulated
correctly from that point on.

11It is sufficient to bound the number of decrements, rather than total instructions, since we may assume without
loss of generality that M contains no “all-increment” cycles. (If it does then either these lines are not reachable or
M enters an infinite loop.) Thus any infinite computation of M must decrement infinitely often.

10

initially positive and must be set to 0. It sets r1 to 0 before using rin and r′in to initialize r1 to n.
In both pairs of registers rin, r

′
in and t, t′, S sometimes needs to transfer the entire quantity stored

in one register to the other. We describe below a “macro” for this operation, which we call flush.
The following three commands will constitute the flush(r,r′) command for any registers r and r′.

flush(r,r′) i: dec(r,i+ 3)
i+ 1: inc(r′)
i+ 2: goto(i)

While r has a non-zero value, it will be decremented and r′ will be incremented. To flush from
one register into more than one other register, we can increment multiple registers in the place of
line i+ 1 above. We denote this macro as flush(r,r′ and r′′). Note, that if an error occurs in a
flush, the invariant on the sum of the two registers will still be maintained.

To set register r to 0, we use the following macro, denoted empty(r).

empty(r) i: dec(r,i+ 2)
i+ 1: goto(i)

Finally, we introduce one additional macro, move(r,r′,k), which decrements one register r and
increments another r′, unless the first register is 0, in which case neither of them changes and the
machine jumps to line k. This will be useful when we want to argue that the sum r+ r′ is constant
despite error.

move(r,r′,k) i: dec(r,i+ 2)
i+ 1: inc(r′)

The macro move(t,t′,h) is used by S to count down the “timer” register t (while storing its
value in t′), in order to limit the number of decrements M is allowed, by inserting a move(t,t′,h)
instruction before every decrement of M , where line h will halt the computation.

Combining all techniques described above, the first instructions of S when simulating M will
be as follows:

1: empty(r1)

2: empty(r2)
...

m: empty(rm)
m+ 1: flush(r′in,rin)

m+ 2: flush(rin,r
′
in and r1)

m+ 3: flush(t′,t)
m+ 4: first line of M

The first m lines ensure that registers r1, . . . , rm are initialized to zero. Lines m+ 1 and m+ 2
pass the input value n (stored as rin + r′in) to register r1 (input register of M) while still saving the
input value in r′in to be reused the next time S is run. Line m+ 3 passes the full value of t′ to t, so
that the value of register t can be used to bound the number of decrements that M executes. After
line m+ 3, S executes the commands of M , starting with the initial line of M (or, if the initial line
of M is a decrement command, decrementing t before executing the first line of M).

Registers t and t′ are used to record and bound the number of decrements performed by M ,
and their values are modified similarly to rin and r′in so that S maintains the invariant t + t′ = b
throughout each execution. Before every decrement of M , we insert the instruction move(t,t′,h).
S uses lines h and h+ 1 added at the end to halt if M exceeds the decrement bound:

11

h: inc(t)
h+ 1: reject

As S performs each decrement command in M , t is decremented (and t′ is incremented). Thus,
if the value of t is zero, then this means M has exceeded the allowable number of decrements, and
computation halts (with a reject, chosen merely as a convention) immediately after incrementing
t on line h. This final increment ensures that when the CRD simulates S again, the bound b = t+t′

will be 1 larger than it was during the previous execution of S.
Let dn be the number of decrements M makes on input n without errors. If S is run without

errors from an initial configuration (starting on line 1) with rin + r′in = n and t + t′ ≥ dn, then it
will successfully simulate M . Since the invariants on rin + r′in = n and the constant value of t+ t′

are maintained throughout the computation (although t+ t′ increases between each computation)
— even in the face of errors — the only thing required to reset S after it halts is to set the current
line to 1.

3.3 CRD simulation of the modified register machine

We now construct a CRD D to simulate S, while reducing the probability of an error each time
an error could potentially occur. Besides the species described in Section 3.1, we introduce the
following new species: voting species N and Y , an “accuracy” species A, and four “clock” species
C1, C2, C3, and C4. The accuracy and clock species will be used to reduce the probability of error
each time a decrement is simulated.

The initial state of D on input n ∈ N is {nRin, 1L1, 1Y, 1C1} — i.e., start with register rin = n,
initialize the register machine S at line 1, have initial vote “yes” (arbitrary choice), and start the
“clock module” in the first of its four stages.

Recall that the only source of error in the CRD simulation is from the decrement instruction
dec(r,k) when R is present, but the jump reaction Li → Lk occurs instead of the decrement
reaction Li +R→ Li+1. This would cause the CRD to erroneously perform a jump when it should
instead decrement register r. To decrease the probability of this occurring, we can slow down the
jump reaction, thus decreasing the probability of it occurring before the decrement reaction when
R is present.

The following reactions, which we call the “clock module,” implement a random walk that is
biased in the reverse direction, so that C4 is present sporadically, with the bias controlling the
frequency of time C4 is present. The count of “accuracy species” A controls the bias:

C1 → C2, C2 +A→ C1 +A,
C2 → C3, C3 +A→ C2 +A,
C3 → C4, C4 +A→ C3 +A.

We modify the conditional jump reaction to require a molecule of C4 as a reactant:

dec(r,k) Li +R→ L′i
L′i + C4 → Li+1 + C1 +A
Li + C4 → Lk + C1 +A

Increasing the count of species A decreases the expected time until the reaction Ci+1 +A→ Ci+A
occurs, while leaving the expected time until reaction Ci → Ci+1 constant. This has the effect that
C4 is present less frequently, delaying the conditional jump reaction.12

12Intuitively, with an `-stage clock, if there are a molecules of A, the frequency of time that C` is present is less
than 1

a`−1 . A stage ` = 4 clock is used to ensure that the error decreases quickly enough that with probability 1 a
finite number of errors are ever made, and the last error occurs in finite expected time. A more complete analysis of
the clock module is contained in Section 4.

12

We refer to the first reaction implementing dec(r,k) as the decrement reaction and the third
as the jump reaction; note that if #R > 0 then both reactions are possible so they probabilistically
compete (the “correct” reaction in that case is the decrement, and the jump reaction executing
instead would constitute a simulation error). An additional A molecule is produced to lower the
probability of simulation error on the next decrement instruction. Each simulation of dec(r,k)
converts a C4 molecule to C1, which restarts the clock. The reason we convert C4 to C1 is to ensure
that the increase in #A has an immediate effect of lowering the probability of C4 being present
(this is explained in more detail in the proof of Theorem 4.1).

The accept, reject, goto, and inc commands cannot result in errors for the CRD simulation,
so we keep their reactions unchanged from Section 3.1. Assuming the command occurs on line i,
the reactions to simulate each command are given in the following table:

accept Li → HY

reject Li → HN

goto(k) Li → Lk
inc(r) Li → Li+1 +R

After the CRD has completed the simulation and stabilizes, we would like the CRD to store the
output of computation (either HY or HN) and restart. At any time, there is precisely one molecule
of either of the two voting species Y or N and none of the other, representing the CRD’s “current
vote.” The vote is updated after each simulation of S, and S is reset to its initial configuration,
via these reactions:

HY + Y → L1 + Y (3.1)

HY +N → L1 + Y (3.2)

HN + Y → L1 +N (3.3)

HN +N → L1 +N (3.4)

Finally, we give special CRN implementations of the “flush”, “empty”, and “move” macros
explained in Section 3.2. Each of these involves simulating decrements (in addition to other in-
structions), so each decrement performed by each macro must follow the same rule explained above:
increase the count of the species A, and “reset” the clock by consuming C4 and producing C1.

We use the following optimized implementation of the flush macro. Although we give register
machine instructions that have an equivalent effect as the macro, think of the entire macro as a
single line of register machine code. Hence if the macro appears on line i, assume the line after the
macro is i+ 1.13

flush(r,r′)

i: dec(r,i+ 1) Li +R→ L′i +R′

inc(r′) L′i + C4 → Li + C1 +A
goto(i) Li + C4 → Li+1 + C1 +A

If we execute flush(r,r′ and r′′), the extra increment is also done by the first reaction.

13Although there are three instructions and three reactions in this implementation of flush(r,r′), there is not a
1-1 mapping between instructions and reactions; the three reactions collectively have the same effect as the three
instructions, assuming the third reaction does not erroneously happen when the first reaction is possible.

13

flush(r,r′ and r′′)

i: dec(r,i+ 1) Li +R→ L′i +R′ +R′′

inc(r′) L′i + C4 → Li + C1 +A
inc(r′′) Li + C4 → Li+1 + C1 +A
goto(i)

The following is an optimized implementation of the empty macro.

empty(r)

i: dec(r,i+ 1) Li +R→ L′i
goto(i) L′i + C4 → Li + C1 +A

Li + C4 → Li+1 + C1 +A

The following is an optimized implementation of the move macro.

move(r,r′,k)

i: dec(r,k) Li +R→ L′i +R′

inc(r′) L′i + C4 → Li+1 + C1 +A
Li + C4 → Lk + C1 +A

In Section 4, we prove that with probability 1, this CRD decides the predicate decided by M .

3.4 Example of construction of CRD from register machine

In this subsection we give an example of a register machine M that decides a predicate, a register
machine S that simulates M as described in Section 3.2, and a CRD D that simulates S as described
in Section 3.3. The register machine M is the same as in the example of Section 3.1, which decides
the parity of input n.

The machine M requires only the input register r1. Machine S has 5 registers: r1, r, r′, t,
and t′, and extra commands as described in Section 3.3. Finally, machine S can be simulated by a
CRD D with reactions as described in Section 3.3. The initial state of D is {1L1, 1Y, 1C1, nR}. All
three constructions for the example predicate are shown side-by-side in the following table. The
commands in M are vertically aligned with their respective representations in S and the CRN. The
line described as h in Section 3.2 is line 12 in the table.

In addition to reactions in the table, D requires the clock module reactions:

C1 → C2, C2 +A→ C1 +A,
C2 → C3, C3 +A→ C2 +A,
C3 → C4, C4 +A→ C3 +A.

14

M S D
1: empty(r1) L1 +R1 → L′1

L′1 + C4 → L1 + C1 +A
L1 + C4 → L2 + C1 +A

2: flush(r′in,rin) L2 +R′in → L′2 +Rin

L′2 + C4 → L2 + C1 +A
L2 + C4 → L3 + C1 +A

3: flush(rin,r
′
in and r1) L3 +Rin → L′3 +R′in +R1

L′3 + C4 → L3 + C1 +A
L3 + C4 → L4 + C1 +A

4: flush(t′,t) L4 + T ′ → L′4 + T
L′4 + C4 → L4 + C1 +A
L4 + C4 → L5 + C1 +A

1: dec(r1,5)
5: move(t,t′,12) L5 + T → L′5 + T ′

L′5 + C4 → L6 + C1 +A
L5 + C4 → L12 + C1 +A

6: dec(r1,11) L6 +R1 → L′6
L′6 + C4 → L7 + C1 +A
L6 + C4 → L11 + C1 +A

2: dec(r1,4)
7: move(t,t′,12) L7 + T → L′7 + T ′

L′7 + C4 → L8 + C1 +A
L7 + C4 → L12 + C1 +A

8: dec(r1,10) L8 +R1 → L′8
L′8 + C4 → L9 + C1 +A
L8 + C4 → L10 + C1 +A

3: goto(1) 9: goto(5) L9 → L5

4: accept 10: accept L10 → HY

5: reject 11: reject L11 → HN

12: inc(t) L12 → L13 + T
13: reject L13 → HN

update vote HY + Y → L1 + Y
and reset S HY +N → L1 + Y

HN + Y → L1 +N
HN +N → L1 +N

4 Correctness of simulation

In this section we show that the construction of Section 3 is correct. We achieve probability 1
computation in finite expected time, and indeed polynomially related to the number of steps of the
register machine computation.

Theorem 4.1. Let D be the CRD described in Section 3, simulating an arbitrary register machine
M deciding predicate φ : N → {0, 1}. Then D decides φ with probability 1. Furthermore, the
expected time until D stabilizes to the correct answer is O(t8n), where tn is the number of steps M
takes to halt on input n.

Proof. We will show three things. First, so long as S is repeatedly simulated by D, if a finite number
of errors occur, then eventually it correctly simulates M (and therefore D’s voters eventually are

15

updated to the correct value and stay there). Second, with probability 1, D makes only a finite
number of errors in simulating S. Finally, we bound the expected time to stabilize to the correct
answer.

Let n ∈ N be the input to M . We note that the CRD simulation of S may experience errors, but
the errors take a very particular form. If D makes an error, it is because the first and third reactions
below (corresponding to the two branches a decrement instruction might follow) are possible, but
executing the third is an error:

Li +R → L′i

L′i + C4 → Li+1 + C1 +A

Li + C4 → Lk + C1 +A

(This applies similarly if the decrement is on registers rin, r′in, t, or t′, or to similar reactions that
“test species for 0” such as those in empty(rin), flush(rin,r

′
in) move(t,t′,h).) This corresponds

to the command “in line i, decrement register j and go to line i+1, unless the register is 0, in which
case go to line k instead of i+ 1.” The error in simulation can be captured by a modified model of
a register machine in which the following error may occur: when doing this decrement instruction,
even if register j is positive, it is possible for the machine to nondeterministically choose to jump
to line k without decrementing register j.

Even in the face of such errors, S maintains the following useful invariants, which follow by
inspection of the reactions implementing S.

1. rin + r′in = n

2. If S has been simulated by D several times, and in N of these simulations, S’s simulation of
M has “timed out” (the register t decremented to 0 before the simulation of M was complete),
then on the next simulation of S, we will have t+ t′ = N + 1. (In the example in Section 3.4,
this is due to line 12 that increments t, without changing t′, if an attempted move(t,t′,12)
ever failed.)

The above are easy to check by inspection of the machine S. (The example in Section 3.4 is helpful).
Since the initial instructions of S (assuming they are executed without error) reset registers r′in,

t′, and r2, . . . , rm to 0, and they reset r1 to be its correct initial value n, any configuration of S
such that

1. the current line is the first,

2. rin + r′in = n, and

3. t+ t′ is at least the total number of decrements M will do on input n

is a “correct” initial configuration, in the sense that an error-free execution of S from that configu-
ration will result in the same answer as an error-free execution from the original initial configuration
(in which r′in, t′, and r2, . . . , rm start out equal to 0). Since S maintains (2) and (3) even in the
face of errors, this means that to reset S, D needs only to consume the “halt molecule” HY or HN

and produce L1, which is precisely what is done by reactions (3.1), (3.2), (3.3), and (3.4).
Therefore, once D eventually stops making errors in simulating S, then S faithfully simulates

M (from some configuration possibly unreachable from the input), for at most t + t′ decrements
in M , at which point D resets S. At that point, D simulates S repeatedly, and after each time
that S stops its simulation of M because the t register is depleted, the sum t + t′ is incremented.

16

Therefore the sum t+ t′ eventually becomes large enough for S to simulate M completely. At that
point the voters are updated to the correct value and stay there forever.

It remains to show that D is guaranteed to make a finite number of errors in simulating S.
Recall that the only error possible is, on a decrement instruction, to execute a “jump” even when
a register is positive. Each time that a decrement instruction is reached, the count of molecule A
is incremented (whether the decrement or the jump occurs). The “clock” module implements a
biased random walk on the state space {C1, C2, C3, C4} with rate 1 to increment the subscript and
rate equal to the count of A — denoted by ` — to decrement the index. If this Markov process is
in equilibrium, the probability of the process being in state C4 is 1

`3
(see [16] for example). Since

the process starts in state C1, every nonequilibrium distribution reached at any time after starting
assigns lesser probability to state C4, so the probability of the process being in state C4 is at most
1
`3

.
Thus, when simulating a decrement dec(r,k) (on line i), if there is at least one R molecule,

the probability that Li encounters C4 prior to encountering R is at most 1
`3

. At each decrement
instruction (whether the decrement or the jump happens), A’s count is incremented, so for all
` ∈ Z+, the probability of an error on the `’th decrement instruction (counting from the beginning
of the entire execution of D; not just from the beginning of one simulation of S) is at most 1

`3
.

Since
∑∞

`=1
1
`3
< ∞, by the Borel-Cantelli Lemma, the probability that only finitely many errors

occur is 1.14 (In fact, error probability 1
`2

would have sufficed here, but the lower error probability
of 1

`3
will help us derive a finite expected time until errors cease.)

We now derive a bound on the expected time for the register machine simulation to converge
to the correct output. We first establish a bound on the expected total number of steps (of the
simulated register machine), and then use this to bound the expected time. For each `, let P` be
the probability that the last error occurs on the `’th decrement instruction. The probability that
an error occurs on the `’th decrement instruction is at most 1/`3, so P` ≤ 1

`3
. Then, the expected

step (measured over all decrement instructions, not over all steps of the register machine) of the

last error is at most
∑∞

`=1 ` ·
1
`3

= π2

6 . Hence we have only a constant expected number of steps
until the last error.

Because of this, the expected number of steps to stabilization is at most te + tt + tn, where
te = O(1) is the expected number of simulated steps until the last error happens, tn is the expected
number of steps for one simulation of the register machine M to complete, given input n and
assuming no errors happen, and tt is the expected number of steps until the timer T reaches to at
least tn . Since the timer increases by 1 each simulation, tt = O(t2n), so the expected number of
steps until stabilization is at most te + tt + tn = O(1) +O(t2n) + tn = O(t2n).

Now we use this bound on the expected number of steps to bound the expected real time until
stabilization. Each decrement increases the “accuracy” species A. The slowest reaction in the
system is a “jump” of the form Li + C4 → Lk + C1 + A. After ` instructions, the count of A is at
most ` (assuming in the worst case that every executed instruction is a decrement). Lemma A.4
(or Lemma 8 in the journal version) of [16] shows that with a clock module having s stages, the
expected time for the `’th decrement to occur is at most O(`s−1), which is O(`3) since s = 4 in our

case.15 Therefore, all t2n steps take total expected time O(
∑O(t2n)

`=1 `3) = O(t8n).

The proof of Theorem 4.1 assumes a constant volume. Suppose instead we obey the finite density
constraint — discussed in Section 2 — by assuming the volume grows to remain proportional to the

14Recall that the Borel-Cantelli Lemma does not require the events to be independent, and indeed they are not in
our case (e.g., failing to decrement may increase or decrease the chance of error on subsequent decrement instructions.

15They actually show it is O(`s−1v/k), where v is the volume (1 in our case), k is the rate constant on all reactions
(also 1 in our case).

17

current molecular count. Note that if the volume is increased, the rates of bimolecular reactions
decrease while the rates of unimolecular reactions remain unchanged. To avoid possibly increasing
the error probability, we can simply change all unimolecular reactions to be bimolecular with a
catalyst F that has constant count 1. For example, Ci → Ci+1 becomes Ci + F → Ci+1 + F .
In volume 1, this new system behaves identically to the original, since the propensities have not
changed at all. However, since every reaction is now bimolecular, although the absolute rate of
each reaction decreases as the volume increases, the relative rate between any bimolecular reactions
(i.e., each reaction’s probability of being the next reaction to occur from any given configuration)
is identical to the volume 1 case. Thus, the new system with a changing volume behaves identically
to the original system with a fixed volume, except that the expected time per computation step
now increases with the volume.

How does the time analysis change if the finite density constraint is imposed? The expected
time for a step of the register machine simulation is O(#A3 · v) (by Lemma A.4 of [16]). If l steps
have previously occurred, #A = O(`) and v = O(`). (Note that the volume is either dominated by
A or by some register species, but at most one A or one register molecule is created per step.) Thus
the expected time for the `th step increases from `3 to `4 with the finite density constraint. The

expected time until stabilization increases from O(
∑O(t2n)

`=1 `3) = O(t8n) to O(
∑O(t2n)

`=1 `4) = O(t10
n).

5 Limit computable predicates

In this section we extend the technique of Section 3 to show that every ∆0
2 (limit-computable)

predicate is decidable with probability 1 by a CRD (Theorem 5.1). We also show the converse result
(Theorem 5.2) that every predicate decidable with probability 1 by a CRD is in ∆0

2. Theorems 5.1
and 5.2 give our main result, that probability 1 decidability by CRDs is exactly characterized by
the class ∆0

2.

Theorem 5.1. Every ∆0
2 predicate is decidable with probability 1 by a CRD.

Proof. For every ∆0
2 predicate φ : N→ {0, 1}, there is a computable function r : N×N→ {0, 1} such

that, for all n ∈ N, limt→∞ r(n, t) = φ(n). Therefore there is a register machine M that computes
r. As in Section 3, we first construct a register machine S that simulates M in a controlled fashion
that ensures errors in simulation by a CRD will be handled gracefully.

We now argue that the definition of ∆0
2 does not change if we require the register machine

M computing r(n, t) to halt in exactly 2t steps. To see this, let M ′′ be a register machine that
computes r. Define the non-halting register machine M ′ that, on input n, does the following. In
an infinite loop, for t′ = 1, 2, 3, . . ., M ′(n) runs M ′′(n, t′), updating its own output to be the output
of M ′′(n, t′) for the most recent value of t′ for which M ′′(n, t′) produced an output. Define the
halting register machine M that, on input n, t (each input stored in its own register r1 and r2,
respectively), does the following. M(n, t) alternately decrements r2 and then executes the next
instruction of M ′(n), updating its output to match the current output of M ′, and halting when r2

reaches 0. Clearly, M(n, t) halts in exactly 2t steps (or 2t+ 1 if one counts the final halt as its own
step). Also, as t→∞, the largest value of t′ for which M ′(n) simulates M ′′(n, t′) also approaches
∞, which by the definition of r implies that for sufficiently large t, M(n, t) is the correct output.

Similar to Section 3, S uses a “timer” to simulate M(n, t) for at most 2t steps. Unlike in
Section 3, S decrements the timer after every step (not just the decrement steps) and the timer is
incremented by 2 after each execution (in the previous construction, the timer is incremented by 1
and only if M exceeds the time bound). Note that no matter what errors occur, no execution can go
for longer than 2t steps by the timer construction in Section 3. So S will dovetail the computation

18

as before, running M(n, 1) for 2 steps, M(n, 2) for 4 steps, M(n, 3) for 6 steps, etc., and in between
each execution of M(n, t), update its voting species with the most recent answer.

As in the construction of Section 3, so long as the `’th decrement has error probability at most
1
`3

, then by the Borel-Cantelli lemma, with probability 1 a finite number of errors occur. Errors
in the CRD simulating S maintain the input without error and increment the timer value without
error. Thus after the last error occurs, and after t is sufficiently large that r(n, t) = φ(n), the CRD
will stop updating its voter, and the CRD’s output will be correct.

The next theorem shows that only ∆0
2 predicates are decidable with probability 1 by a CRD.

Theorem 5.2. Let the CRD D decide predicate φ : N→ {0, 1} with probability 1. Then φ ∈ ∆0
2.

Proof. It suffices to show that there is a computable function r : N× N→ {0, 1} such that, for all
n ∈ N, limt→∞ r(n, t) = φ(n). The function r is defined for n, t ∈ N as r(n, t) = 1 if the probability
that D is outputting “yes” after exactly t reactions have occurred is at least the probability that
D is outputting “no,” when started in an initial state encoding n, and r(n, t) = 0 otherwise.

To see that r is computable, consider the Turing machine M that, on input (n, t), searches the
set of states reachable from the initial state i of D (with n copies of its input species) by executing
exactly t reactions. Call t the depth of the state; we consider identical states that are encountered
at different depths of the search differently. If c is reachable from i in exactly t reactions, then
write c ∈ REACHt(i).

Each (state,depth) pair (c, t) is assigned a measure µ : NΛ ×N→ [0, 1] recursively as follows.16

The initial state (i, 0) has µ(i, 0) = 1, and all other states c have µ(c, 0) = 0. If state c is reachable
by exactly 1 reaction from exactly ` states c1, . . . , c`, each of which are reachable from i by exactly
t − 1 reactions, with cj followed by a single reaction that occurs as the next reaction in state cj
with probability pj to reach state c, then

µ(c, t) =
∑̀
j=1

pj · µ(cj , t− 1).

That is, µ(c, t) is the probability that after exactly t reactions have occurred from the initial state
i, D is in state c. Each value pj is a rational number computable from the counts of species in state
cj , so µ(c, t) is computable.

For b ∈ {0, 1}, let

µb(t) =
∑

c∈REACHt(i)
Φ(c)=b

µ(c, t).

That is, µb(t) is the probability that, after exactly t reactions, the output of D is b. If D decides φ
with probability 1, then on input n with φ(n) = b, we have lim

t→∞
µb(t) = 1 and lim

t→∞
µ1−b(t) = 0.

M computes µ0(t) and µ1(t) and outputs 1 if µ1(t) ≥ µ0(t) and outputs 0 otherwise. Due to
the limit stated above, for all sufficiently large t, M(n, t) outputs φ(n), whence φ ∈ ∆0

2.

16Technically, we are defining, for each t ∈ N, a measure on the set of all states, giving the state’s probability of
being reached in exactly t steps, so for each t ∈ N, µ(·, t) : NΛ → [0, 1] is a probability measure on NΛ. Since the
evolution of the system is Markovian, once we know the probability µ(c, t) of ending up in state c after precisely t
steps, it does not matter the particular sequence of t − 1 states preceding c that got the system there, in order to
determine probability of the various states that could follow c.

19

6 Computing functions

There is a natural notion of the computation of a function f : N → N with CRNs [5], in which
the count of some “output species” encodes the output f(n). Since a predicate φ : N → {0, 1}
has a finite output range, it is possible for the identity of a single molecule (Y or N) to encode
the output. In the construction of Section 3, this makes it possible for a single reaction (one of
reactions (3.1)-(3.4)) to compare the CRD’s output to the most recent register machine output
and change the CRD’s output only if they disagree. After errors stop, the only “output-checking”
reactions that occur are (3.1) and (3.4), which use the CRD output molecule only as a catalyst,
so the output remains stable. If the output is instead represented by a count of some species,
comparison of the counts of two species necessarily involves consuming them, so it is not obvious
how to do this comparison without altering the count of the output species.

This section describes how to construct a chemical reaction network that can compute an
arbitrary Turing-computable function f : N→ N with probability 1.17 We first formally define the
semantics of such CRNs. A chemical reaction computer (CRC) is a tuple C = (Λ, R,X, Y, σ), where
(Λ, R) is a CRN, X ∈ Λ is the input species, Y ∈ Λ is the output species, and σ ∈ NΛ\{X} is the
initial context.18 As with CRD’s, we require initial configurations x of C with input n ∈ N to obey
x(X) = n and x(S) = σ(S) for all S ∈ Λ \ {X}, calling them valid initial configurations. Given a
configuration c, the output Φ(c) of c is c(Y). Let E = (c0, c1, . . .) be an infinite execution sequence
of C. We say that E has a defined output if there exists m ∈ N such that, for all but finitely many
i ∈ N, Φ(ci) = m.19 In this case, write Φ(E) = m; otherwise, let Φ(E) be undefined. If n ∈ N, write
E(C, n) to denote the random variable representing an execution sequence of C on input n under
the stochastic model defined in Section 2.4. We say that C computes f : N→ N with probability 1
if, for all n ∈ N, Pr[Φ(E(C, n)) = f(n)] = 1.

The intuition behind our construction is as follows. As before, we run register machine simu-
lations repeatedly, decreasing the probability of error after each simulated decrement. After each
run, we compare the register machine output of the current run with the global output held in the
amount of Y . If the amounts do not match, we then use the current machine output to replace
the global output. By the Borel-Cantelli Lemma, at some point simulation errors stop, and the
CRC then stabilizes on the correct output. Importantly, we must be careful to do the comparison
in such a way that we do not affect the value of Y if it is already correct. The only way to do this
is to compare an additional backup copy of Y .

We must be careful to manipulate the current run output and the global output Y , and their
backup copies used in comparison, in such a way that errors cannot confound convergence.20 Besides
the macros defined previously, we will need a way to empty more than one register at a time such
that a particular invariant is maintained. Suppose we have three registers y, ycopy, and y′copy, and
we want to maintain that invariant that y = ycopy + y′copy. We occasionally want to empty these
registers, but maintain the invariant even if we make a simulation error in decrementing them to
0. The following reactions implement this macro on line i:

17As in Section 3, we focus on functions taking single integers as input for the sake of simplifying the discussion.
The ideas carry through just as easily to functions f : Nk → N. One could modify the construction to simply have
extra input registers for a direct encoding, or one could encode several inputs n1, . . . , nk ∈ N into a single integer
n ∈ N using some injective encoding function e : Nk → N, which could be decoded as the first step of the register
machine computation.

18For convenience we are assuming a single input species, so that once we know the initial context of C, we can
equivalently fully describe the input to C as a single natural number n describing the initial count of X.

19Equivalently, limi→∞ Φ(ci) = m.
20An erroneous value of Y can be made permanent if its backup is actually correct — since we only compare the

backup. Thus we must ensure that even in the presence of errors, certain invariants are maintained.

20

empty(y and (ycopy or y′copy))

Li + Y → L′i
L′i + Ycopy → L′′i
L′i + Y ′copy → L′′i
L′′i + C4 → Li + C1 +A
Li + C4 → Li+1 + C1 +A

Note that the correctness of the reactions require that y = ycopy + y′copy initially; in this case, if
the first reaction happens, then #Ycopy + #Y ′copy > 0, so either the second or the third reaction is
guaranteed to be possible.

We now describe how a CRC can compute an arbitrary Turing computable function (any func-
tion computed by some register machine). We will use a similar construction to that described
in Section 3. M is the name of the register machine that computes f , with S simulating M as
in Section 3 (except for the modifications described in this section). Assume the register machine
M does not have accept/reject semantics, and that it has an additional register rout to store its
output, represented by species Rout. Since neither S nor the CRC has accept/reject semantics, we
do not require the special reactions (3.1), (3.2), (3.3), and (3.4) to transfer S’s output to the CRC.
S therefore is designed to run forever, and the CRC simply simply simulates it once.

The first instructions of S before simulating M are similar to those in Section 3. Assuming r1

is the input register of M , r2, . . . , rm are the work registers of M , rout is the output register of M ,
and the value rin + r′in is always equal to the input value n:

1: empty(r1)

2: empty(r2)
...

m: empty(rm)
m+ 1: empty(rout)

m+ 2: flush(r′in,rin)

m+ 3: flush(rin,r
′
in and r1)

m+ 4: flush(t′,t)
m+ 5: first line of M

S will execute move(t,t′,h) before every decrement of M , and line h is inc(t) followed by
goto(1) (i.e., restart the whole simulation, after increasing the bound on the number of decrements
M is allowed).

In addition to the registers described in Section 3, S will also have registers r1
out, r

2
out, ycopy,

y′copy, and y, represented by species R1
out, R

2
out, Ycopy, Y

′
copy, Y . Y is the output species of the CRC;

therefore, we must take care that its value stabilizes.
The species Ycopy and Y ′copy together (through the sum of their counts) will represent a copy of

the output of the CRC; we will maintain the invariant that at all times, #Y = #Ycopy + #Y ′copy.
This will be used to compare the most recently computed output of S to the current output #Y
of the CRC (indirectly, by comparing to #Ycopy), changing the count of Y only if they disagree.
The comparison empties rout; however, after this its value will be needed if the comparison reports
“false”. So prior to the comparison, S copies the value of rout into two registers r1

out and r2
out. S

then compares r1
out to ycopy and, if they are unequal, empties y, ycopy, and y′copy and copies the

value of r2
out into y and ycopy.

To implement the above ideas, the following instructions are added after S is done with the
simulation of M . Assume z is the last line of M .

21

prepare registers for comparison
z + 1: empty(r1

out)

z + 2: empty(r2
out)

z + 3: flush(rout,r
1
out and r2

out)

z + 4: flush(y′copy,ycopy)

if r1
out = ycopy, restart at line 1, else go to line z + 9

z + 5: dec(r1
out,z + 8)

z + 6: move(ycopy,y
′
copy,z + 9)

z + 7: goto(z + 5)
z + 8: move(ycopy,y

′
copy,1)

If lines z + 5 through z + 8 detect that r1
out = ycopy, then S is restarted at line 1. Otherwise,

r1
out 6= ycopy, and S goes to line z+ 9 below, which sets the counts of Ycopy, Y ′copy, and Y to 0, while

maintaining the invariant that #Y = #Ycopy + #Y ′copy even if a simulation error occurs. Then,
S flushes the value stored in the output register r2

out into both Ycopy and Y . This maintains the
invariant #Y = #Ycopy + #Y ′copy since a single reaction in the flush(r2

out,ycopy and y) macro
produces copies of Ycopy and Y simultaneously. The computation then restarts at line 1.

z + 9: empty(y and (ycopy or y′copy))

z + 10: flush(r2
out,ycopy and y)

z + 11: goto(1)

There is a natural extension of the definition of “limit computable” from predicates to functions.
We say that a function f : N→ N is limit computable if there is a computable function r : N×N→ N
such that, for all n ∈ N, lim

t→∞
r(n, t) = f(n).

Theorem 6.1. A function f : N → N is computable with probability 1 by a CRC if and only if it
is limit computable.

Proof. The implication “limit computable” =⇒ “computable with probability 1 by a CRC” follows
by a straightforward modification of the proof of Theorem 5.1, using the simulation described in
this section to simulate a register machine computing r(n, t) on larger and larger values of t, where
lim
t→∞

r(n, t) = f(n).

The reverse direction is similar to the proof of Theorem 5.2. The main difference is that there
are more than two possible outputs. Let f be computed with probability 1 by the CRC C, with
output species Y . Let #n,tY denote the random variable representing the count of Y after exactly
t reactions have occurred from the initial configuration representing input n.

We define r : N× N→ N for all n, t ∈ N by

r(n, t) = min { k ∈ N | (∀m ∈ N) Pr[#n,tY = k] ≥ Pr[#n,tY = m] } ,

i.e., r(n, t) is the integer most likely to be the count of Y after exactly t reactions have occurred,
breaking ties by choosing the smallest such integer. r is computable using the same bread-first
search of the reachability graph of C as in the proof of Theorem 5.2.21 Since C computes f with
probability 1, lim

t→∞
Pr[#n,tY = f(n)] = 1, which implies that lim

t→∞
r(n, t) = f(n), showing that f is

limit computable.
21The definition of r(n, t) appears to require checking an infinite number of possible natural numbers m. However,

only finitely many such natural numbers can have nonzero probability of being the count of Y after exactly t reactions
since there are only a finite number of execution sequences of length t, each terminating in a configuration accounting
for one possible value of #n,tY . Therefore calculating r(n, t) requires only searching through this finite list and
picking the smallest natural number that has maximum probability.

22

7 Conclusion

Some open questions stand out.
Soloveichik, Cook, Winfree, and Bruck [16] showed how a CRN can simulate a Turing machine

with only a polynomial slowdown, although the simulation is correct with probability strictly less
than 1. Our probability 1 simulation of a register machine has a polynomial slowdown, but for
some computations a register machine is necessarily exponentially slower than a Turing machine.22

Question 7.1. Is it possible to compute any Turing computable predicate/function by a CRN
with probability 1, which stabilizes in expected time polynomial in the speed of a Turing machine
computing the same predicate/function?

The next question was mentioned in Section 1.

Question 7.2. Is there a “natural” characterization of probability 1 computation by CRNs in which
the predicates computable by such CRNs are exactly the Turing computable predicates?

Acknowledgements. We thank Shinnosuke Seki, Chris Thachuk, and Luca Cardelli for many
useful and insightful discussions.

References

[1] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semi-
linear. In PODC 2006: Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, pages 292–299, New York, NY, USA, 2006. ACM Press.

[2] James Aspnes and Eric Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98–117, 2007.

[3] Robert Brijder. Output stability and semilinear sets in chemical reaction networks and de-
ciders. In DNA 2014: Proceedings of The 20th International Meeting on DNA Computing and
Molecular Programming, Lecture Notes in Computer Science. Springer, 2014.

[4] Luca Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–428, 2011.

[5] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural Computing, 13(4):517–534, 2014. Preliminary version
appeared in DNA 2012.

[6] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

[7] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and
Erik Winfree, editors, Algorithmic Bioprocesses, pages 543–584. Springer Berlin Heidelberg,
2009.

22For a register machine even to meaningfully “read” an input n requires decrementing the input register at least
n times to get it to 0, whereas a Turing machine can process n’s binary representation in only ≈ logn steps.

23

[8] William Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley,
January 1968.

[9] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[10] Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of Computer
and system Sciences, 3(2):147–195, 1969.

[11] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings of
the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 238–246,
New York, NY, USA, 1981. ACM.

[12] Carl A Petri. Communication with automata. Technical report, DTIC Document, 1966.

[13] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-
Hill Series in Higher Mathematics. McGraw-Hill Book Company, New York-St. Louis-San
Francisco-Toronto-London-Sydney-Hamburg, 1967.

[14] Joseph R. Shoenfield. On degrees of unsolvability. Annals of Mathematics, 69(3):644–653,
1959.

[15] Robert Irving Soare. Interactive computing and relativized computability. Computability:
Turing, Gödel, Church, and beyond (eds. BJ Copeland, CJ Posy, and O. Shagrir), MIT Press,
Cambridge, MA, pages 203–260, 2013.

[16] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615–633, 2008.

[17] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393, 2010. Preliminary
version appeared in DNA 2008.

[18] Vito Volterra. Variazioni e fluttuazioni del numero dindividui in specie animali conviventi.
Mem. Acad. Lincei Roma, 2:31–113, 1926.

[19] Gianluigi Zavattaro and Luca Cardelli. Termination problems in chemical kinetics. CONCUR
2008-Concurrency Theory, pages 477–491, 2008.

24

	Introduction
	Preliminaries
	Computability theory
	Chemical reaction networks
	Stable decidability by CRNs
	Probability 1 decidability by CRNs

	Turing-decidable predicates
	Register machines
	Simulating register machine
	CRD simulation of the modified register machine
	Example of construction of CRD from register machine

	Correctness of simulation
	Limit computable predicates
	Computing functions
	Conclusion

