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Abstract

Resource-bounded dimension is a notion of computational information density of in-
finite sequences based on computationally bounded gamblers. This paper develops the
theory of pushdown dimension and explores its relationship with finite-state dimension.
The pushdown dimension of any sequence is trivially bounded above by its finite-state di-
mension, since a pushdown gambler can simulate any finite-state gambler. We show that
for every rational 0 < d < 1, there exists a sequence with finite-state dimension d whose
pushdown dimension is at most d/2. This provides a stronger quantitative analogue of the
well-known fact that pushdown automata decide strictly more languages than finite-state
automata.
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1 Introduction

The dimension of a set of points was first explored by Hausdorff [9, 16], who showed that
there exist sets of points with fractional dimension, now termed fractals. Infinite sequences
over a finite alphabet can be viewed as points on the unit interval. Lutz [28] showed that
the Hausdorff dimension of a set of infinite sequences could be characterized by the rate at
which money could be taken away from a gambler that is trying to make unbounded money
by betting on all the sequences in the set. In other words, the higher the dimension of a set,
the more random and unpredictable are its elements, and so the more difficult it is to make
money betting on its elements (a precise definition follows in later sections).

Though all singleton sets of sequences – i.e., all individual points – have Hausdorff dimen-
sion 0, by restricting the computational power of the gambler, individual sequences can be
assigned a non-zero dimension. The theory of resource-bounded dimension has shed new and
unexpected light on the connections between fractal dimensions – such as Hausdorff dimen-
sion [16,29] and packing dimension [2,40,41] – and algorithmic compression [5–7,27,29,30,42],
prediction [11, 18], and computational complexity [1, 12–15, 17, 19–23, 28, 32–35]. Resource-
bounded dimension is a measure of the density of information or randomness in a sequence
that is not exploitable by a gambler whose computational power is limited by the resource
bound. For example, the finite-state dimension of a sequence [5] is the degree to which the
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sequence appears random to finite-state machines. This paper concerns the pushdown di-
mension of a sequence [36], the degree to which the sequence appears random to pushdown
machines (finite-state machines equipped with an infinite stack memory).

For a sequence S and a computational resource bound ∆ (such as finite-state or polynomial
time), let dim∆(S) denote the ∆-dimension of S, the information density of S as perceived
by ∆-bounded machines; see [28] for a full definition. If ∆ is more powerful than ∆′, then

0 ≤ dim∆(S) ≤ dim∆′(S) ≤ 1.

Intuitively, a more powerful gambler can make at least as much money as a less powerful
gambler, and hence can tolerate a bigger loss of its winnings on each bet and still make
unbounded money.

A finite-state gambler is a finite-state machine that bets money on the next character
according to its current state. Weighted finite automata, of which finite-state gamblers are
a special case, have also been studied in other contexts [25, 39]. A pushdown gambler is a
finite-state gambler augmented with an infinite stack memory, and it is allowed to vary its
state transition and its bet at each state depending on the character appearing at the top of
the stack. Since any finite-state gambler can be simulated exactly by a pushdown gambler
that makes no use of its stack, pushdown gamblers are at least as powerful as finite-state
gamblers, and hence dimPD(S) ≤ dimFS(S) for all sequences S.

Since pushdown machines are known to decide strictly more languages than finite-state
machines [24], it seems natural to conjecture that there exist sequences with pushdown di-
mension strictly less than their finite-state dimension. We show this conjecture to be true.
Specifically, for every rational 0 < d < 1, there exists a sequence S with dimFS(S) = d such
that dimPD(S) ≤ 1

2dimFS(S). Thus, using the theory of resource-bounded dimension, we
achieve a stronger quantitative separation of the relative computational power of pushdown
machines and finite-state machines.

Our proof technique also gives a new method by which to construct sequences of arbitrary
rational finite-state dimension. Given the binary alphabet {0, 1}, we construct sequences
over the alphabet Σ ⊆ {0, 1}l, for a positive integer l. That is, binary strings of length
l are interpreted as individual characters of Σ. We show that if a sequence S ∈ Σ∞ is
simultaneously interpreted as a sequence T ∈ {0, 1}∞, then the finite-state dimension of T is
“scaled down” by the appropriate amount from the finite-state dimension of S. In particular,
if S ∈ Σ∞ is a sequence with finite-state dimension 1, and |Σ| = 2k ≤ 2l, then the finite-state
dimension of the sequence T ∈ {0, 1}∞ is k/l.

2 Preliminaries

We write Q for the set of all rational numbers, Z for the set of all integers, N for the set of
all natural numbers, Z+ for the set of all positive integers, and R+ for the set of all positive
real numbers. For r ∈ R+, let log r = log2 r. Given a finite set Ω, let ∆Q(Ω) be the set of all
rational probability measures over Ω.

Let Σ be a finite alphabet of characters. Σ∗ is the set of all finite strings over from Σ. The
length of a string w ∈ Σ∗ is denoted by |w|. λ denotes the empty string. For l ∈ N, Σl denotes
the set of all strings w ∈ Σ∗ such that |w| = l. w denotes the reverse of w. For w, y ∈ Σ∗,
wy denotes the concatenation of w and y. For i ≥ 0, wi is recursively defined w0 = λ and
wi = wi−1w for i ≥ 1. Σ∞ is the set of all infinite sequences over Σ. For S ∈ Σ∞ or Σ∗ and
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i, j ∈ N, we write S[i] to denote the ithh character of S, with S[0] being the leftmost character,
and we write S[i . . j] to denote the substring consisting of the ith through jth characters of
S, with S[i . . j] = λ if i > j. We write S � n to denote S[0 . . n − 1], the nth prefix of S. If
n < 0, S � n = λ. For S ∈ Σ∞, we write S[n . .] to denote S without its first n characters; i.e.,
S[0 . . n− 1]S[n . .] = S.

Let w ∈ Σl and S ∈ Σ∞. Define #(w,S � n) to be the number of times w appears as a
substring of S � n, i.e.,

#(w,S � n) = | { i ∈ N | 0 ≤ i ≤ n− |w| and w = S[i . . i + |w| − 1] } |.

Let the frequency of w in S � n be defined

freq(w,S � n) ,
#(w,S � n)
n− |w|+ 1

.

Let the frequency of w in S be defined

freq(w,S) , lim
n→∞

freq(w,S � n) = lim
n→∞

#(w,S � n)
n

when this limit exists. Note that it need not exist; consider, for instance, S = 019090190009000 . . .,
where freq(0, S � n) oscillates forever between 0.1 and 0.9 as n→∞.

We state the following obvious lemma without proof, which states that adding a finite
prefix to a sequence cannot alter the limiting frequency of any substring.

Lemma 2.1. Let S ∈ Σ∞ and w, u ∈ Σ∗. Then, if freq(w,S) is defined,

freq(w,S) = freq(w, uS).

A sequence S ∈ Σ∞ is (Borel) normal if, for every w ∈ Σ∗,

freq(w,S) = |Σ|−|w|.

In other words, S is normal if, for every string length l, all strings of length l occur with the
same frequency.

Note that given S � n and l ≤ n, freq(·, S � n), when restricted to input strings of length
l, defines a probability measure on the set Σl. Accordingly, we can speak of the entropy of
this probability distribution. Let the lth normalized entropy of S be denoted

Hl(S) ,
1

l log |Σ|
lim inf
n→∞

∑
w∈Σl

freq(w,S � n) log
1

freq(w,S � n)
.

Note that Hl(S) exists even if freq(w,S) does not, since the limit inferior is being used. Hl(S)
is the limiting entropy of the distribution of strings of length l in S, normalized by the term

1
l log |Σ| to fall between 0 and 1. Thus, the more uniformly distributed are the strings of length
l in S, the closer Hl(S) is to 1. Let the normalized entropy rate of S be denoted

H(S) , lim
l→∞

Hl(S).

Ziv and Lempel [42] showed that the limit above exists. The closer H(S) is to 1, the closer
S is to normal, and H(S) = 1 if and only if S is normal (see [37] or [3]).
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3 Dimension

3.1 Finite-State Dimension

See [28, 29] for a more comprehensive account of the theory of resource-bounded dimension.
Finite-state dimension is defined as in [5]. In order to define finite-state dimension, we must
first define martingales, s-gales, and finite-state gamblers.

Intuitively, a martingale is a strategy for betting in the following game. The gambler starts
with some initial amount of money d(λ), termed capital, and it reads an infinite sequence S
of bits. The value d(w) represents the capital the martingale has after reading the string w.
At each step, the gambler bets some fraction of its capital on 0, and the remainder on 1. The
capital that was bet on the bit that appears next is doubled, and the remaining capital is
lost. Thus the martingale will make more money on a sequence if a larger fraction of capital
is placed on the bits that actually occur in the sequence. All of the gambler’s money must be
bet, but it can “bet nothing” by betting half of its capital on each bit.

An s-gale is a martingale in which the amount of capital the gambler bet on the bit that
occurred is multiplied by 2s, as opposed to simply 2, after each bit. The lower the value
of s, the faster money is taken away. Note that if a gambler’s martingale is d, then, for all
s ∈ [0,∞), its s-gale is given by d(s)(w) = 2(s−1)|w|d(w).

Definition 3.1. (martingale and s-gale)

1. Given s ∈ R+, an s-gale is a function d : Σ∗ → [0,∞) that, for all w ∈ Σ∗, satisfies

d(w) = 2−s
∑
a∈Σ

d(wa).

2. A martingale is a 1-gale.

Definition 3.2. Let P ⊆ Σ∗. P is a prefix set if no string in P is a proper prefix of any other
string in P .

Note that for any l ∈ Z+, Σl is a prefix set. The following generalization of the Kraft
inequality was given in [29].

Lemma 3.3. Let s ∈ [0,∞). If d(s) is an s-gale and A ⊆ {0, 1}∗ is a prefix set, then for all
u ∈ {0, 1}∗, ∑

w∈A

2−s|w|d(s)(uw) ≤ d(s)(u).

Corollary 3.4. Let s ∈ [0,∞). If d(s) is an s-gale and A ⊆ {0, 1}∗ is a prefix set, then∑
w∈A

2−s|w|d(s)(w) ≤ 1.

A finite-state gambler, informally, is a gambler whose martingale can be computed by a
finite-state machine.

Definition 3.5. (finite-state gambler)
A finite-state gambler is a 5-tuple G = (Q,Σ, δ, β, q0) where
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• Q is a finite set of states,

• Σ is the finite input alphabet,

• δ : Q× Σ→ Q ∪ {⊥} is the transition function,

• β : Q→ ∆Q(Σ) is the betting function,

• q0 ∈ Q is the start state.

We write FSG to denote the set of all finite-state gamblers.
If δ(q, a) = ⊥, for some q ∈ Q and a ∈ Σ, then that transition is undefined. We extend δ

to take strings as input with the function δ∗ : Q× Σ∗ → Q defined by the recursion

δ∗(q, λ) = q,

δ∗(q, wa) = δ(δ∗(q, w), a).

for all q ∈ Q,w ∈ Σ∗, and a ∈ Σ. The function δ∗ is then abbreviated δ and δ(q0, w)
is abbreviated δ(w). Intuitively, this allows us to identify δ(w) as “the state G is in after
reading string w.”

Intuitively, the martingale for a finite-state gambler G is determined as follows. A finite-
state gambler G = (Q,Σ, δ, β, q0) starts in state q0 with initial capital 1. Assuming that after
some time G has capital c and is in state q, the bet (the fraction of current capital) that G
makes on each character a ∈ Σ is given by β(q)(a). Assuming the character b appears next
in the sequence, G then transitions to state δ(q, b), and its capital becomes c · β(q)(b) · |Σ|. If
we are considering instead the s-gale for G, its capital becomes c · β(q)(b) · |Σ|s.

Definition 3.6. (finite-state martingale and s-gale)
Let G be a finite-state gambler.

1. The martingale for G is the function dG : Σ∗ → [0,∞) defined by

dG(λ) = 1
dG(wa) = dG(w) · β(δ(w))(a) · |Σ|

for all w ∈ Σ∗ and a ∈ Σ.

2. The s-gale for G is the function d
(s)
G : Σ∗ → [0,∞) defined by

d
(s)
G (λ) = 1

d
(s)
G (wa) = dG(w) · β(δ(w))(a) · |Σ|s

for all s ∈ R+, w ∈ Σ∗, and a ∈ Σ.

Let G = (Q,Σ, δ, β, q0) be a finite-state gambler. For q ∈ Q, let dG,q be the martingale for
G if G is started in state q instead of q0, and let d

(s)
G,q be the s-gale defined in the same way.

We now define finite-state dimension of a sequence to be the smallest s for which a finite-
state gambler makes infinite money on the sequence, even with tax rate s.
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Definition 3.7. (finite-state dimension)
Let S ∈ Σ∞. The finite-state dimension of S is

dimFS(S) = inf
{

s ∈ [0,∞)
∣∣∣∣ (∃G ∈ FSG) lim sup

n→∞
d

(s)
G (S � n) =∞

}
.

Thus, if s > dimFS(S), then there is a finite-state gambler G that s-succeeds on S, meaning
G can make unlimited money betting on S, even if its winnings are multiplied by |Σ|s−1 after
every character.

Let Σ,Σ′ be finite alphabets with Σ ⊆ Σ′, and let S ∈ Σ∞. Let dim(Σ′)
FS (S) be the finite-

state dimension of S when considered as a sequence over the alphabet Σ′, even though S

is actually composed only of characters from Σ. The next lemma shows that dim(Σ′)
FS (S) is

completely determined by dim(Σ)
FS (S).

Lemma 3.8. Let S ∈ Σ∞, and let Σ ⊆ Σ′. Then

dim(Σ′)
FS (S) =

log |Σ|
log |Σ′|

dim(Σ)
FS (S).

Proof. We first show that dim(Σ′)
FS (S) ≤ log |Σ|

log |Σ′|dim(Σ)
FS (S). Let s > dim(Σ)

FS (S). Then there
exists a finite-state gambler G = (Q,Σ, δ, β, q0) that s-succeeds on S. Construct the finite-
state gambler G′ = (Q′,Σ′, δ′, β′, q′0) as follows

• Q′ = Q,

• δ′(q, a) =
{

δ(q, a), if a ∈ Σ
⊥, otherwise

,

• β′(q)(a) =
{

β(q)(a), if a ∈ Σ
0, otherwise

,

• q′0 = q0.

Since S contains no characters from Σ′ − Σ, for all n ∈ N,

dG′(S � n) =
(
|Σ′|
|Σ|

)n

dG(S � n).

Let t = s log |Σ|
log |Σ′| . Then

d
(t)
G′ (S � n) , |Σ′|(t−1)ndG′(S � n)

= |Σ′|(t−1)n

(
|Σ′|
|Σ|

)n

dG(S � n)

=
(
|Σ′|t

|Σ|

)n

dG(S � n)

= |Σ|(s−1)ndG(S � n) substituting t = s
log |Σ|
log |Σ′|

, d
(s)
G (S � n).
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Thus G′ t-succeeds on S, since G s-succeeds on S. Since this holds for every s > dim(Σ)
FS (S),

dim(Σ′)
FS (S) ≤ log |Σ|

log |Σ′|dim(Σ)
FS (S).

We next show that dim(Σ′)
FS (S) ≥ log |Σ|

log |Σ′|dim(Σ)
FS (S). Let t > dim(Σ′)

FS (S). Then there exists a
finite-state gambler G = (Q,Σ′, δ, β, q0) that t-succeeds on S. Since S contains no characters
from Σ′−Σ, assume without loss of generality that β(q, a) = 0 for all q ∈ Q and all a ∈ Σ′−Σ.
This assumption can be made for the following reason. If a gambler does bet non-zero capital
on a ∈ Σ′ − Σ, we can always construct a gambler that takes the capital G bets on a and
uniformly distributes it to the remaining characters in Σ. Since a does not appear in S,
this new gambler will make strictly more money than the old one, and hence will s-succeed
whenever the old gambler does.

Then a straightforward reversal of the previous direction of the proof suffices to show
that there is a gambler G′ = (Q′,Σ, δ′, β′, q′0) that s-succeeds on S, where s = t log |Σ′|

log |Σ| . This

establishes that dim(Σ′)
FS (S) ≥ log |Σ|

log |Σ′|dim(Σ)
FS (S).

3.2 Pushdown Dimension

Pushdown gamblers are nothing more than finite-state gamblers that make use of an un-
bounded stack memory, the top character of which can be used to inform the transition and
betting functions. Additionally, a pushdown gambler is allowed to delay reading the next
character of the input – it reads λ from the input – in order to alter the contents of the stack.
During such a λ-transition, the gambler’s capital remains unchanged.

Definition 3.9. (pushdown gambler)
A pushdown gambler is a 7-tuple P = (Q,Σ,Γ, δ, β, q0, z), where

• Q is a finite set of states,

• Σ is the finite input alphabet,

• Γ is the finite stack alphabet,

• δ : Q× Γ× (Σ ∪ {λ})→ (Q× Γ∗) ∪ {⊥} is the transition function,

• β : Q× Γ→ ∆Q(Σ) is the betting function,

• q0 ∈ Q is the start state,

• z ∈ Γ is the stack start symbol.

We write PDG to denote the set of all pushdown gamblers.
Note that the transition function δ outputs a next state and a string w ∈ Γ∗. The

interpretation is that the top character on the stack is always popped and replaced with
the string w. If a ∈ Γ is the symbol currently on top of the stack, and P needs to add a
character b ∈ Γ to the top, it pushes the string ba. If P needs to leave the contents of the
stack unchanged, it pushes the string a. If P needs to pop a character, it pushes the string
λ. The strings are pushed in reverse order; the last character of the string is pushed first.

Note also that the transition function δ accepts λ as an input character in addition to
elements of Σ. This is because P has the option not to read an input character and instead
only to alter the stack. To enforce determinism, we require at least one of the following hold
for all q ∈ Q and all a ∈ Γ.
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1. δ(q, a, λ) = ⊥, or

2. δ(q, a, b) = ⊥ for all b ∈ Σ.

The determinism condition requires that the pushdown gambler cannot have the nondeter-
ministic choice to read 0 or 1 characters; the number of characters read is entirely a function
of the gambler’s state and the character at the top of the stack.

We must also handle the special case that the stack start symbol gets popped. Since
this represents the bottom of the stack, we restrict δ so that z cannot be removed from the
bottom. We restrict δ so that, for every q ∈ Q and a ∈ {λ} ∪ Σ, either

δ(q, z, a) = ⊥

or
δ(q, z, a) = (q′, vz)

where q′ ∈ Q and v ∈ Γ∗.
As before, if δ(q, a, b) = ⊥ for some q ∈ Q, a ∈ Γ, and b ∈ {λ} ∪Σ, then that transition is

undefined. We extend δ to the transition function

δ∗ : Q× Γ+ × ({λ} ∪ Σ)→ (Q× Γ∗) ∪ {⊥},

defined for all q ∈ Q, a ∈ Γ, v ∈ Γ∗, and b ∈ Σ as follows.

δ∗(q, av, b) =
{

(δQ(q, a, b), δΓ(q, a, b)v), if δ(q, a, b) 6= ⊥;
⊥, otherwise.

where δ(q, a, b) = (δQ(q, a, b), δΓ(q, a, b)). δ∗ is then abbreviated as δ. We then use the
extended transition function

δ∗∗ : Q× Γ+ × Σ∗ → (Q× Γ∗) ∪ {⊥},

in analogy to that used with finite-state gamblers, defined for all q ∈ Q, a ∈ Γ, v ∈ Γ∗, w ∈ Σ∗,
and b ∈ Σ by

δ∗∗(q, av, λ) =
{

δ∗∗(δ(q, av, λ), λ), if δ(q, av, λ) 6= ⊥
(q, av), otherwise

,

δ∗∗(q, av, wb) =


δ∗∗(δ(δ∗∗(q, av, w), λ), b), if δ∗∗(q, av, w) 6= ⊥ and δ(δ∗∗(q, av, w), λ) 6= ⊥
δ(δ∗∗(q, av, w), b), if δ∗∗(q, av, w) 6= ⊥ and δ(δ∗∗(q, av, w), λ) = ⊥
⊥, otherwise

.

We then abbreviate δ∗∗ to δ, and δ(q0, z, w) to δ(w). Informally, this allows us to use δ(w)
as shorthand for “the configuration (state and contents of the stack) of the gambler P after
reading string w”.

We also extend β for convenience to the function

β∗ : Q× Γ+ → ∆Q(Σ),

defined for all q ∈ Q, a ∈ Γ, and v ∈ Γ∗ by

β∗(q, av) = β(q, a).
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β∗ is then abbreviated β. β∗(q, av)(b) means, informally, “The amount bet on character b
when in state q, when the string av is on the stack.” Note that only the top character a of
av can affect any single bet, but for the purpose of examining multiple steps of the gambler,
it is necessary to keep track of the entire contents of the stack, since they may change from
step to step.

Given a pushdown gambler P , define the martingale dP and the s-gale dP exactly as in
the case of finite-state gambler. Pushdown dimension is then defined in exact analogy to
finite-state dimension.

Definition 3.10. (pushdown dimension)
Let S ∈ Σ∞. The pushdown dimension of S is

dimPD(S) = inf
{

s ∈ [0,∞)
∣∣∣∣ (∃P ∈ PDG) lim sup

n→∞
d

(s)
P (S � n) =∞

}
.

4 Finite-State Dimension versus Pushdown Dimension

In this section we show that finite-state dimension may exceed pushdown dimension.
We use the technique mentioned in the introduction to construct a sequence over the

“alphabet” Σ ( {0, 1}l of arbitrary rational finite-state dimension. We then add “marker
characters” – elements of {0, 1}l that are not contained in Σ – to this sequence, without
changing its finite-state dimension. These markers are intended to help a pushdown gambler
delimit certain points in the sequence when it should stop pushing bits on its stack and begin
popping the contents of its stack to bet better than a finite-state gambler could. The bits
following the marker are simply the reverse of the bits before the marker, so the pushdown
gambler knows exactly how to bet to double its money on every bit until the stack is empty,
at which point it begins anew. Because the pushdown gambler acts like a finite-state gambler
for half of the sequence, and it bets optimally on the other half of the sequence, the sequence
has pushdown dimension no greater than half of its finite-state dimension.

4.1 Marker Characters and Finite-State Dimension

This section establishes that adding marker characters to a sequence, where the marker is not
in the alphabet of the sequence, does not alter the finite-state dimension of the sequence, as
long as the markers are spaced far enough apart. In other words, the addition of the markers
cannot significantly hurt or help a finite-state gambler.

Recall that, for S ∈ Σ∞,

H(S) , lim
l→∞

1
l log |Σ|

lim inf
n→∞

∑
w∈Σl

freq(w,S � n) log
1

freq(w,S � n)
.

Let
Ĥ(S) , lim

l→∞

1
l log |Σ|

lim sup
n→∞

∑
w∈Σl

freq(w,S � n) log
1

freq(w,S � n)
.

Ziv and Lempel [42] showed that
ρ̂FS(S) = Ĥ(S),

9



where ρ̂FS(S) is the optimal compression ratio achievable by any finite-state compressor (see
[42] or [5] for a more complete description). Dai, Lathrop, Lutz, and Mayordomo [5] showed
that dimFS(S) is identical to a slightly modified form of ρ̂FS(S).

A straightforward modification of the proof of Lempel and Ziv, combined with the result
of [5], yields the following lemma. (See also [3] for a self-contained proof.)

Lemma 4.1 (Ziv and Lempel [42]). Let S ∈ Σ∞. Then

dimFS(S) = H(S).

Corollary 4.2. Let S ∈ Σ∞. Then

dimFS(S) = 1 ⇐⇒ S is normal.

Let Σ be an alphabet. Let Σm = Σ ∪ {m}, where m 6∈ Σ is a marker character. Recall
that dim(Σm)

FS (S) is the finite-state dimension of S when considered as a sequence over the
alphabet Σm, even if it is actually composed only of characters from Σ ( Σm. The next
lemma shows that the addition of marker characters to a sequence cannot alter its finite-state
dimension, as long as the marker characters are placed increasingly far apart.

Lemma 4.3. Let S ∈ Σ∞. Let S′ ∈ Σ∞
m be constructed from S by inserting the character m

after positions i1 < i2 < i3 . . . in S such that the function f(j) = ij+1 − ij is nondecreasing
and unbounded. Then

dim(Σm)
FS (S′) = dim(Σm)

FS (S).

Proof. Let S and S′ be as in the statement of the lemma. Let l ∈ Z+, and let w ∈ Σl.
Let there be kn insertions of the marker character m in S � n (i.e., the insertion indices

satisfy 1 ≤ i1 < i2 < . . . < ikn ≤ n < ikn+1). Then S′ � (n + kn) is the prefix of S′

“corresponding” to S � n. Note that freq(m, S′ � (n + kn)) = kn
n+kn

.
Since f(j) = ij+1 − ij is non-decreasing and unbounded, for all p ∈ N, there exists

np ∈ N such that all markers after position np are at least p characters apart. Hence
freq(m,S′[np . .]) ≤ 1

p . By Lemma 2.1, freq(m,S′) ≤ 1
p . Since this holds for all p ∈ N,

freq(m,S′) = 0. Since freq(m,S′ � (n + kn)) = kn
n+kn

, then kn = o(n); kn grows strictly slower
than n.

Since there are kn occurrences of m in S′ � (n + kn), there are kn(l − 1) substrings of
length l in S � n that could have been changed by having an m inserted into them. In the
worst case, every one of these substrings was our chosen string w. Thus

#(w,S′ � (n + kn))︸ ︷︷ ︸
# of w in S′ � (n + kn)

≥ #(w,S � n)︸ ︷︷ ︸
# of w in S � n

− kn(l − 1)︸ ︷︷ ︸
# of w in S � n that
could have changed

(4.1)

Since w ∈ Σl, it does not contain an m. Adding m’s to S cannot add more w’s to S. Thus

#(w,S′ � (n + kn)) ≤ #(w,S � n) (4.2)

10



Recall that kn = o(n). Thus

lim
n→∞

(
freq(w,S′ � (n + kn))− freq(w,S � n)

)
= lim

n→∞

(
#(w,S′ � (n + kn))

n + kn − l + 1
− #(w,S � n)

n− l + 1

)
≥ lim

n→∞

(
#(w,S � n)− kn(l − 1)

n + kn − l + 1
− #(w,S � n)

n− l + 1

)
by (4.1)

= lim
n→∞

(
#(w,S � n)− kn(l − 1)

n− l + 1
− #(w,S � n)

n− l + 1

)
since kn = o(n)

= lim
n→∞

(
−kn(l − 1)
n− l + 1

)
= 0, since kn = o(n)

and

lim
n→∞

(
freq(w,S′ � (n + kn))− freq(w,S � n)

)
= lim

n→∞

(
#(w,S′ � (n + kn))

n + kn − l + 1
− #(w,S � n)

n− l + 1

)
≤ lim

n→∞

(
#(w,S � n)

n + kn − l + 1
− #(w,S � n)

n− l + 1

)
by (4.2)

= lim
n→∞

(
#(w,S � n)
n− l + 1

− #(w,S � n)
n− l + 1

)
since kn = o(n)

= 0.

Thus
lim

n→∞

(
freq(w,S′ � (n + kn))− freq(w,S � n)

)
= 0.

This establishes that freq(w,S � n) and freq(w,S′ � (n+kn)) approach each other as n→∞,
for all w ∈ Σl. Let w′ ∈ Σl

m − Σl. Then freq(w′, S � n) = 0 for all n, since no m’s appear in
S. Since freq(m, S′) = 0,

freq(w′, S′) , lim
n→∞

#(w′, S′ � n)
n

≤ lim
n→∞

l#(m,S′ � n)
n

= l · freq(m,S′)
= 0,

where the inequality follows from the fact that for each m that appears in S′ � n, at most l
substrings of length l in S′ � n could have that m in them, and hence belong to Σl

m −Σl. By
the non-negativity of freq, freq(w′, S′) = 0 = freq(w′, S), implying

lim
n→∞

(
freq(w′, S � n)− freq(w′, S′ � (n + kn))

)
= 0

for all w′ ∈ Σl
m − Σl. Hence,(
∀w ∈ Σl

m

)
lim

n→∞

(
freq(w,S′ � (n + kn))− freq(w,S � n)

)
= 0. (4.3)
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Thus

Hl(S′) ,
1

l log |Σm|
lim inf
n→∞

∑
w∈Σl

m

freq(w,S′ � n) log
1

freq(w,S′ � n)

=
1

l log |Σm|
lim inf
n→∞

∑
w∈Σl

m

freq(w,S′ � (n + kn)) log
1

freq(w,S′ � (n + kn))

=
1

l log |Σm|
lim inf
n→∞

∑
w∈Σl

m

freq(w,S � n) log
1

freq(w,S � n)
by (4.3)

, Hl(S).

Since this holds for all l, H(S) = H(S′). By Lemma 4.1, dim(Σm)
FS (S) = dim(Σm)

FS (S′).

4.2 Bitstring Characters and Finite-State Dimension

In this section, we will interpret bitstrings of length l to be characters, the alphabet of the
sequence will be a subset of {0, 1}l − {1l}, and the marker “character” will be 1l.

An infinite binary sequence S ∈ {0, 1}∞ will then be simultaneously interpreted as an
infinite sequence S ∈ A∞, where A ( {0, 1}l. In other words, every l bits of S will constitute
1 character from A. We interpret dim({0,1})

FS (S) to be the finite-state dimension of S when
S is viewed as an infinite binary sequence, and we interpret dim(A)

FS (S) to be the finite-state
dimension of S when viewed as an infinite sequence over A.

Note that this interpretation of dim(A)
FS (S) is different from the meaning of dim(A)

FS (S) when
{0, 1} ⊆ A (i.e., in the sense of Lemma 3.8). In the current case, the boundaries between
characters actually change when moving from alphabet {0, 1} to alphabet A, in that a string
of l bits is required to constitute one character of A. In the former case, for Σ ⊆ Σ′ and
S ∈ Σ∞, dim(Σ′)

FS (S) treats each character a ∈ Σ in S as a character from Σ′. We rely on
context to distinguish these two scenarios.

The following theorem establishes the relationship between the finite-state dimension of
a binary sequence and its finite-state dimension when viewed as a sequence over A ⊆ {0, 1}l.

Theorem 4.4. Let l ∈ Z+ and ∅ 6= A ⊆ {0, 1}l. Then, for all S ∈ A∞,

dim({0,1})
FS (S) =

log |A|
l

dim(A)
FS (S).

Proof. We first show that dim({0,1})
FS (S) ≥ log |A|

l dim(A)
FS (S). This holds trivially if |A| = 1, so

assume |A| ≥ 2. Let s ∈ [0,∞) ∩Q such that s > dim({0,1})
FS (S).

By our choice of s, there exists a finite-state gambler G = (Q, {0, 1}, δ, β, q0) such that G
s-succeeds on S. Construct a finite-state gambler G′ = (Q′,Σ′, δ′, β′, q′0) as follows.

• Q′ = Q.

• Σ′ = A.

• for all q ∈ Q′ and w ∈ A,
δ′(q, w) = δ(q, w).

12



• for all q ∈ Q′ and w ∈ A,

β′(q)(w) =

{ eB(q)(w)eB(q)(A)
, if B̃(q)(A) > 0

0, if B̃(q)(A) = 0
,

where

B̃(q)(w) =
l∏

i=1

β(δ(q, wi−1))(w[i])

and
B̃(q)(A) =

∑
w∈A

B̃(q)(w).

• q′0 = q0.

Note that for all q ∈ Q′, dG′,q is a martingale, and that A ⊆ {0, 1}l is a prefix set. Let
q ∈ Q′. Then

B̃(q)(A) ,
∑
w∈A

B̃(q)(w)

=
∑
w∈A

l∏
i=1

β(δ(q, wi−1))(w[i])

=
∑
w∈A

dG′,q(w)

≤ 1 by Corollary 3.4.

So
B̃(q)(A) ≤ 1 (4.4)

for all q ∈ Q′.
Let w ∈ A and let q ∈ Q′. Then

dG′,q(w) =
B̃(q)(w)

B̃(q)(A)

≥ B̃(q)(w) by (4.4)

=
l∏

i=1

β(δ(q, wi−1))(w[i])

= dG,q(w).

So by induction, for all z ∈ A∗,

dG′(z) ≥ dG(z).

Let z ∈ A∗ and w ∈ A, and let q = δ(z). Then

dG(zw) = 2lB̃(q)(w)dG(z)

=⇒ dG′(z) ≥ 1

2lB̃(q)(w)
dG(zw),
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so

dG′(zw) = |A|B̃(q)(w)

B̃(q)(A)
dG′(z)

≥ |A|
2lB̃(q)(A)

dG(zw)

≥ |A|
2l

dG(zw) by (4.4).

Then by induction, for all n ∈ N and z ∈ {0, 1}nl,

dG′(z) ≥
(
|A|
2l

) |z|
l

dG(z). (4.5)

Let t = sl
log |A| . Then

d
(t)
G′ (z) , |A|(t−1)

|z|
l dG′(z)

≥ |A|(t−1)
|z|
l

(
|A|
2l

) |z|
l

dG(z) by (4.5)

≥ 2(s−1)|z|dG(z) since |A| ≥ 2

, d
(s)
G (z).

Thus G′ t-succeeds whenever G s-succeeds. This establishes that

dim({0,1})
FS (S) ≥ s

t
dim(A)

FS (S) =
log |A|

l
dim(A)

FS (S).

We next show that dim({0,1})
FS (S) ≤ log |A|

l dim(A)
FS (S). Let s ∈ Q+ such that s > dim(A)

FS (S),
and let t = s log |A|

l . Then it suffices to show that dim({0,1})
FS (S) ≤ t. By our choice of s, there

exists a finite-state gambler G = (Q,A, δ, β, q0) such that G s-succeeds on S.
Let ppref(A) be the set of all proper prefixes of the strings in A. Construct the finite-state

gambler G′ = (Q′,Σ′, δ′, β′, q′0) as follows.

• Q′ = Q× ppref(A).

• Σ′ = {0, 1}.

• for all q ∈ Q′, w ∈ ppref(A), and b ∈ {0, 1},

δ′((q, w), b) =


(q, wb), if wb ∈ ppref(A)
(δ(q, wb), λ), if wb ∈ A
⊥, otherwise

.

• for all q ∈ Q′, w ∈ ppref(A), and b ∈ {0, 1},

β′(q, w)(b) =

{ eB(q,wb)eB(q,w)
, if B̃(q, w) > 0

0, if B̃(q, w) = 0
,
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where
B̃(q, w) =

∑
u∈A(w)

β(q)(wu)

and
A(w) = {u ∈ {0, 1}∗ | wu ∈ A}.

• q′0 = (q0, λ).

In the non-degenerate case (where B̃(q, w) > 0)

β′(q, w)(0) + β′(q, w)(1) =
B̃(q, w0) + B̃(q, w1)

B̃(q, w)
.

For all w ∈ ppref(A), A(w) is the disjoint union of A(w0) and A(w1). So B̃(q, w0)+B̃(q, w1) =
B̃(q, w). Therefore β′(q, w)(0) + β′(q, w)(1) = 1.

Note that for all q ∈ Q, B̃(q, w) ≤ 1 for all w ∈ ppref(A) ∪ A. This follows from the fact
that w = λ maximizes B̃(q, w). B̃(q, λ) =

∑
w∈A β(q)(w) = 1, by the constraint that β(q) is

a probability measure over A.
Intuitively, G′’s martingale bets l times every l bits, in such a way that the l bets made

will simulate the bet made once every l bits by G.
Let z ∈ A∗, w ∈ A, and q = δ(z). Then

dG′(zw) = 2ldG′(z)
l∏

i=1

β′(q, wi−1)(w[i])

= 2ldG′(z)
l∏

i=1

B̃(q, wi)

B̃(q, wi−1)

= 2ldG′(z)
B̃(q, w)

B̃(q, λ)

≥ 2ldG′(z)B̃(q, w)
= 2ldG′(z)β(q)(w),

and
dG(zw) = |A|β(q)(w)dG(z).

So by induction

dG′(z) ≥

|z|
l∏

i=1

2lβ(δ(z � il))(w),

and

dG(z) =

|z|
l∏

i=1

|A|β(δ(z � il))(w).

So

dG′(z) ≥
(

2l

|A|

) |z|
l

dG(z).
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Thus

d
(t)
G′ (z) , 2(t−1)|z|dG′(z)

≥ 2(t−1)|z|
(

2l

|A|

) |z|
l

dG(z)

= |A|(s−1)
|z|
l dG(z) substituting t =

s log |A|
l

, d
(s)
G (z).

Therefore G′ t-succeeds when G s-succeeds. This establishes that

dim({0,1})
FS (S) ≤ t

s
dim(A)

FS (S) =
log |A|

l
dim(A)

FS (S).

4.3 Variations on the Champernowne Sequence

This section presents two variations on the Champernowne sequence [4] and shows them to
be normal.

First we need the following lemma, which establishes that splicing two normal sequences
together results in a normal sequence, as long as the splicing takes increasingly longer sub-
strings from each sequence.

Lemma 4.5. Let S, T ∈ Σ∞ be normal over the alphabet Σ. Let

Z = S[0 . . i1]T [0 . . i1]S[i1 + 1 . . i2]T [i1 + 1 . . i2]S[i2 + 1 . . i3]T [i2 + 1 . . i3] . . .

such that the function f(j) = ij+1 − ij is nondecreasing and unbounded. Then Z is normal
over the alphabet Σ.

Proof. Let n = ij , for some j ∈ Z+. Let kn = j. Intuitively, kn is the number of splices each
taken from S � n and T � n to form Z � 2n. Since ij+1 − ij is nondecreasing and unbounded,
limn→∞

kn
n = 0.

Let l ∈ Z+, and let w ∈ Σl. Then freq(w,S) = freq(w, T ) = |Σ|−l. Because there are
only kn places in S � n at which it was “broken” to be spliced into T � n, at most kn(l − 1)
instances of w in S � n could have been disrupted by the splicing and hence not appear in
Z � 2n. The same argument applies to instances of w in T �n. Thus

#(w,Z � 2n) ≥ #(w,S � n) + #(w, T � n)− 2kn(l − 1)

Therefore

freq(w,Z) , lim
n→∞

#(w,Z � n)
n

= lim
n→∞

#(w,Z � 2n)
2n

≥ lim
n→∞

#(w,S � n) + #(w, T � n)− 2kn(l − 1)
2n

=
1
2

lim
n→∞

#(w,S � n)
n

+
1
2

lim
n→∞

#(w, T � n)
n

− (l − 1) lim
n→∞

kn

n

=
1
2

lim
n→∞

#(w,S � n)
n

+
1
2

lim
n→∞

#(w, T � n)
n

,
1
2
freq(w,S) +

1
2
freq(w, T )

= |Σ|−l.
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This holds for all w ∈ Σl.
∑

w∈Σl freq(w,Z) = 1, so, for all w ∈ Σl, freq(w,Z) = |Σ|−l.
Since this holds for all l ∈ Z+, Z is normal.

We now construct a sequence with pushdown dimension at most half its finite-state di-
mension. Let d ∈ (0, 1) ∩ Q, with d = n/l for integers n and l. d will be the finite-state
dimension of the sequence. Let A ⊆ {0, 1}l − {1l} such that log |A| = n and |A| ≥ 2.

Let αi ∈ A∗ be the string consisting of all strings of length i over the alphabet A, con-
catenated in lexicographical ordering. Let c = 1l, and let Ac = A∪ {c}. Define the sequences

S = α1α1α2α2α2α2α3α3α3α3α3α3 . . .

S′ = α1cα1α2α2cα2α2α3α3α3cα3α3α3 . . .

Note that |αi| = i|A|il ⇒ |αi
i| = i2|A|il. Champernowne [4] (see also [31]) showed that the

sequence Z = α1α2α2α3α3α3 . . . is normal over the alphabet A. The same technique easily
gives the following.

Lemma 4.6 (Champernowne [4]). Let

T = α1 α2
2 α3

3 . . . .

Then T is normal over alphabet Σ.

We combine these results to obtain that S is normal.

Lemma 4.7. S is normal over the alphabet Σ.

Proof. This follows immediately from Lemmas 4.6 and 4.5 and the normality of Z.

Note, however, that S and S′ are not normal over the alphabet {0, 1}, because no more
than 2l−2 1’s appear consecutively in either sequence. They both have finite-state dimension
equal to d, as established next.

Lemma 4.8. dim({0,1})
FS (S′) = d.

Proof. Recall that since S is normal, dim(A)
FS (S) = 1.

dim({0,1})
FS (S′) =

log(|A ∪ {c}|)
l

dim(A∪{c})
FS (S′) Theorem 4.4

=
log(|A ∪ {c}|)

l
dim(A∪{c})

FS (S) Lemma 4.3

=
log(|A ∪ {c}|)

l

log |A|
log(|A ∪ {c}|)

dim(A)
FS (S) Lemma 3.8

=
log |A|

l
Lemma 4.7 and Corollary 4.2

= d.
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4.4 Pushdown Gambling on a Marked Sequence

We now show that the sequence S′ presented in section 4.3 has pushdown dimension bounded
above by half of its finite state dimension.

Lemma 4.9. dim({0,1})
PD (S′) ≤ 1

2d.

Proof. Let s > s′ > d. It suffices to show that dim({0,1})
PD (S′) ≤ 1

2s.
We construct a pushdown gambler P that does the following. It reads the sequence

S′ = α1cα1α
2
2cα

2
2 . . . in two alternating modes. The first mode involves reading the substring

αi
ic, and the second mode involves reading the substring αi

i. In the first mode, P bets
optimally for any finite-state gambler, while the bits it reads are pushed onto the stack. Once
c has been read, P pops c from the stack, and then uses the string it pushed, which is αi

i, to
bet optimally on the string that follows, which is αi

i. It pops bits until the stack is empty, at
which point αi+1

i+1 follows, and the gambler begins again.
As P is pushing bits onto its stack, it bets an equal amount (dP (a) = 2l 1−ε

|A| ) on all
bitstrings a ∈ A. It bets a small amount (dP (c) = 2lε) on the bitstring c = 1l, and this bet
can be made vanishingly smaller by shrinking ε, although some positive bet must be made
so P ’s capital does not become 0 when it encounters c. The requirement that ε < 1− 2l(s′−s)

ensures that P
(

1
2s
)
-succeeds on S′, which is shown formally below. P bets nothing on any

bitstring a 6∈ Ac.
Thus, P ’s bets in agreement with the optimal finite-state gambler for α1cα2c . . . when

reading that subsequence of S′, and it doubles its money on every bit when reading the
subsequence α1α2

2 . . . αi
i . . ..

Formally, the pushdown gambler P = (Q′,Σ′,Γ′, δ′, β′, q′0, z) is defined as follows on input
S ∈ Σ∞.

P (S)
1 i← 1 � current bit of S

2 while true � each iteration k reads αk
kcα

k
k

3 do repeat � push bits until marker found
4 w ← λ
5 for j ← 1 to l � set w to next block of length l
6 do bet according to β(w) on S[i]
7 w ← wS[i]
8 push S[i] onto stack
9 i← i + 1

10 until w = 1l

11 pop l bits from stack
12 while stack is not empty
13 do bet all capital on bit on top of stack
14 read S[i]
15 i← i + 1
16 pop 1 bit from stack
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where

β(w)(b) =

{ eB(wb)eB(w)
, if B̃(w) > 0;

0, otherwise.

B̃(w) =
∑

u∈Ac(w)

B(wu)

Ac(w) = {u ∈ {0, 1}∗ | wu ∈ Ac}

B(a) =
{ 1−ε

|A| , if a ∈ A;
ε, if a = c;

0 < ε < 1− 2l(s′−s).

Note that, for all a ∈ Ac,

dP (a) = 2l
l∏

i=1

β(ai−1)(a[i]) = 2l
l∏

i=1

(
B̃(ai)

B̃(ai−1)

)
= 2l B̃(a)

B̃(λ)
dP (a)

= 2l

∑
u∈Ac(a)

B(au)∑
u∈Ac(λ)

B(λu)
= 2l B(a)∑

u∈Ac

B(u)
= 2l B(a)

ε +
∑

u∈A

1−ε
|A|

= 2lB(a).

Thus, for all a ∈ A,

dP (a) = 2l 1− ε

|A|
,

and, for c = 1l

dP (c) = 2lε.

Recall that dP (c) = 2lε, and that P makes the same capital (dP (a) = 2l 1−ε
|A| ) on each

“character” a ∈ A. Since |A|k is the total number of strings, and k is the number of characters
per string,

dP (αk
k) = (dP (αk))

k

=
(
dP (a)|A|

k · k
)k

= 2k2|A|kl

(
1− ε

|A|

)k2|A|k

,

and

dP (αk
k) = 2|α

i
i|

= 2k2|A|kl.

Thus,

dP (αk
kcα

k
k) =

(
2k2|A|kl

(
1− ε

|A|

)k2|A|k
)(

2lε
)(

2k2|A|k
)

= ε22k2|A|kl+l

(
1− ε

|A|

)k2|A|k

.
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Let t = 1
2s. Then

d
(t)
G (αk

kcα
k
k) = 2(t−1)|αk

kcαk
k|ε22k2|A|kl+l

(
1− ε

|A|

)k2|A|k

= 2tlε2t2k2|A|kl

(
1− ε

|A|

)k2|A|k

= 2tlε2t2k2|A|kl

(
(1− ε)

1
tl

|A|
1
tl

)tlk2|A|k

= 2tlε

(
22 (1− ε)

1
tl

(2dl)
1
tl

)tlk2|A|k

> 2tlε

(
22 (1− ε)

1
tl

(2s′l)
1
tl

)tlk2|A|k

= 2tlε
(
41− s′

s (1− ε)
2
sl

)tlk2|A|k
.

Recall that ε < 1− 2l(s′−s). Then 41− s′
s (1− ε)

2
sl > 1. Thus d

(t)
G (αk

kcα
k
k) grows without bound

as k →∞, whence P t-succeeds on S′. Therefore

dim({0,1})
PD (S′) ≤ 1

2
s =⇒ dim({0,1})

PD (S′) ≤ 1
2
d.

Recall that dim({0,1})
FS (S′) = d, where d was chosen to be an arbitrary element of (0, 1)∩Q.

The main theorem of the paper follows and establishes that the pushdown dimension of the
sequence S′ constructed in this way is bounded above by half of its finite-state dimension.

Theorem 4.10. For every rational 0 < d < 1, there exists a sequence S′ with finite-state
dimension d such that dimPD(S′) ≤ 1

2dimFS(S′).

Proof. This follows immediately from Lemmas 4.8 and 4.9.

5 Conclusion

We have shown that there exist sequences with pushdown dimension strictly less than their
finite-state dimension. This was done by the addition of special marker strings that are placed
increasingly far apart in the sequence. Because these marker strings do not occur in other
parts of the sequence, the sequence is not normal, and this prevents our proof from showing
that any normal sequence has pushdown dimension less than 1. The marker strings are
needed for our proof, but it is not known whether they are essential to bound the pushdown
dimension. It is possible that the original sequence, without the markers, has the same
pushdown dimension.

It is implicit in the paper of Merkle and Reimann [31], and made explicit in the Master’s
thesis of Nichols [36], that there is a normal sequence S such that a pushdown gambler can
succeed on S, whereas the normality of S establishes that no finite-state gambler can succeed
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on S. However, the pushdown gambler fails to show that dimPD(S) < 1, since the gambler
makes money so slowly that it fails on S if any money is taken away at each step (i.e., if the
“tax rate” s is less than 1).

Question 5.1. Is there a normal sequence S such that dimPD(S) < 1?

We have shown that there exist sequences S such that dimPD(S) ≤ 1
2dimFS(S). The

factor 1
2 seems artificial, and in our proof, it is an artifact of the particular pushdown gambler

we designed. However, the factor 1
2 may be fundamental to bounding the difference between

finite-state gamblers and pushdown gamblers. A pushdown gambler must essentially “act like
a finite-state gambler” when pushing characters onto its stack; its only advantage over finite-
state gamblers comes from the ability to pop characters off the stack to remember information
from long ago. Since the gambler cannot pop more characters than it pushes, it may be that
a pushdown gambler can only gain a solid advantage over a finite-state gambler on half of
the characters, which may explain why the separation achieved was only 1

2 . It is an open
question whether this could be strengthened to show a larger separation between pushdown
and finite-state dimension.

Question 5.2. Is there a sequence S such that dimPD(S) < 1
2dimFS(S)?

Clearly, any pushdown gambler can be simulated by a Turing machine in linear time,
whence dimp(S) ≤ dimPD(S) for all S ∈ Σ∞, where dimp(S) is the polynomial-time dimension
of S, defined in [28].

The well-known LZ compression algorithm [42] translates easily into a martingale [10].
The LZ martingale doubles its money once for each bit compressed by the LZ compression
algorithm. Hence LZ-dimension is easily defined in an analogous manner to finite-state and
pushdown dimension. Like pushdown martingales, the LZ martingale is strictly more powerful
than finite-state martingales [26], but is also computable in linear time. The relationship
between pushdown dimension and LZ-dimension is open.

Finite-state dimension has many equivalent characterizations in terms of gamblers [5],
compressors [5], decompressors [8, 38], entropy rates [3, 42], and log-loss predictors [18]. The
results of [18] are easily modified to show such a characterization holds for log-loss pushdown
predictors; it is open whether other such characterizations hold for pushdown dimension.

Finally, we note that our results are easily extended to DimFS(S), finite-state strong
dimension [2] of a sequence S. The finite-state strong dimension of a sequence is defined by
replacing the limit superior in the definition of finite-state dimension with a limit inferior. It
was shown in [2] that this definition exactly characterizes packing dimension [40, 41] when
the gambler is not computationally bounded. Defining pushdown strong dimension DimPD

similarly, the techniques of the present paper show that, for every rational 0 < d < 1, there
is a sequence S such that DimFS(S) = d and DimPD(S) ≤ 1

2DimFS(S).
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