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Abstract Three results are shown on producibility in the

hierarchical model of tile self-assembly. It is shown that a

simple greedy polynomial-time strategy decides whether an

assembly a is producible. The algorithm can be optimized to

use Oðjaj log2 jajÞ time. Cannon et al. (STACS 2013: pro-

ceedings of the thirtieth international symposium on theoretical

aspects of computer science. pp 172–184, 2013) showed that

the problem of deciding if an assembly a is the unique pro-

ducible terminal assembly of a tile system T can be solved in

Oðjaj2jT j þ jajjT j2Þ time for the special case of noncooper-

ative ‘‘temperature 1’’ systems. It is shown that this can be

improved to OðjajjT j log jT jÞ time. Finally, it is shown that if

two assemblies are producible, and if they can be overlapped

consistently—i.e., if the positions that they share have the same

tile type in each assembly—then their union is also producible.

Keywords Hierarchical � Self-assembly � Deterministic

1 Introduction

1.1 Background of the field

Winfree’s abstract Tile Assembly Model (aTAM) (Winfree

1998) is a model of crystal growth through cooperative

binding of square-like monomers called tiles, implemented

experimentally (for the current time) by DNA (Winfree et al.

1998; Barish et al. 2009). In particular, it models the

potentially algorithmic capabilities of tiles that can be

designed to bind if and only if the total strength of attachment

(summed over all binding sites, called glues on the tile) is at

least a parameter s, sometimes called the temperature. In

particular, when the glue strengths are integers and s ¼ 2,

this implies that two strength 1 glues must cooperate to bind

the tile to a growing assembly. Two assumptions are key: 1)

growth starts from a single specially designated seed tile

type, and 2) only individual tiles bind to an assembly, never

larger assemblies consisting of more than one tile. We will

refer to this model as the seeded aTAM. While violations of

these assumptions are often viewed as errors in implemen-

tation of the seeded aTAM (Schulman and Winfree 2007,

2009), relaxing them results in a different model with its own

programmable abilities. In the hierarchical [a.k.a. multiple

tile (Aggarwal et al. 2004), polyomino (Winfree 2006; Luhrs

2010), two-handed (Cannon et al. 2013; Doty et al. 2010;

Demaine et al. 2013)] aTAM, there is no seed tile, and an

assembly is considered producible so long as two producible

assemblies are able to attach to each other with strength at

least s, with all individual tiles being considered as ‘‘base

case’’ producible assemblies. In either model, an assembly is

considered terminal if nothing can attach to it; viewing self-

assembly as a computation, terminal assembly(ies) are often

interpreted to be the output. See Doty (2012) and Patitz

(2012) for an introduction to recent work on these models.

The hierarchical aTAM has attracted considerable recent

attention. It is coNP-complete to decide whether an

assembly is the unique terminal assembly produced by a

hierarchical tile system (Cannon et al. 2013). There are

infinite shapes that can be assembled in the hierarchical

aTAM but not the seeded aTAM, and vice versa, and there

are finite shapes requiring strictly more tile types to assemble

in the seeded aTAM than the hierarchical aTAM, and vice

versa (Cannon et al. 2013). Despite this incomparability
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between the models for exact assembly of shapes, with a

small blowup in scale, any seeded tile system can be simu-

lated by a hierarchical tile system (Cannon et al. 2013),

improving upon an earlier scheme that worked for restricted

classes of seeded tile systems (Luhrs 2010). However, there

is no single hierarchical aTAM tile set that can be used to

simulate (at a larger scale factor) any other hierarchical

aTAM system, i.e., it is not intrinsically universal (Demaine

et al. 2013), unlike the seeded aTAM (Doty et al. 2012). It is

possible to assemble an n � n square in a hierarchical tile

system with Oðlog nÞ tile types that exhibits a very strong

form of fault-tolerance in the face of spurious growth via

strength 1 bonds (Doty et al. 2010). The parallelism of the

hierarchical aTAM suggests the possibility that it can

assemble shapes faster than the seeded aTAM, but it cannot

for a wide class of tile systems (Chen and Doty 2012).

Interesting variants of the hierarchical aTAM introduce

other assumptions to the model. The multiple tile model retains

a seed tile and places a bound on the size of assemblies

attaching to it (Aggarwal et al. 2004). Under this model, it is

possible to modify a seeded tile system to be self-healing, that

is, it correctly regrows when parts of itself are removed, even if

the attaching assemblies that refill the removed gaps are grown

without the seed (Winfree 2006). The model of staged

assembly allows multiple test tubes to undergo independent

growth, with excess incomplete assemblies washed away (e.g.

purified based on size) and then mixed, with assemblies from

each tube combining via hierarchical attachment (Demaine

et al. 2008, 2013; Winslow 2013). The RNase enzyme model

(Abel et al. 2010; Demaine et al. 2011; Patitz and Summers

2012) assumes some tile types to be made of RNA, which can

be digested by an enzyme called RNase, leaving only the DNA

tiles remaining, and possibly disconnecting what was previ-

ously a single RNA/DNA assembly into multiple DNA

assemblies that can combine via hierarchical attachment.

Introducing negative glue strengths into the hierarchical

aTAM allows for ‘‘fuel-efficient’’ computation (Schweller and

Sherman 2013). Allowing tiles with more complex geometry

than squares enables hierarchical assembly to use significantly

fewer tile types for assembly of n � n squares (Fu et al. 2012).

1.2 Contributions of this paper

We show three results on producibility in the hierarchical

aTAM.

1. In the seeded aTAM, there is an obvious linear-time

algorithm to test whether assembly a is producible by a tile

system: starting from the seed, try to attach tiles until a is

complete or no more attachments are possible. We show

that in the hierarchical aTAM, a similar greedy strategy

correctly identifies whether a given assembly is producible,

though it is more involved to prove that it is correct. The

idea is to start with all tiles in place as they appear in a, but

with no bonds, and then to greedily bind attachable

assemblies until a is assembled. It is not obvious that this

works, since it is conceivable that assemblies must attach in

a certain order for a to form, but the greedy strategy may

pick another order and hit a dead-end in which no

assemblies can attach. The algorithm can be optimized to

use Oðjaj log2 jajÞ time. This is shown in Sect. 3.

2. The temperature 1 Unique Production Verification (UPV)

problem studied by Cannon et al. (2013) is the problem of

determining whether assembly a is the unique producible

terminal assembly of tile system T , where T has

temperature 1, meaning that all positive strength glues

are sufficiently strong to attach any two assemblies. They

give an algorithm that runs in Oðjaj2jT j þ jajjT j2Þ time.

Cannon et al. proved their result by using an Oðjaj2 þ
jajjT jÞ time algorithm for UPV that works in the seeded

aTAM (Adleman et al. 2002), and then reduced the

hierarchical temperature-1 UPV problem to jT j instances

of the seeded UPV problem. We improve this result by

showing that a faster Oðjaj log jT jÞ time algorithm for the

seeded UPV problem exists for the special case of

temperature 1, and then we apply the technique of Cannon

et al. relating the hierarchical problem to the seeded

problem to improve the running time of the hierarchical

algorithm to OðjajjT j log jT jÞ. This is shown in Sect. 4.

Part of the conceptual significance of this algorithm lies in

the details of the proof. In particular, we show a relationship

between deterministic seeded assembly at temperature 1

and biconnected decomposition of the binding graph of an

assembly using the Hopcroft–Tarjan algorithm (Hopcroft

and Tarjan 1973). This relationship makes more precise the

intuitive notion that determinism in temperature 1 systems

with glue mismatches is enforced by ‘‘blocking.’’ In

particular, the tile that does the blocking must be a cut

vertex of the binding graph and must be an ancestor of the

blocked tile in the Hopcroft-Tarjan tree decomposition.

3. We show that if two assemblies a and b are producible in

the hierarchical model, and if they can be overlapped

consistently (i.e., if the positions that they share have the

same tile type in each assembly), then their union a [ b is

producible. This is trivially true in the seeded model, but it

requires more care to prove in the hierarchical model. It is

conceivable a priori that although b is producible, b must

assemble a \ b in some order that is inconsistent with

how a assembles a \ b. This is shown in Sect. 5.

1.3 Application of result of Sect. 5

The third result above (Theorem 5.1) has one application in

showing a limitation on the power of hierarchical systems

to assemble shapes ‘‘quickly.’’
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Theorem 5.1 shows that if assemblies a and b overlap

consistently, then a [ b is producible. What if a ¼ b? Sup-

pose we have three copies of a, and label them each uniquely

as a1; a2; a3. (See Fig. 1 for an example.) Suppose further that

a2 overlaps consistently with a1 when translated by some

non-zero vector v~. Then we know that a1 [ a2 is producible.

Suppose that a3 is a2 translated by v~, or equivalently it is a1

translated by 2v~. Then a2 [ a3 is producible, since this is

merely a translated copy of a1 [ a2. It seems intuitively that

a1 [ a2 [ a3 should be producible as well. However, while

a1 overlaps consistently with a2, and a2 overlaps consistently

with a3, it could be the case that a3 intersects a1 inconsis-

tently, i.e., they share a position but put a different tile type at

that position. In this case a1 [ a2 [ a3 is undefined.

In the example of Fig. 1, although a1 [ a2 [ a3 is not

producible (in fact, not even defined), ‘‘enough’’ of a3 (say,

a03 a3) can grow off of a1 [ a2 to allow a fourth copy a04
to begin to grow to an assembly to which a fifth copy a05
can attach, etc., so that an infinite assembly can grow by

‘‘pumping’’ additional copies of a03. Is this always possible?

In other words, is it the case that if a is a producible

assembly of a hierarchical TAS T , and a overlaps con-

sistently with some non-zero translation of itself, then T
necessarily produces arbitrarily large assemblies?

This question was answered affirmatively by Chen et al.

(2015). This in turn settled an open question posed by Chen

and Doty (2012), who showed that as long as a hierarchical

TAS does not produce assemblies that consistently overlap

any translation of themselves, then the TAS cannot uniquely

produce any shape in time sublinear in its diameter.

2 Formal definitionof the abstract tile assemblymodel

This section gives a terse definition of the abstract Tile

Assembly Model (aTAM, Winfree (1998)). This is not a tuto-

rial; for readers unfamiliar with the aTAM, (Rothemund and

Winfree 2000) gives an excellent introduction to the model.

Fix an alphabet R. R� is the set of finite strings over R.

Given a discrete object O, hOi denotes a standard encoding of

O as an element ofR�.Z,Zþ, andN denote the set of integers,

positive integers, and nonnegative integers, respectively. For a

set A,PðAÞ denotes the power set of A. Given A � Z2, the full

grid graph of A is the undirected graph Gf
A ¼ ðV;EÞ, where

V ¼ A, and for all u; v 2 V , fu; vg 2 E () ku � vk2 ¼ 1;

i.e., if and only if u and v are adjacent on the integer Cartesian

plane. A shape is a set S � Z2 such that Gf
S is connected.

A tile type is a tuple t 2 ðR� �NÞ4
; i.e., a unit square with

four sides listed in some standardized order, each side having

a glue label (a.k.a. glue) ‘ 2 R� and a nonnegative integer

strength, denoted strð‘Þ. For a set of tile types T, let KðTÞ �
R� denote the set of all glue labels of tile types in T. If a glue

has strength 0, we say it is null, and if a positive-strength glue

facing some direction does not appear on some tile type in the

opposite direction, we say it is functionally null. We assume

that all tile sets in this paper contain no functionally null

glues.1 Let fN;S;E;Wg denote the directions consisting of

unit vectors fð0; 1Þ; ð0;�1Þ; ð1; 0Þ; ð�1; 0Þg. Given a tile

type t and a direction d 2 fN;S;E;Wg, tðdÞ 2 KðTÞ denotes

the glue label on t in direction d. We assume a finite set T of

tile types, but an infinite number of copies of each tile type,

each copy referred to as a tile. An assembly is a nonempty

connected arrangement of tiles on the integer latticeZ2, i.e., a

partial function a : Z2---›T such that Gf
dom a is connected and

dom a 6¼ £. The shape of a is dom a. Write jaj to denote

jdom aj. Given two assemblies a; b : Z2---›T , we say a is a

subassembly ofb, and we write aYb, if dom a � dom b and,

for all points p 2 dom a, aðpÞ ¼ bðpÞ.
Given two assemblies a and b, we say a and b are

equivalent up to translation, written a ’ b, if there is a

vector x~2 Z2 such that dom a ¼ dom bþ x~ (where for

A � Z2, A þ x~ is defined to be p þ x~ p 2 Ajf g) and for all

p 2 dom b, aðp þ x~Þ ¼ bðpÞ. In this case we say that b is a

translation of a. We have fixed assemblies at certain

positions on Z2 only for mathematical convenience in some

contexts, but of course real assemblies float freely in

solution and do not have a fixed position.

Let a be an assembly and let p 2 dom a and d 2
fN;S;E;Wg such that p þ d 2 dom a. Let t ¼ aðpÞ and

(a) (b) (c) (d)

Fig. 1 a A producible assembly a. Gray tiles are all distinct types

from each other, but red, green, and blue each represent one of three

different tile types, so the two blue tiles are the same type. b By

Theorem 5.1, a1 [ a2 is producible, where a1 ¼ a and

a2 ¼ a1 þ ð2;�2Þ, because they overlap in only one position, and

they both have the blue tile type there. c a1 and a3 both have a tile at the

same position, but the types are different (red in the case of a1 and green

in the case of a3). d However, a subassembly a0i of each new ai can grow,

enough to allow the translated equivalent subassembly a0iþ1 of aiþ1 to

grow from a0i, so an infinite structure is producible. (Color figure online)

1 This assumption does not affect the results of this paper. It is

irrelevant for Theorem 5.1 or the correctness of the algorithms in the

other theorems. It also does not affect the running time results for

algorithms taking a TAS as input, because we can preprocess T in

linear time to find and set to null any functionally null glues. The

number of glues is O(|T|), and we assume that each glue from glue set

G is an integer in the set f0; . . .; jGj � 1g. We can use a Boolean array

of size |G| to determine in time O(|T|) which glues appear on the north

that do not appear on the south of some tile type. Repeat this for each

of the remaining three directions. Then replace all functionally null

glues in T with null glues, which takes time O(|T|). To do this

replacement in an assembly a takes time OðjajÞ.

Producibility in hierarchical self-assembly 43

123



t0 ¼ aðp þ dÞ. We say that the tiles t and t0 at positions p

and p þ d interact if tðdÞ ¼ t0ð�dÞ and strðtðdÞÞ[ 0, i.e.,

if the glue labels on their abutting sides are equal and have

positive strength. Each assembly a induces a binding

graph Gb
a, a grid graph G ¼ ðVa;EaÞ, where Va ¼ dom a,

and fp1; p2g 2 Ea () aðp1Þ interacts with aðp2Þ.2 Given

s 2 Zþ, a is s-stable if every cut of Gb
a has weight at least

s, where the weight of an edge is the strength of the glue it

represents. That is, a is s-stable if at least energy s is

required to separate a into two parts. When s is clear from

context, we say a is stable.

2.1 Seeded aTAM

A seeded tile assembly system (seeded TAS) is a triple

T ¼ ðT ; r; sÞ, where T is a finite set of tile types, r :

Z2---›T is the finite, s-stable seed assembly, and s 2 Zþ is

the temperature. Let jT j denote |T|. If T has a single seed

tile s 2 T (i.e., rð0; 0Þ ¼ s for some s 2 T and is undefined

elsewhere), then we write T ¼ ðT ; s; sÞ: Given two s-stable

assemblies a; b : Z2---›T , we write a !T
1 b if aYb and

jdom b n dom aj ¼ 1. In this case we say a T -produces b
in one step.3 If a !T

1 b, dom b n dom a ¼ fpg, and

t ¼ bðpÞ, we write b ¼ aþ ðp 7!tÞ.
A sequence of k 2 Zþ assemblies a~¼ ða0; a1; . . .; ak�1Þ is

a T -assembly sequence if, for all 1� i\k, ai�1 !T
1 ai. We

write a !T b, and we say aT -produces b (in 0 or more steps)

if there is a T -assembly sequence a~¼ ða; a1; a2; . . .; ak�1 ¼
bÞ of length k ¼ jdom b n dom aj þ 1. We say a is T -pro-

ducible if r !T a, and we write A½T 	 to denote the set of T -

producible assemblies. The relation !T is a partial order on

A½T 	 (Rothemund 2001; Lathrop et al. 2009).

An assembly a is T -terminal if a is s-stable and

oT a ¼ £. We write Ah½T 	 � A½T 	 to denote the set of T -

producible, T -terminal assemblies.

A seeded TAS T is directed (a.k.a., deterministic, con-

fluent) if the poset ðA½T 	;!T Þ is directed; i.e., if for each

a; b 2 A½T 	, there exists c 2 A½T 	 such that a !T c and

b !T c.4 We say that T uniquely produces a if

Ah½T 	 ¼ fag.

2.2 Hierarchical aTAM

A hierarchical tile assembly system (hierarchical TAS) is a pair

T ¼ ðT ; sÞ, where T is a finite set of tile types, and s 2 Zþ is

the temperature. Let a; b : Z2---›T be two assemblies. Say that

a andb are nonoverlapping if dom a \ dom b ¼ £. If a andb
are nonoverlapping assemblies, definea [ b to be the assembly

c defined by cðpÞ ¼ aðpÞ for all p 2 dom a, cðpÞ ¼ bðpÞ for all

p 2 dom b, and cðpÞ is undefined for all p 2 Z2 n ðdom a[
dom bÞ. An assembly c is singular if cðpÞ ¼ t for some p 2 Z2

and some t 2 T and cðp0Þ is undefined for all p0 2 Z2 n fpg.

Given a hierarchical TAS T ¼ ðT ; sÞ, an assembly c is T -

producible if either (1) c is singular, or (2) there exist producible

nonoverlapping assembliesa andb such that c ¼ a [ b and c is

s-stable. In the latter case, write aþ b !T
1 c. An assembly a is

T -terminal if for every producible assemblyb such thata andb
are nonoverlapping, a [ b is not s-stable.5 Define A½T 	 to be

the set of all T -producible assemblies. Define Ah½T 	 � A½T 	
to be the set of all T -producible, T -terminal assemblies. A

hierarchical TAST is directed (a.k.a., deterministic, confluent)

if jAh½T 	j ¼ 1. We say that T uniquely produces a if

Ah½T 	 ¼ fag.

Let T be a hierarchical TAS, and let ba 2 A½T 	 be a T -

producible assembly. An assembly tree ! of ba is a full binary

tree with jbaj leaves, whose nodes are labeled by T -producible

assemblies, with ba labeling the root, singular assemblies

labeling the leaves, and node u labeled with c having children

u1 labeled with a and u2 labeled with b, with the requirement

that aþ b !T
1 c. That is, ! represents one possible pathway

through which ba could be produced from individual tile types

inT . Let!ðT Þ denote the set of all assembly trees ofT . If a is

a descendant node of b in an assembly tree of T , write

a !T b. Say that an assembly tree is T -terminal if its root is a

T -terminal assembly. Let !hðT Þ denote the set of all T -

terminal assembly trees of T . Note that even a directed hier-

archical TAS can have multiple terminal assembly trees that

all have the same root terminal assembly.

When T is clear from context, we may omit T from the

notation above and instead write !1, !, oa, assembly

sequence, produces, producible, and terminal.

3 Efficient verification of production

Let S be a finite set, and let PðSÞ be its power set. A

partition of S is a collection C ¼ fC1; . . .;Ckg � PðSÞ such

that
Sk

i¼1 Ci ¼ S and for all i 6¼ j, Ci \ Cj ¼ £. A

2 For Gf
dom a ¼ ðVdom a;Edom aÞ and Gb

a ¼ ðVa;EaÞ, Gb
a is a spanning

subgraph of Gf
dom a: Va ¼ Vdom a and Ea � Edom a.

3 Intuitively a !T
1 b means that a can grow into b by the addition of

a single tile; the fact that we require both a and b to be s-stable

implies in particular that the new tile is able to bind to a with strength

at least s. It is easy to check that had we instead required only a to be

s-stable, and required that the cut of b separating a from the new tile

has strength at least s, then this implies that b is also s-stable.
4 The following two convenient characterizations of ‘‘directed’’ are

routine to verify. T is directed if and only if jAh½T 	j ¼ 1. T is not

directed if and only if there exist a;b 2 A½T 	 and p 2 dom a \ dom b
such that aðpÞ 6¼ bðpÞ.

5 The restriction on overlap is a model of a chemical phenomenon

known as steric hindrance (Wade 1991, Section 5.11) or, particularly

when employed as a design tool for intentional prevention of

unwanted binding in synthesized molecules, steric protection (Heller

and Pugh 1954, 1960; Goto et al. 2000).
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hierarchical division of S is a full binary tree ! (a tree in

which every internal node has exactly two children) whose

nodes represent subsets of S, such that the root of ! rep-

resents S, the |S| leaves of ! represent the singleton sets fxg
for each x 2 S, and each internal node has the property that

its set is the (disjoint) union of its two childrens’ sets.

Lemma 3.1 Let S be a finite set with jSj 
 2. Let ! be any

hierarchical division of S, and let C be any partition of S

other than fSg. Then there exist C1;C2 2 C with C1 6¼ C2,

and there exist C0
1 � C1 and C0

2 � C2, such that C0
1 and C0

2

are siblings in !.

Proof First, label each leaf fxg of ! with the unique

element Ci 2 C such that x 2 Ci. Next, iteratively label

internal nodes according to the following rule: while there

exist two children of a node u that have the same label, assign

that label to u. Notice that this rule preserves the invariant

that each labeled node u (representing a subset of S) is a

subset of the set its label represents. Continue until no node

has two identically-labeled children. C contains only proper

subsets of S, so the root (which is the set S) cannot be con-

tained in any of them, implying the root will remain unla-

beled. Follow any path starting at the root, always following

an unlabeled child, until both children of the current internal

node are labeled. (The path may vacuously end at the root.)

Such a node is well-defined since at least all leaves are

labeled. By the stopping condition stated previously, these

children must be labeled differently. The children are the

witnesses C0
1 and C0

2, with their labels having the values C1

and C2, testifying to the truth of the lemma. h

Lemma 3.1 will be useful when we view ! as an

assembly tree for some producible assembly a, and we

view C as a partially completed attempt to construct

another assembly tree for a, where each element of C is a

subassembly that has been produced so far.

When we say ‘‘by monotonicity’’, this refers to the fact

that glue strengths are nonnegative, which implies that if

two assemblies a and b can attach, the addition of more

tiles to either a or b cannot prevent this binding, so long as

the additional tiles do not overlap the other assembly.

We want to solve the following problem: given an

assembly a and temperature s, is a producible in the

hierarchical aTAM at temperature s?6 The algorithm IS-

PRODUCIBLE-ASSEMBLY (Algorithm 1) solves this problem.

Theorem 3.2 There is an Oðjaj log2 jajÞ time algorithm

deciding whether an assembly a is producible at temper-

ature s in the hierarchical aTAM.

Proof Correctness: IS-PRODUCIBLE-ASSEMBLY works by

building up the initially edge-free graph with the tiles of a
as its nodes (the algorithm stores the nodes as points in Z2,

but a would be used in step 4 to get the glues and strengths

between tiles at adjacent positions), stopping when the graph

becomes connected. The order in which connected compo-

nents (implicitly representing assemblies) are removed from

and added to C implicitly defines a particular assembly tree

with a at the root (for every C1;C2 processed in line 5, the

assembly a�ðC1 [ C2Þ is a parent of a�C1 and a�C2 in the

assembly tree). Therefore, if the algorithm reports that a is

producible, then it is. Conversely, suppose that a is pro-

ducible via assembly tree !. Let C ¼ fC1; . . .;Ckg be the set

of assemblies at some iteration of the loop at line 3. It suffices

to show that some pair of assemblies Ci and Cj are connected

by glues with strength at least s. By Lemma 3.1, there exist Ci

and Cj with subsets C0
i � Ci and C0

j � Cj such that C0
i and C0

j

are sibling nodes in !. Because they are siblings, the glues

between C0
i and C0

j have strength at least s. By monotonicity

these glues suffice to bind Ci to Cj, so IS-PRODUCIBLE-

ASSEMBLY is correct.

Running time: Let n ¼ jaj. The running time of the IS-

PRODUCIBLE-ASSEMBLY (Algorithm 1) is polynomial in n, but

the algorithm can be optimized to improve the running

time to Oðn log2 nÞ by careful choice of data structures. IS-

PRODUCIBLE-ASSEMBLY-FAST (Algorithm 2) shows pseudo-

code for this optimized implementation, which we now

describe. Let n ¼ jaj. Instead of searching over all pairs of

assemblies, only search adjacent pairs. There are O(n) such

pairs since a grid graph has degree at most 4 (hence O(n)

edges), and the number of edges in the full grid graph of a
is an upper bound on the number of adjacent assemblies at

any time. This can be encoded in a dynamically changing

graph Gc whose nodes are the current set of assemblies and

whose edges connect those assemblies that are adjacent.

Each edge of Gc stores the total glue strength between

the assemblies. Whenever two assemblies C1 and C2, with

jC1j 
 jC2j without loss of generality, are combined to form

a new assembly, Gc is updated by removing C2, merging its

edges with those of C1, and for any edges they already

share (i.e., the neighbor on the other end of the edge is the

Algorithm 1 Is-Producible-Assembly(α, τ)
1: input: assembly α and temperature τ
2: C ← { {v} | v ∈ dom α } // (positions defining)

3: while |C| > 1 do
4: if there exist Ci, Cj ∈ C with glues between Ci and Cj

5: C ← (C \ {Ci, Cj}) ∪ {Ci ∪ Cj}
6: else
7: print “α is not producible” and exit
8: end if
9: end while

10: print “α is producible”

subassemblies of α

of total strength at least τ then

6 We do not need to give the tile set T as input because the tiles in a
implicitly define a tile set, and the presence of extra tile types in T that

do not appear in a cannot affect its producibility.
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same), summing the strengths on the edges. Each update of

an edge (adding it to C1, or finding it in C1 to update its

strength) can be done in Oðlog nÞ time using a tree set data

structure to store neighbors for each assembly.

We claim that the total number of such updates of all edges

is Oðn log nÞ over all time, or amortized Oðlog nÞ updates per

iteration of the outer loop. To see why, observe that the

number of edges an assembly has is at most linear in its size, so

the number of new edges that must be added to C1, or existing

edges in C1 whose strengths must be updated, is at most

(within a constant) the size of the smaller component C2. The

total number of edge updates is then, if ! is the assembly tree

discovered by the algorithm,
P

nodesu2! minfjleftðuÞj;
jrightðuÞjg, where jleftðuÞj and jrightðuÞj respectively refer

to the number of leaves of u’s left and right subtrees. For a

given number n of leaves, this sum is maximized with a

balanced tree, and in that case (summing over all levels of the

tree) is
Plog n

i¼0 2iðn=2iÞ ¼ Oðn log nÞ. So the total time to

update all edges is Oðn log2 nÞ.
As for actually finding C1 and C2, each iteration of the outer

loop, we can look at any pair of adjacent assemblies with

sufficient connection strength. So in addition to storing the

edges in a tree-backed set data structure, store them also in one

of two linked lists: H and L in the algorithm, for ‘‘high’’

(strength 
 s) and ‘‘low’’ (strength \s), with each edge

storing a pointer to its node in the linked list for O(1) time

removal (and also to its node in the tree-backed set for

Oðlog nÞ time removal). We can simply choose an arbitrary

edge from H to be the next pair of connected components to

attach. We update the keys containing C1 whose connection

strength changed and removing those containing C2 but not

C1. The edges whose connection strength changed correspond

to precisely those neighbors that C1 and C2 shared before

being merged. Therefore jC2j is an upper bound on the number

of edge updates required. Thus the amortized number of

linked list updates is Oðlog nÞ per iteration of the outer loop by

the same argument as above. Since we can have each edge

fC1;C2g store a pointer to its node in the linked list to which it

belongs, each list update can be done in O(1) time. Thus each

iteration takes amortized time Oðlog nÞ.
The algorithm IS-PRODUCIBLE-ASSEMBLY-FAST (Algorithm

2) implements this optimized idea. The terminology for data

structure operations is taken from Thomas (2001). Note that

the way we remove C1 and C2 and add their union is to simply

delete C2 and then update C1 to contain C2’s edges. The

graph Gc discussed above is Gc ¼ ðVc;EcÞ where Vc and Ec

are variables in IS-PRODUCIBLE-ASSEMBLY-FAST.

Summarizing the analysis, each data structure operation

takes time Oðlog nÞ with appropriate choice of a backing

data structure. The two outer loops (lines 6 and 10) take

O(n) iterations. The inner loop (line 17) runs for amortized

Oðlog nÞ iterations, and its body executes a constant

number of Oðlog nÞ and O(1) time operations. Therefore

the total running time is Oðn log2 nÞ. h

4 Efficient verification of temperature 1 unique
production

This section shows that there is an algorithm, faster than

the previous known algorithm (Cannon et al. 2013), that

solves the temperature 1 unique producibility verification

(UPV1) problem: given an assembly a and a temperature-1

hierarchical tile system T , decide if a is the unique pro-

ducible, terminal assembly of T . This is done by showing

an algorithm for the UPV1 problem in the seeded model

(which is faster than the general-temperature algorithm of

Adleman et al. 2002), and then applying the technique of

Cannon et al. (2013) relating producibility and terminality

in the temperature 1 seeded and hierarchical models.

Let the decision problems sUPV1 and hUPV1 be rep-

resented by the language fðT ; aÞjAh½T 	 ¼ fagg; where T
is a temperature 1 seeded TAS in the former case and a

temperature 1 hierarchical TAS in the latter case. To

simplify the time analysis we assume jT j ¼ OðjajÞ.
The following is the only result in this paper on the

seeded aTAM.

Theorem 4.1 There is an algorithm that solves the

sUPV1 problem in time Oðjaj log jT jÞ.

Proof Let T ¼ ðT ; s; 1Þ and a be a instance of the sUPV1

problem. We first check that every tile in a appears in T,

which can be done in time Oðjaj log jTjÞ by storing ele-

ments of T in a data structure supporting Oðlog nÞ time

access. In the seeded aTAM at temperature 1, a is producible

if and only if it contains the seed s and its binding graph is

connected, which can be checked in time OðjajÞ. We must

also verify that a is terminal, which is true if and only if all

glues on unbound sides are null, checkable in time OðjajÞ.
Once we have verified that a is producible and terminal,

it remains to verify that T uniquely produces a. Adleman

et al. (2002) showed that this is true (at any temperature) if

and only if, for every position p 2 dom a, if ap a is the

maximal producible subassembly of a such that

p 62 dom ap, then aðpÞ is the only tile type attachable to

ap at position p. They solve the problem by producing each

such ap and checking whether there is more than one tile

type attachable to ap at p. We use a similar approach, but

we avoid the cost of producing each ap by exploiting

special properties of temperature 1 producibility.

Given p; q 2 dom a such that p 6¼ q, write p � q if, for

every producible assembly b, q 2 dom b)p 2 dom b, i.e.,

the tile at position p must be present before the tile at

position q can be attached. We must check each p 2 dom a
and each position q 2 dom a adjacent to p such that p 6� q

46 D. Doty

123



to see whether a tile type t 6¼ aðpÞ shares a positive-

strength glue with aðqÞ in direction q � p (i.e., whether, if

aðpÞ were not present, t could attach at p instead). If we

know which positions q adjacent to p satisfy p 6� q, this

check can be done in time Oðlog jTjÞwith appropriate choice

of data structure, implying total time Oðjaj log jTjÞ over all

positions p 2 dom a. It remains to show how to determine

which adjacent positions p; q 2 dom a satisfy p � q.

Recall that a cut vertex of a connected graph is a vertex

whose removal disconnects the graph, and a subgraph is

biconnected if the removal of any single vertex from the

subgraph leaves it connected. Every graph can be decom-

posed into a tree of biconnected components, with cut

vertices connecting different biconnected components (and

belonging to all biconnected components that they con-

nect). If p is not a cut vertex of the binding graph of a, then

dom ap is simply dom a n fpg (i.e., it is possible to produce

the entire assembly a except for position p) because, for all

q 2 dom a n fpg, p 6� q. If p is a cut vertex, then p � q if

and only if removing p from the binding graph of a places q

and the seed position in two different connected compo-

nents, since the connected component containing the seed

after removing p corresponds precisely to ap.

Run the linear time Hopcroft–Tarjan algorithm (Hopcroft

and Tarjan 1973) for decomposing the binding graph of a
into a tree of its biconnected components, which also

identifies which vertices in the graph are cut vertices and

which biconnected components they connect. Recall that the

Hopcroft-Tarjan algorithm is an augmented depth-first

search. Root the tree with s’s biconnected component (i.e.,

start the depth-first search there), so that each component has

a parent component and child components. In particular,

each cut vertex p has a ‘‘parent’’ biconnected component and

k 
 1 ‘‘child’’ biconnected components. Removing p will

separate the graph into k þ 1 connected components: the k

subtrees and the remaining nodes connected to the parent

biconnected component of p. Thus p � q if and only if p is a

cut vertex and q is contained in the subtree rooted at p.

This check can be done for all positions p and their � 4

adjacent positions q in linear time by ‘‘weaving’’ the checks

into the Hopcroft-Tarjan algorithm. As the depth-first search

executes, each vertex p is marked as either unvisited, visiting

(meaning the search is currently in a subtree rooted at p), or

visited (meaning the search has visited and exited the subtree

rooted at p). If p is marked as visited or unvisited when q is

processed, then q is not in the subtree under p. If p is marked

as visiting when q is processed, then q is in p’s subtree.

At the time q is visited during the Hopcroft-Tarjan

algorithm, it may not yet be known whether p is a cut

vertex. To account for this, simply run the Hopcroft-Tarjan

algorithm first to label all cut vertices, then run a second

depth-first search (visiting the nodes in the same order as

the first depth-first search), doing the checks described

previously and using the cut vertex information obtained

from the Hopcroft-Tarjan algorithm. h

Theorem 4.2 There is an algorithm that solves the

hUPV1 problem in time OðjajjT j log jT jÞ.

Proof Cannon et al. (2013) showed that a temperature 1

hierarchical TAS T ¼ ðT; 1Þ uniquely produces a if and

only if, for each s 2 T , the seeded TAS T s ¼ ðT; s; 1Þ
uniquely produces a. Therefore, the hUPV1 problem can

be solved by calling the algorithm of Theorem 4.1 jT j
times, resulting in a running time of OðjajjT j log jT jÞ. h

5 Consistent unions of producible assemblies are
producible

Throughout this section, fix a hierarchical TAS T ¼ ðT; sÞ.
Let a; b be assemblies. We say a and b are consistent if

aðpÞ ¼ bðpÞ for all points p 2 dom a \ dom b. If a and b
are consistent, let a [ b be defined as the assembly ða [
bÞðpÞ ¼ aðpÞ if a is defined, and ða [ bÞðpÞ ¼ bðpÞ if aðpÞ

Algorithm 2 Is-Producible-Assembly-Fast(α, τ)
1: input: assembly α and temperature τ
2: Vc ← { {v} | v ∈ dom α } // (positions defining)

subassemblies of α

3: Ec ← {{{u}, {v}} | {u} ∈ Vc and {v} ∈ Vc and u and v are
adjacent and interact}

4: H ← empty linked list //
≥ τ

5: L ← empty linked list //

6: for all {{u}, {v}} ∈ Ec do
7: w({u}, {v}) ← strength of glue binding α(u) and α(v)
8: append {{u}, {v}} to L if w({u}, {v}) < τ

pairs of subassemblies binding
with strength

pairs of subassemblies binding
< τwith strength

, and append
to H otherwise

9: end for
10: while |Vc| > 1 do
11: if H is empty then
12: print “α is not producible” and exit
13: end if
14: {C1, C2} ← first element of H // assume |C1| ≥ |C2|

without loss of generality
15: remove {C1, C2} from H
16: remove C2 from Vc

17: for all neighbors C of C2 do
18: remove {C2, C} from Ec and H or L
19: if {C1, C} ∈ Ec then
20: w(C1, C) ← w(C1, C) + w(C2, C)
21: if w(C1, C) ≥ τ and {C1, C} ∈ L then
22: remove {C1, C} from L and add it to H
23: end if
24: else
25: w(C1, C) ← w(C2, C)
26: add {C1, C} to Ec and to H if w(C1, C) ≥ τ and to

L otherwise
27: end if
28: end for
29: end while
30: print “α is producible”
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is undefined. If a and b are not consistent, let a [ b be

undefined.

Theorem 5.1 If a; b are producible assemblies that are

consistent and dom a \ dom b 6¼ £, then a [ b is pro-

ducible. Furthermore, a ! a [ b, i.e., it is possible to

assemble exactlya, then to assemble the missing portions ofb.

Proof If a and b are consistent and have non-empty

overlap, then a [ b is necessarily stable, since every cut of

a [ b is a superset of some cut of either a or b, which are

themselves stable.

Let !a and !b be assembly trees for a and b,

respectively. Define an assembly tree ! for a [ b by the

following construction. Let l1 be a leaf in !a and let l2 be a

leaf in !b representing the same position

x 2 dom a \ dom b, as shown in Fig. 2a. Remove l2 and

replace it with the entire tree!a. Call the resulting tree!0. At

this point, !0 is not an assembly tree if a and b overlapped on

more than one point, because every position in dom a \
dom b n fxg has duplicated leaves. Therefore the tree !0 is

not a hierarchical division of the set dom a [ dom b, since

not all unions represented by each internal node are disjoint

unions. However, each node does represent a stable assembly

that is the union of the (possibly overlapping) assemblies

represented by its two child nodes. We will show how to

modify !0 to eliminate each of these duplicates—at which

point all unions represented by internal nodes will again be

disjoint—while maintaining the invariant that each internal

node represents a stable assembly, proving there is an

assembly tree ! for a [ b. Furthermore, the subtree !a that

was placed under p2 will not change as a result of these

modifications, which implies a ! a [ b.

The process to eliminate one pair of duplicate leaves is

shown in Fig. 2b. Let l1 and l2 be two leaves representing

the same point in dom a \ dom b, and let a be their least

common ancestor in !, noting that a is not contained in !a

since l2 is not contained in !a. Let pa be the parent of a.

Let r1 be the root of the subtree under a containing l1. Let

r2 be the root of the subtree under a containing l2. Let p2 be

the parent of l2. Remove the leaf l2 and the node a. Set the

parent of r1 to be p2. Set the parent of r2 to be pa.

Since we have replaced the leaf l2 with a subtree

containing the leaf l1, the subtree rooted at r1 is an

assembly containing the tile represented by l2, in the same

position. Since the original attachment of l2 to its sibling

was stable, by monotonicity, the attachment represented by

p2 is still legal. The removal of a is simply to maintain that

! is a full binary tree; leaving it would mean that it

represents a superfluous ‘‘attachment’’ of the assembly r2

to £. However, it is now legal for r2 to be a direct child of

pa, since r2 (due to the insertion of the entire r1 subtree

beneath a descendant of r2, again by monotonicity) now

has all the tiles necessary for its attachment to the old

sibling of a to be stable. Since a was not contained in !a,

the subtree !a has not been altered.

This process is iterated for all duplicate leaves. When all

duplicates have been removed, ! is a valid assembly tree

with root a [ b. Since ! contains !a as a subtree,

a ! a [ b. h

It is worthwhile to observe that Theorem 5.1 does not

immediately follow from Theorem 3.2. Theorem 3.2

implies that if a [ b is producible, then this can be verified

simply by attaching subassemblies until a [ b is produced.

Furthermore, since the hypothesis of Theorem 5.1 implies

that a is producible, the greedy algorithm of Theorem 3.2

could potentially assemble a along the way to assembling

a [ b, which implies that if a [ b is producible, then it is

producible from a. However, nothing in Theorem 3.2

guarantees that a [ b is producible in the first place. There

may be some additional details that could be added to the

proof of Theorem 3.2 that would cause it to imply Theo-

rem 5.1, but those details are likely to resemble the existing

proof of Theorem 5.1, and it is conceptually cleaner to keep

the two proofs separate.
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