
Pattern overlap implies runaway growth in hierarchical tile systems
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Abstract

We show that in the hierarchical tile assembly model, if there is a producible assembly that
overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap
region is identical in both translations), then arbitrarily large assemblies are producible. The
significance of this result is that tile systems intended to controllably produce finite structures
must avoid pattern repetition in their producible assemblies that would lead to such overlap.

This answers an open question of Chen and Doty (SODA 2012 ), who showed that so-called
“partial-order” systems producing a unique finite assembly and avoiding such overlaps must
require time linear in the assembly diameter. An application of our main result is that any
system producing a unique finite assembly is automatically guaranteed to avoid such overlaps,
simplifying the hypothesis of Chen and Doty’s main theorem.

1 Introduction

Winfree’s abstract Tile Assembly Model (aTAM) [23] is a model of crystal growth through coop-
erative binding of square-like monomers called tiles, implemented experimentally (for the current
time) by DNA [2,25]. It models the potentially algorithmic capabilities of tiles that are designed
to bind if and only if the total strength of attachment (summed over all binding sites, called glues
on the tile) is at least a threshold τ , sometimes called the temperature. When glue strengths are
integers and τ = 2, two glues of strength 1 each must cooperate to bind the tile to a growing
assembly. Two assumptions are key: 1) growth starts from a single seed tile type, and 2) only
individual tiles bind to an assembly. We refer to this model as the seeded aTAM.

While violations of these assumptions are often viewed as errors in implementation of the seeded
aTAM [20,21], relaxing them results in a different model with its own programmable abilities. In
the hierarchical (a.k.a. multiple tile [1], polyomino [15,24], two-handed [3,6,9]) aTAM, there is no
seed tile, and an assembly is considered producible so long as two producible assemblies are able
to attach to each other with strength at least τ , with all individual tiles being considered as “base
case” producible assemblies. In either model, an assembly is considered terminal if nothing can
attach to it; viewing self-assembly as a computation, terminal assemblies are often interpreted to
be the output. See [7,17] for an introduction to recent theoretical work using these models.
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1.1 Informal summary of the hierarchical tile assembly model

A tile type is a unit square with four sides, each side having a glue distinguished by a label and
a nonnegative integer strength. We assume a finite set T of tile types, but an infinite number of
copies of each tile type. An assembly is a connected positioning of tiles on the integer lattice Z2.

Two adjacent tiles in an assembly interact if the glue labels on their abutting sides are equal
and have positive strength. The assembly is τ -stable if its binding graph’s minimum cut has weight
at least τ , where the weight of an edge is the strength of the glue it represents.

A hierarchical tile assembly system is a pair T = (T, τ), where T is a finite set of tile types
and τ ∈ N is the temperature. An assembly is producible if either it is a single tile from T , or
it is the τ -stable result of translating two producible assemblies without overlap. The restriction
on overlap is a model of a chemical phenomenon known as steric hindrance [22, Section 5.11] or,
particularly when employed as a design tool for intentional prevention of unwanted binding in
synthesized molecules, steric protection [12–14]. An assembly α is terminal if for every producible
assembly β, α and β cannot be τ -stably attached.

1.2 Contribution of this paper

As with other models of computation, in general it is considerably more difficult to prove negative
results (limitations on what a tile system can do) than to prove positive results. A common line of
inquiry aimed at negative results in tile self-assembly concerns the notion of “pumping”: showing
that a single repetition of a certain group of tiles implies that the same group can be repeated
indefinitely to form an infinite periodic structure.

The temperature-1 problem in the seeded model of tile assembly concerns the abilities of tile
systems in which every positive-strength glue is sufficiently strong to bind two tiles. It may seem
“obvious” that if two tile types repeat in an assembly, then a segment of tiles connecting them could
be repeated indefinitely (“pumped”) to produce an infinite periodic path (since, at temperature
1, each tile along the segment has sufficient strength for the next tile in the segment to attach).
However, this argument fails if the attempt to pump the segment “crashes” into an existing part of
the assembly. It is conjectured [10] that only finite unions of periodic patterns (so-called semilinear
sets) can be assembled at temperature 1 in the seeded model, but despite considerable investiga-
tion [11,16,18,19], the question remains open. If true, temperature-1 hierarchical tile systems would
suffer a similar limitation, due to a formal connection between producible assemblies in the seeded
and hierarchical models[3, Lemma 4.1]. It has been established, using pumping arguments, that
temperature-1 seeded tile systems are unable to simulate the dynamics of certain temperature-2
systems [11].

Moving to temperature 2, both models gain power to assemble much more complex structures;
both are able to simulate Turing machines, for instance. In a certain sense, the hierarchical model
is at least as powerful as the seeded model, since every seeded tile system can be simulated by a
hierarchical tile system with a small “resolution loss”: each tile in the seeded system is represented
by a 5× 5 block of tiles in the hierarchical system [3, Theorem 4.2].

From this perspective, the main theorem of this paper, a negative result on hierarchical tile
assembly that does not apply to seeded tile assembly, is somewhat surprising. We show that
hierarchical systems, of any temperature, are forced to admit a sort of infinite “pumping” behavior
if a special kind of “pattern repetition” occurs. More formally, suppose that a hierarchical tile
system T is able to produce an assembly α0 such that, for some nonzero vector ~v, the assembly
α1 = α0 +~v (meaning α0 translated by ~v) intersects α0, but the two translations agree on every tile
type in the intersection (they are consistent). It is known that this implies that the union α0 ∪ α1
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is producible as well [8, Theorem 5.1]. Our main theorem, Theorem 3.11, shows that this condition
implies that T can produce arbitrarily large assemblies, answering the main open question of [8].
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Figure 1: Example of the main theorem of this paper. (a) A producible assembly α0. Gray tiles are all
distinct types from each other, but red, green, and blue each represent one of three different tile types, so
the two blue tiles are the same type. (b) By Theorem 3.9, α0 ∪ α1 is producible, where α1 = α0 + (2,−2),
because they overlap in only one position, and they both have the blue tile type there. (c) α0 and α2 both
have a tile at the same position, but the types are different (green in the case of α0 and red in the case
of α2). (d) However, a subassembly βi of each new αi can grow, enough to allow the translated equivalent
subassembly βi+1 of αi+1 to grow from βi, so an infinite structure is producible.

The assembly is not necessarily infinitely many translations of all of α0, since although α0 and
α1 are consistent, which implies that α1 must be consistent with α2 = α0 + 2~v, it may be that α0

is not consistent with α2. However, our proof shows that a subassembly β2 of α2 can be assembled
that is sufficient to grow another translated copy of β2, so that the infinite producible assembly
consists of infinitely many translations of β2. See Figure 1 for an example illustration.

An immediate application of this theorem is to strengthen a theorem of Chen and Doty [4].
They asked whether every hierarchical tile system obeying a technical condition known as the partial
order property and producing a unique finite terminal assembly, also obeys the condition that no
producible assembly is consistent with a translation of itself. The significance of the latter condition
is that the main theorem of [4] shows that systems satisfying the condition obey a time lower bound
for assembly: they assemble their final structure in time Ω(d), where d is the diameter of the final
assembly. Our main theorem implies that every system not satisfying the condition must produce
arbitrarily large assemblies and therefore cannot produce a unique finite terminal assembly. Hence
all hierarchical partial order systems are constrained by this time lower bound, the same lower
bound that applies to all seeded tile systems. Thus hierarchical partial order systems, despite the
ability to assemble many sub-assemblies of the final assembly in parallel, provably cannot exploit
this parallelism to obtain a speedup in assembly time compared to the seeded model.

It is worthwhile to note that our main theorem does not apply to the seeded model. For instance,
it is routine to design a seeded tile system that assembles a unique terminal assembly shaped like
a square, which uses the same tile type in the upper right and lower left corners of the square.
Translating this assembly to overlap those two positions means that this tile system satisfies the
hypothesis of our main theorem. Why does this not contradict the fact that this system, like all
seeded systems, can be simulated by a hierarchical tile system at scale factor 5 [3, Theorem 4.2],
which would apparently satisfy the same consistent overlap condition? The answer is that the
hierarchical simulating system of [3] uses different 5× 5 blocks to represent the same tile type from
the seeded system, depending on the sides of the tile that are used to bind in the seeded system.
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Since the upper-right corner tile and lower-left corner tile in the seeded system must clearly bind
using different sides, they are represented by different blocks in the simulating hierarchical system.
Hence in the hierarchical system, the terminal assembly does not consistently overlap with itself.

Our argument proceeds by reducing the problem (via a simple argument) to a simple-to-state
theorem in pure geometry. That theorem’s proof contains almost all of the technical machinery
required to prove our main theorem. Let S0 be a discrete shape: a finite, connected subset of Z2,
and let ~v ∈ Z2 be a nonzero vector. Let S1 = S0 +~v (= { p+~v | p ∈ S1 }), and let S2 = S1 +~v. The
theorem states that S2 \S1 (possibly a disconnected set) contains a connected component that does
not intersect S0. This is clear when ~v is large enough that S0 ∩S2 = ∅, but for the general case, we
encourage the reader to attempt to prove it before concluding that it is obvious. In Figure 1, S2\S1
(referring respectively to the shapes of assemblies α2 and α1) contains two connected components,
one on top and the other on bottom. The top component intersects S0, but not the bottom.

This problem is in turn reduced to a more technical statement about simple curves (continuous,
one-to-one functions ϕ : [0, 1] → R2) whose intersection implies the shapes theorem. Although we
need the curve theorem to hold only for polygonal curves on the integer grid Z2, the result holds
for general curves and may be useful in other contexts.

2 The hierarchical tile assembly model

Let R, Z, N and Z+ denote the set of all real numbers, integers, non-negative integers and positive
integers, respectively. Given a set S ⊆ R2 and a vector ~v ∈ R2, let S + ~v = {p + ~v : p ∈ S}. A
subset A ⊆ Z2 is connected if the graph GA = (V,E) is connected, where V = A and {u, v} ∈ E if
and only if ‖u− v‖1 = 1. A shape is a finite, connected subset of Z2.

We will consider the square lattice, i.e., the graph L� with the vertex set Z2 and the edge
set {{u, v} : ‖u − v‖1 = 1}. The directions D = {N,E, S,W} are used to indicate the natural
directions in the lattice. Formally, they are functions from Z × Z to Z × Z: N(x, y) = (x, y + 1),
E(x, y) = (x + 1, y), S(x, y) = (x, y − 1), and W (x, y) = (x − 1, y). Note that −E = W and
−N = S.

Informally, a tile is a square with the north, east, south, and west edges labeled from some finite
alphabet Σ of glues. Formally, a tile t is a 4-tuple (gN , gE , gS , gW ) ∈ Σ4, indicating the glues on
the north, east, south, and west side, respectively. Each pair of glues g and g′ is associated with a
nonnegative integer str(g, g′) called the interaction strength.

An assembly on a set of tiles T is a partial map α : Z2 99K T such that the subgraph of L�
induced by the domain of α, denoted by L�[dom α], is connected, i.e., a way to place tiles on the
grid so they are stable and connected. The weighted subgraph induced by α, denoted by L�[α], is
L�[dom α] in which every edge pq has weight equal to the interaction strength of the glues on the
abutting sides of tiles at positions p and q, respectively, i.e., str(α(p)d, α(q)−d) where d = q − p.
Given a positive integer τ ∈ Z+, called a temperature, a set of edges of L�[α] of an assembly α is
τ -stable if the sum of the weights of edges in this set is at least τ , and assembly α is τ -stable if
every edge cut of L�[α] is τ -stable.

A hierarchical tile assembly system is a triple T = (T, τ, str), where T is a finite set of tile types,
τ ∈ Z+ and str : Σ × Σ → N is the interaction strength function. Let α, β : Z2 → T be two
assemblies. We say that α and β are nonoverlapping if dom α∩ dom β = ∅. Two assemblies α and
β are consistent if α(p) = β(p) for all p ∈ dom α ∩ dom β. If α and β are consistent assemblies,
define the assembly α∪β in a natural way, i.e., dom (α∪β) = dom α∪dom β and (α∪β)(p) = α(p)
for p ∈ dom α and (α ∪ β)(p) = β(p) for p ∈ dom β. If α and β are nonoverlapping, the cut of
the union α ∪ β is the set of edges of L� with one end-point in dom α and the other end-point
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in dom β. An assembly γ is singular if |dom γ| = 1. We say that an assembly γ is T -producible
if either γ is singular or there exist T -producible nonoverlapping assemblies α and β such that
γ = α ∪ β and the cut of α ∪ β is τ -stable. In the latter case, we write α + β →T1 γ. Note that
every T -producible assembly is τ -stable. A T -producible assembly α is T -terminal if there are
no T -producible assemblies β and γ such that α + β →T1 γ. We say two assemblies α and β are
equivalent up to translation, written α ' β, if there is a vector ~x ∈ Z2 such that dom α = dom β+~x
and for all p ∈ dom β, α(p+ ~x) = β(p). We say that T uniquely produces α if α is T -terminal and
for every T -terminal assembly β, α ' β.

A restriction of an assembly α to a set D ⊆ dom α, denoted by α�D, is dom α�D = D and
for every p ∈ D, α�D(p) = α(p). If C is a subgraph of L� such that V (C) ⊆ dom α, we define
α�C = α�V (C).

When T is clear from context, we may omit T from the notation above and instead write →1,
→, produces, producible, and terminal.

Figure 2 shows an example of hierarchical attachment.

Figure 2: Typical example of hierarchical assembly, at temperature τ = 2. The segments between tiles
represent the bonds, the number of segments encodes the strength of the bond (here, 1 or 2). In the seeded,
single tile model with seed σ = t0, the assembly at step (b) would be terminal.

3 Main result

Section 3.1 proves a theorem about curves in R2 (Theorem 3.7) that contains most of the technical
detail required for our main theorem. Theorem 3.7 states that if a finite set of simple curves
ϕ1, . . . , ϕk do not intersect each other, and for some nonzero ~v ∈ R2, for each i, there is ni ∈ Z+

so that ϕi(1) = ϕi+1(0) +ni~v (where ϕk+1 = ϕ1, i.e., each curve ends a positive integer multiple of
~v from the start of the next), then some curve ϕi intersects ϕi + ~v. Section 3.2 uses Theorem 3.7
to prove a geometrical theorem about shapes in Z2 (Theorem 3.8), namely that for any shape S0,
with S1 = S0 + ~v and S2 = S0 + 2~v, it holds that S2 \ S1 has a connected component that does
not intersect S0. Section 3.3 uses Theorem 3.8 to prove our main theorem (Theorem 3.11), which
is that if a tile system can produce an assembly that overlaps itself consistently, then arbitrarily
large assemblies are producible.

The high-level intuition of the proofs of these results is as follows (described in reverse order).
Theorem 3.11 intuitively holds by the following argument. If a producible assembly α0 is consistent
with its translation α1 = α0 + ~v by some nonzero vector ~v ∈ Z2, then Theorem 3.8 implies that
some portion C of α2 = α0 + 2~v does not intersect α0, and C is furthermore assemblable from
α1 (by Theorem 3.9). Therefore, it is assemblable from α0 ∪ α1 (since α2 is consistent with α1,
and this part C of α2 does not intersect α0, ruling out inconsistency due to C clashing with α0).
Thus α1∪C is producible and overlaps consistently with its translation by ~v. Since C is nonempty,
α1 ∪ C is strictly larger than α0. Iterating this argument shows that arbitrarily large producible
assemblies exist.

Why does Theorem 3.8 hold? If it did not, then every connected component Ci of S2 \S1 would
intersect S0 at a point pi. Since pi ∈ S0, pi + 2~v ∈ S2. Since pi ∈ S2, there is a path qi from pi to
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pi + 2~v lying entirely inside of S2. But Corollary 3.5 implies that qi must intersect qi − ~v, which,
being a path inside of S1, implies that pi +2~v is in a different connected component Ci+1 of S2 \S1.
But since Ci+1 also intersects S0, there is a point pi+1 in this intersection, and there is a curve ϕi

from pi + 2~v to pi+1. Since every connected component of S2 \ S1 intersects S0, we can repeat this
argument until we return to the original connected component Ci. But then the various curves ϕi

defined within each component will satisfy the conditions of Theorem 3.7, a contradiction.

3.1 A theorem about curves

Definition 3.1. Given a nonzero vector ~v ∈ R2 and a point p ∈ R2 the ~v-axis through p, denoted
as L~v,p, is the line parallel to ~v through p.

Definition 3.2. Let ϕ : [0, 1] → R2 be continuous one-to-one mapping. Then ϕ([0, 1]) is called
a simple (non-self-intersecting) curve from ϕ(0) to ϕ(1). If ϕ : [0, 1] → R2 is continuous with
ϕ(0) = ϕ(1) and one-to-one on [0, 1), then ϕ([0, 1]) is called a simple closed curve.

Obviously, any curve ϕ([0, 1]) from ϕ(0) to ϕ(1) (being a subset of the plane) can be considered
also as a curve from ϕ(1) to ϕ(0). Therefore, for the sake of brevity, we sometimes denote this curve
simply by ϕ and say that ϕ connects points ϕ(0), ϕ(1). If 0 ≤ t1 ≤ t2 ≤ 1, then ϕ([t1, t2]) is a simple
curve as well. If ϕ1 and ϕ2 are simple non-closed curves such that ϕ1∩ϕ2 = {ϕ1(1)} = {ϕ2(0)} then
their concatenation ϕ1 ◦ϕ2, defined by (ϕ1 ◦ϕ2)(t) = ϕ1(2t) if t ≤ 1

2 and (ϕ1 ◦ϕ2)(t) = ϕ2(2(t− 1
2))

otherwise, is also a simple curve (closed if ϕ2(1) = ϕ1(0)).

Definition 3.3. Given a subset of a plane A ⊆ R2 and a vector ~v ∈ R2, the shift (or translation)
of A by ~v, denoted by A+ ~v, is the set A+ ~v = {p+ ~v : p ∈ A}.

The following lemma, due to Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, and
Woods [5, Lemma 6.3], states that if a curve does not intersect a translation of itself, then it
also does not intersect any integer multiples of the same translation. We state the lemma in terms
of curves instead of shapes as in ref.[5], and for the sake of self-containment, we provide a proof
stated in these terms.

Lemma 3.4 ([5]). Consider points p1, p2 ∈ R2, nonzero vector ~v ∈ R2 and a simple curve ϕ
connecting p1 and p2 (ϕ may be closed if p1 = p2) such that ϕ∩(ϕ+~v) = ∅. Let ϕ→k = ϕ+k~v, k ∈ Z.
Then all ϕ→k’s are mutually disjoint.

Proof. To every point of ϕ we can assign “relative distance” d from the line L~v,p1—positive for
points left to the line and negative for points right to the line (with respect to ~v). Since the
function d ◦ϕ : [0, 1]→ R is continuous, by the extreme value theorem it attains both its minimum
dmin and maximum dmax.

If dmin = dmax then ϕ is just a line segment on the line L~v,p1 with a length less than |~v| and the
statement of the lemma holds true.

If dmin < dmax, let Tmin = {t ∈ [0, 1] : d ◦ ϕ(t) = dmin} and Tmax = {t ∈ [0, 1] : d ◦ ϕ(t) = dmax}.
Since both Tmin and Tmax are closed and non-empty, we can take tmin ∈ Tmin and tmax ∈ Tmax such
that dmin < d◦ϕ(t) < dmax for every t ∈ (min{tmin, tmax},max{tmin, tmax}). Denote pmin = ϕ(tmin)
and pmax = ϕ(tmax). All curves ϕ→k, k ∈ Z, lie within the stripe between lines L~v,pmin

and L~v,pmax .
Denote ψ = ϕ([min{tmin, tmax},max{tmin, tmax}]) (a simple curve connecting pmin and pmax) and
let ψ→k = ψ + k~v, k ∈ Z, be the corresponding shifts of ψ.

Since ψ→k meets neither L~v,pmin
nor L~v,pmax at any point except its end-points, it splits the

stripe into two disjoint regions—left and right (with respect to vector ~v)—let us denote the left
region by Lk and the right one by Rk.
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Since ϕ ∩ (ϕ + ~v) = ∅, we have for every k ∈ Z, ψ→k ∩ ϕ→k+1 ⊆ ϕ→k ∩ ϕ→k+1 = ∅. Since the
point pmin + (k + 1)~v ∈ ϕ→k+1 lies in Rk and ϕ→k+1 ∩ ψ→k = ∅, the whole curve ϕk+1 lies in Rk.
Hence ψ→k+1 ⊆ Rk and similarly ψ→k−1 ⊆ ϕ→k−1 ⊆ Lk. This yields Rk+1 ⊆ Rk and Lk−1 ⊆ Lk

and consequently R` ⊆ Rk and Lk ⊆ L` for any k ≤ `, k, ` ∈ Z.
Consider now any k < `, k, ` ∈ Z. If ` = k + 1 then ϕ→k ∩ ϕ→` = ∅ by the assumption of the

lemma. If ` > k+ 1 then ϕ→k ⊆ Lk+1 and ϕ→` ⊆ R`−1 ⊆ Rk+1, i.e., ϕ→k and ϕ→` are disjoint.

The following corollary of Lemma 3.4 shows that if a curve is translated by a vector ~v, and the
vector between its start and end points is an integer multiple of ~v, then the curve must intersect
its translation by ~v.

Corollary 3.5. Consider an integer n ≥ 1, a point p ∈ R2 and a nonzero vector ~v ∈ R2. Let ϕ be
a simple curve connecting p and p+ n~v. Then ϕ intersects its translation by ~v.

Proof. Assume for the sake of contradiction that ϕ and ϕ+ ~v do not intersect. By Lemma 3.4 all
curves ϕ+ n~v, n ∈ N, are mutually disjoint but (p+ n~v) ∈ ϕ ∩ (ϕ+ n~v)—a contradiction.

The assumption that the vector from the start point to the end point of the curve ϕ is an
integer multiple of the vector ~v is essential in Corollary 3.5. The following example provides a
general construction of a curve ϕ ⊆ R2 connecting points p and p+ x~v such that ϕ ∩ (ϕ+ ~v) = ∅,
where ~0 6= ~v ∈ R2 and x ∈ R \ Z, |x| > 1. Note that for |x| < 1 the line segment from p to p+ x~v
does not intersect its shift by ~v.

Example 3.6. For simplicity assume that p = (0, 0) and ~v = (1, 0). Let n = bxc, y = x − n and
choose any ε > 0. Let µ denote the line segment (simple curve) from (0, 0) to (y, nε) and ν denote
the line segment from (y, nε) to (1,−ε). Denote µk = µ+ k(1,−ε) and νk = ν+ k(1,−ε) for k ∈ Z.
Then let ϕ = µ0 ◦ ν0 ◦ · · · ◦ µn−1 ◦ νn−1 ◦ µn be the desired curve. Figure 3 shows an example of
this construction for x = 3.6. Note that ϕ starts and ends on the x-axis and that ϕ + ~v does not
intersect ϕ since for each stripe between x = i and x = i+ 1, i = 1, . . . , n, the part of ϕ+ ~v in this
stripe lies above the part of ϕ in the same stripe (shifted up by ε).

0 1 2 3 4 5

(y,nε)

(1,−ε)

Figure 3: An example of a curve ϕ from (0, 0) to (3.6, 0) (solid) that does not intersect its shift
ϕ+ (1, 0) (dashed)

The following theorem is quite technical to state. Informally, it concerns a finite set of non-
intersecting curves ϕ1, . . . , ϕk and a vector ~v of the following form. Each curve connects two points
in the plane, subject to the condition that the end point of ϕi is the start point of ϕi+1 translated by
a positive integer multiple of ~v, with ϕk+1 = ϕ1. See Figure 4(a) for an example. An alternative way
to think of these curves is as a single “mostly continuous” simple closed curve, with k discontinuities
allowed, where each discontinuity is of the form “jump backwards by some positive integer multiple
of ~v.” The theorem states that this curve must intersect its translation by ~v.

Theorem 3.7. Let k ∈ Z+, let p1, . . . , pk ∈ R2 be points, let n1, . . . , nk ∈ Z+, and let ~v ∈ R2 be
a nonzero vector. Then there do not exist curves ϕ1, . . . , ϕk : [0, 1] → R2 satisfying the following
conditions:
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1. ϕi is a simple curve from pi to (pi+1 + ni+1~v), for every 1 ≤ i ≤ k, where pk+1 = p1 and
nk+1 = n1,

2. ϕi ∩ (ϕi + ~v) = ∅, for every 1 ≤ i ≤ k,

3. ϕi ∩ ϕj = ∅, for every 1 ≤ i < j ≤ k.

Proof. By induction on k. The base case k = 1 immediately follows by Corollary 3.5.
Intuitively, the inductive case will show that if we suppose, for the sake of contradiction, that

k curves exist satisfying the conditions, then we can find a common point of intersection between
two of their integer translations by ~v, and we can connect two subcurves of these translations to
create a set of k′ < k curves also satisfying the hypothesis of the theorem, without introducing an
intersection. Figure 4 shows an example of three curves being reduced to two. The new curves will
simply be k′ − 1 translations of some of the original k curves (which already satisfy the conditions
by hypothesis), together with one new curve ψ, so our main task will be to show that ψ, in the
presence of the other pre-existing curves, satisfies the three conditions.

More formally, let k > 1 and suppose the theorem holds for all integers 0 < k′ < k. Assume
for the sake of contradiction that there are curves ϕ1, . . . , ϕk satisfying conditions 1, 2, and 3, and
define ϕ→`

m = ϕm + `~v for all m ∈ {1, . . . , k} and ` ∈ N. We find the first intersection of ϕ1 with
any of curves ϕ→`

m for all m ∈ {2, . . . , k} and ` ∈ N. Let

t1 = min{t ∈ [0, 1] : (∃m ∈ {2, . . . , k})(∃` ∈ N)ϕ1(t) ∈ ϕ→`
m },

M = any m ∈ {2, . . . , k} such that (∃` ∈ N)ϕ1(t1) ∈ ϕ→`
m ,

L = the unique ` ∈ N such that ϕ1(t1) ∈ ϕ→`
M ,

t2 = the unique t ∈ [0, 1] such that ϕ1(t1) = ϕ→L
M (t).

Since ϕ1 intersects ϕ→n2
2 at p2 + n2~v by condition 1, t1, M , and L are well-defined. The

uniqueness of L follows by Lemma 3.4. The uniqueness of t2 follows from the fact that ϕ→L
M is

simple.
Now define the curve ψ as a concatenation

ψ = ϕ1([0, t1]) ◦ ϕ→L
M ([t2, 1])

and consider its shift

ψ + ~v = ϕ→1
1 ([0, t1]) ◦ ϕ→L+1

M ([t2, 1]).

In what follows we will show that points p1, pM+1+L~v, . . . , pk+L~v, integers n1+L, nM+1, . . . , nk
and curves ψ,ϕ→L

M+1, . . . , ϕ
→L
k form another instance satisfying conditions 1, 2, and 3.

Observe that ψ is a curve connecting the point p1 to the point pM+1 + (nM+1 +L)~v. It consists
of subcurves of two simple curves whose concatenation at the intersection point ϕ1(t1) = ϕ→L

M (t2),
by the definition of t1, is the first point of intersection between ϕ1 and ϕ→L

M . The curve ϕ→L
M after

that point (i.e., ϕ→L
M ((t2, 1])) therefore cannot intersect ϕ1([0, t1)), so ψ is simple. It follows that

ψ satisfies condition 1 of the new instance.
We establish that ψ does not intersect its shift by vector ~v by analyzing each of the two parts

of ψ, ϕ1([0, t1]) and ϕ→L
M ([t2, 1]), and their translations by ~v, separately:

• ϕ1([0, t1)) ∩ ϕ→1
1 ([0, t1)) = ∅, since ϕ1 ∩ ϕ→1

1 = ∅ by condition 2.

• ϕ→L
M ([t2, 1]) ∩ ϕ→L+1

M ([t2, 1]) = ∅, since it follows by condition 2 that ϕ→L
M ∩ ϕ→L+1

M = ∅.
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a) v⃗

p 3+2 v⃗p 3
p 2+2 v⃗p 2

p 1 p 1+3 v⃗

ϕ1
ϕ3

ϕ2

b)

ϕ1
ϕ3

ϕ2

ϕ3
→1

ϕ2
→1

ϕ1(t1)=ϕ2
→1

(t 2)

c)

ϕ1([0,t1 ])

ϕ2
→1

([t2 ,1 ])

ψ

ϕ3
→1

Figure 4: An example of the proof of Theorem 3.7
for k = 3 curves.
(a) Three curves, ϕ1, ϕ2, and ϕ3, with start and end
points obeying condition 1 and also condition 3 (the
curves violate condition 2, however, as Theorem 3.7
dictates they must if obeying the other two condi-
tions). In this case, n1 = 3, n2 = 2, and n3 = 2.
(b) Translations of curves ϕ2 and ϕ3 by ~v, showing
that ϕ1 first intersects ϕ→1

2 , among all positive in-
teger translations of ϕ2 and ϕ3. So in this example,
M = 2 and L = 1.
(c) ψ defined as the concatenation of ϕ1([0, t1]) with
ϕ→1
2 ([t2, 1]). ψ and ϕ→1

3 and are the two curves pro-
duced by the proof for the inductive argument.

• ϕ1([0, t1)) ∩ ϕ→L+1
M ([t2, 1]) = ∅, since by the definition of t1 (in particular, the fact that it is

the minimum element of the set defining it), ϕ1([0, t1)) does not intersect any ϕ→`
m , for any

m ≥ 2, ` ∈ N.

• ϕ→L
M ([t2, 1]) ∩ ϕ→1

1 ([0, t1)) = ∅, since otherwise ϕ1([0, t1)) would intersect ϕ→L−1
M , violating

the definition of t1 similarly to the previous point.

This implies that ψ satisfies condition 2.

p1

p2+~vp2

p3+~vp3

p4+~vp4

p1+
3
5
~v

ϕ1

ϕ2

ϕ3

ϕ4

Figure 5: An example of four curves ϕ1, . . . , ϕ4 that satisfy the conditions of Theorem 3.7, except that
n1 = 3

5 is not an integer.

We have ϕ→L
i ∩ ψ = ∅ for every i > M , since ϕ→L

i cannot intersect ϕ1([0, t1)) (by definition
of t1) and ϕ→L

i ∩ ϕ→L
M = ∅ by condition 3. This implies that ψ satisfies condition 3 of the new

instance.
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Thus, the new instance with points p1, pM+1 + L~v, . . . , pk + L~v, integers n1 + L, nM+1, . . . , nk
and curves ψ,ϕ→L

M+1, . . . , ϕ
→L
k satisfy conditions 1, 2, and 3. In addition, it has a smaller number of

curves (k+1−M = k′ < k), and hence, using the induction hypothesis we have a contradiction.

The example in Figure 5 shows that the theorem does not hold if we allow just one of the
numbers n1, . . . , nk to be a non-integer.

3.2 A theorem about shapes

S
2

S
1

S
0

v⃗

C
2

C
3

C
1

C
4

p1+2 v⃗

p1p2

p2+2 v⃗

p3

p3+2 v⃗

ϕ1ϕ2

ψ

ψ−v⃗

Figure 6: An example of a shape S0 and its two translations. Starting at p1 ∈ (S2 ∩ S0) \ S1, we repeat
the following procedure: from point pi in connected component Ci of S2 \ S1, jump to point pi + 2~v, which
is guaranteed to be in a different connected component Ci+1 of S2 \ S1 from pi (see proof of Theorem 3.8
to see why this is implied by Corollary 3.5). If Ci+1 intersects S0 at point pi+1, then there is a curve ϕi in
S2 \ S1 from pi + 2~v to pi+1, and jumping to point pi+1 + 2~v takes us to yet another connected component
Ci+2 6= Ci+1. Repeating this must eventually result in a connected component (in this example, C4) that
does not intersect S0, or else the curves ϕi would contradict Theorem 3.7.

Theorem 3.7 gives rise to the following geometrical theorem about discrete shapes, which is the
main technical tool to prove our main self-assembly result, Theorem 3.11. We define a shape to be
a finite, connected subset of Z2.

Theorem 3.8. Let S0 ⊂ Z2 be a shape, and let ~v ∈ Z2 be a nonzero vector. Let S1 = S0 + ~v and
S2 = S1 + ~v. Then there is a connected component of S2 \ S1 that does not intersect S0.

Proof. We first sketch an informal intuition of the proof, shown by example in Figure 6. The
argument is constructive: it shows a way to iterate through some connected components of S2 \S1
to actually find one that does not intersect S0.
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Start with component C1, and suppose it intersects S0 at point p1 ∈ C1∩S0. Then p1 +2~v ∈ S2
since p1 ∈ S0.

1 Let ψ be a path (simple curve) from p1 to p1 + 2~v lying entirely within S2.
Corollary 3.5 implies that ψ intersects ψ − ~v, which is a curve lying entirely within S1. In other
words, every path from p1 to p1 + 2~v lying inside S2 hits S1, i.e., p1 + 2~v and p1 are in different
connected components of S2 \ S1. We call C2 6= C1 the connected component of p1 + 2~v. Suppose
C2 also intersects S0; then there is some curve ϕ1 lying entirely within S2 \ S1 and going from
p1 + 2~v to this new point p2 ∈ C2 ∩ S0. Repeating the previous argument, p2 + 2~v must be in a
different connected component C3 6= C2, and if C3 also intersects S0, then there is another curve
ϕ2 ⊂ C3 from p2 + 2~v to p3 ∈ C3 ∩S0. In this example, we iterate this one more time and find that
connected component C4 ⊂ S2 \ S1 does not intersect S0.

For the sake of contradiction, suppose that we fail to find such a connected component, i.e.,
every one of the connected components C1, . . . , Ck of S2 \ S1 intersects S0. Then eventually the
above described procedure cycles back to a previously visited connected component, and the curves
ϕj contained in S2 \ S1 satisfy condition 1 of Theorem 3.7. Since each ϕi ∈ S2 \ S1, we have
ϕi + ~v ∈ S3 \ S2, hence ϕi ∩ (ϕi + ~v) = ∅ for all 1 ≤ i ≤ k, so they satisfy condition 2. Since each
curve lies in a different connected component of S2 \S1, they do not intersect each other, satisfying
condition 3, a contradiction.

More formally, consider connected components of S2 \ S1, say C1, . . . , Ck, for some k ≥ 1. We
say that Ci is non-conflicting if Ci ∩ S0 = ∅. We will show that there is a non-conflicting Ci.
Assume for the sake of contradiction that for every i = 1, . . . , k, Ci ∩ S0 6= ∅ and let pi ∈ Ci ∩ S0.
Note that pi + ~v ∈ S1. Let ni be the smallest positive integer such that pi + ni~v /∈ S1 (since S1
is finite, such an ni must exist). Since pi + (ni − 1)~v ∈ S1, we have pi + ni~v ∈ S2 \ S1. Hence,
pi + ni~v belongs to some connected component of S2 \ S1. Both pi and pi + ni~v are in S2, but by
Corollary 3.5, any path within S2 connecting them must intersect its translation by −~v, which is a
path in S1, so pi +ni~v must be in a different connected component than Ci. We call this connected
component Ci+1.

2

Consider a simple curve (a self-avoiding path in the lattice) ϕi from pi to pi+1 + ni+1~v in
Ci ⊆ S2 \ S1. Since each ϕi lies in a different connected component, ϕi does not intersect ϕj if
i 6= j. Furthermore, since ϕi + ~v ⊂ S3 \ S2, ϕi does not intersect ϕi ⊂ S2. But these curves
ϕ1, . . . , ϕk contradict Theorem 3.7.

3.3 Implication for self-assembly

In this section we use Theorem 3.8 to prove our main theorem, Theorem 3.11. We require the
following theorem from [8]. We say that two overlapping assemblies α and β are consistent if
α(p) = β(p) for every p ∈ dom α∩ dom β. If α and β are consistent, define their union α∪ β to be
the assembly with dom (α ∪ β) = dom α ∪ dom β defined by (α ∪ β)(p) = α(p) if p ∈ dom α and
(α ∪ β)(p) = β(p) if p ∈ dom β. Let α ∪ β be undefined if α and β are not consistent.

Theorem 3.9 ([8]). If α and β are T -producible assemblies that are consistent and overlapping,
then α ∪ β is T -producible. Furthermore, it is possible to assemble first α and then assemble the
missing portions of β, i.e., β�C1 , . . . , β�Ck

, where C1, . . . , Ck are connected components of dom β \
dom α.

1In this example p1 + 2~v 6∈ S1; in the full argument we consider p1 + n~v for n ∈ Z+ large enough to ensure this.
2Assuming we do this for every point pi, at some point we must cycle back to a connected component already

visited. It may not be that this cycle contains all connected components of S2 \ S1, but in this case we consider
C1, . . . , Ck to be not every connected component of S2 \ S1, but merely those encountered in the cycle, so that for
the sake of notational convenience we can assume that C1, . . . , Ck are all encountered, and indexed by the order in
which they are encountered.
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Definition 3.10. We say that assembly α is repetitious if there exists a nonzero vector ~v ∈ Z2

such that dom α ∩ dom (α+ ~v) 6= ∅ and α and α+ ~v are consistent.

Note that Theorem 3.9 implies that if a producible assembly α is repetitious with translation
vector ~v, then α ∪ (α+ ~v) is also producible. The following is the main theorem of this paper.

Theorem 3.11. Let T be a hierarchical tile assembly system. If T has a producible repetitious
assembly, then arbitrarily large assemblies are producible in T .

Proof. It suffices to show that the existence of a producible repetitious assembly α implies the exis-
tence of a strictly larger producible repetitious assembly α′ A α. Let α be a producible repetitious
assembly, with ~v ∈ Z2 a nonzero vector such that α and α + ~v overlap and are consistent. For all
i ∈ {0, 1, 2}, let αi = α+ i~v and Si = dom αi.

By Theorem 3.8, at least one connected component C2 ⊆ S2 \ S1 does not intersect S0. Define
C1 = C2 − ~v. Note that C1 ⊆ S1 \ S0, which implies, since C2 ⊆ S2 \ S1, that C2 ∩ C1 = ∅. Let
ᾱ = α1�C1 . Define α′ = α ∪ ᾱ. By Theorem 3.9, α′ is producible. Consider dom α′ ∩ dom (α′ + ~v);
it suffices to show that α′ and α′+~v are consistent on every tile type in this intersection. We have

dom α′ ∩ dom (α′ + ~v) = (S0 ∪ C1) ∩ (S1 ∪ C2)

= (S0 ∩ S1) ∪ (S0 ∩ C2) ∪ (C1 ∩ S1) ∪ (C1 ∩ C2)

= (S0 ∩ S1) ∪ ∅ ∪ (C1 ∩ S1) ∪ ∅
= (S0 ∩ S1) ∪ C1,

We handle the cases for S0 ∩ S1 and C1 separately:

S0 ∩ S1: Since C1 ∩ S0 ∩ S1 = ∅, the addition of ᾱ to α0 cannot introduce new tiles anywhere in
S0∩S1, so only tiles from α0 could appear here. By the hypothesis that α0 is consistent with
α1, α

′ and α′ + ~v are consistent on S0 ∩ S1.

C1: Observe that α′�C1−~v @ α0 (this is the subassembly of α′ that will overlap C1 after being
translated by ~v) and (α′ + ~v)�C1 @ α1, so the fact that α0 is consistent with α1 implies that
α′ and α′ + ~v are consistent on C1 as well.

Hence α′ is repetitious. Since C1 ⊆ S1 \ S0 and is nonempty, |dom α′| > |dom α|.
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rem 3.7. Although Jozef requested not to be a coauthor, that theorem is the keystone of the paper.
The second author is also grateful to David Kirkpatrick, Pierre-Étienne Meunier, Damien Woods,
Shinnosuke Seki, and Andrew Winslow for several insightful discussions. The third author would
like to thank Sheung-Hung Poon for useful discussions.

References

[1] Gagan Aggarwal, Qi Cheng, Michael H. Goldwasser, Ming-Yang Kao, Pablo Moisset de Es-
panés, and Robert T. Schweller. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005. Preliminary version appeared in SODA 2004.

[2] Robert D. Barish, Rebecca Schulman, Paul W. K. Rothemund, and Erik Winfree. An
information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences, 106(15):6054–6059, March 2009.

12



[3] Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert T. Schweller, Scott M. Summers, and Andrew Winslow. Two hands are better than
one (up to constant factors). In STACS 2013: Proceedings of the Thirtieth International
Symposium on Theoretical Aspects of Computer Science, pages 172–184, 2013.

[4] Ho-Lin Chen and David Doty. Parallelism and time in hierarchical self-assembly. In SODA
2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1163–1182, 2012.

[5] Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T.
Schweller, Andrew Winslow, and Damien Woods. One tile to rule them all: Simulating
any Turing machine, tile assembly system, or tiling system with a single puzzle piece. In
ICALP 2014: Proceedings of the 41st International Colloquium on Automata, Languages, and
Programming, 2014.

[6] Erik D. Demaine, Matthew J. Patitz, Trent Rogers, Robert T. Schweller, Scott M. Summers,
and Damien Woods. The two-handed tile assembly model is not intrinsically universal. In
ICALP 2013: Proceedings of the 40th International Colloquium on Automata, Languages and
Programming, July 2013.

[7] David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55(12):78–88,
December 2012.

[8] David Doty. Producibility in hierarchical self-assembly. In UCNC 2014: Proceedings of 13th
Unconventional Computation and Natural Computation, 2014.

[9] David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, and Scott M. Summers.
Strong fault-tolerance for self-assembly with fuzzy temperature. In FOCS 2010: Proceedings
of the 51st Annual IEEE Symposium on Foundations of Computer Science, pages 417–426.
IEEE, 2010.

[10] David Doty, Matthew J. Patitz, and Scott M. Summers. Limitations of self-assembly at
temperature 1. Theoretical Computer Science, 412(1–2):145–158, January 2011. Preliminary
version appeared in DNA 2009.

[11] Pierre Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires coopera-
tion. In SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 752–771, 2014.

[12] Kei Goto, Yoko Hinob, Takayuki Kawashima, Masahiro Kaminagab, Emiko Yanob, Gaku
Yamamotob, Nozomi Takagic, and Shigeru Nagasec. Synthesis and crystal structure of a stable
S-nitrosothiol bearing a novel steric protection group and of the corresponding S-nitrothiol.
Tetrahedron Letters, 41(44):8479–8483, 2000.

[13] Wilfried Heller and Thomas L. Pugh. “Steric protection” of hydrophobic colloidal particles by
adsorption of flexible macromolecules. Journal of Chemical Physics, 22(10):1778, 1954.

[14] Wilfried Heller and Thomas L. Pugh. “Steric” stabilization of colloidal solutions by adsorption
of flexible macromolecules. Journal of Polymer Science, 47(149):203–217, 1960.

[15] Chris Luhrs. Polyomino-safe DNA self-assembly via block replacement. Natural Computing,
9(1):97–109, March 2010. Preliminary version appeared in DNA 2008.

13
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