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Programming Substrate-Independent Kinetic Barriers
with Thermodynamic Binding Networks
Keenan Breik , Cameron Chalk , David Doty , David Haley , David Soloveichik

Engineering molecular systems that exhibit complex behavior requires the design of kinetic barriers. For
example, an effective catalytic pathway must have a large barrier when the catalyst is absent. While
programming such energy barriers seems to require knowledge of the specific molecular substrate, we
develop a novel substrate-independent approach. We extend the recently-developed model known as
thermodynamic binding networks, demonstrating programmable kinetic barriers that arise solely from the
thermodynamic driving forces of bond formation and the configurational entropy of forming separate
complexes. Our kinetic model makes relatively weak assumptions, which implies that energy barriers
predicted by our model would exist in a wide variety of systems and conditions. We demonstrate that our
model is robust by showing that several variations in its definition result in equivalent energy barriers. We
apply this model to design catalytic systems with an arbitrarily large energy barrier to uncatalyzed
reactions. Our results could yield robust amplifiers using DNA strand displacement, a popular technology
for engineering synthetic reaction pathways, and suggest design strategies for preventing undesired kinetic
behavior in a variety of molecular systems.

F

1 Introduction
Abstract mathematical models of molecular systems, such as
chemical reaction networks, have long been useful in natural
science to study the properties of natural molecules. With
recent experimental advances in synthetic biology and DNA
nanotechnology [1]–[3], [10], [11], such models have come to
be viewed also as programming languages for describing the
desired behavior of synthetic molecules.

We can describe a chemical program with abstract chemical
reactions such as

A+ C → B + C (1)
A→ B. (2)

In particular, a program may require (1) and forbid (2). But
what remains hidden at this level of abstraction is a well-
known chemical constraint: if (1) is possible, then (2) must also
be, no matter the exact substances. Knowing this, we might
try to slow (2) by ensuring B has high free energy. But then
B + C must also have high free energy, so (1) slows in tandem.
The only option to slow (2) but not (1) is to use a kinetic
barrier : designing A so that, although it is possible for A to
reconfigure into B, the system must traverse a higher energy
(less favorable) intermediate in the absence of C.

It seems difficult to engineer kinetic energy barriers and
catalysis in a way that is independent of the particular chemical
substrate. For example, the development of novel protein
enzymes requires the precise positioning of hydrophobic or
electrostatic interactions, or otherwise chemically active sites,
which are often hard to engineer from first principles. Catalysts
based on DNA strand displacement reactions arguably promise
the highest degree of programmability [?], [?]. Yet, kinetic

barriers here usually crucially depend on the specific toehold-
sequestering mechanism. Importantly, such DNA-based cataly-
sis suffer from a relatively large rate of the uncatalyzed reaction,
and prior work lacks a method to arbitrarily increase the
uncatalyzed energy barrier.

To develop a substrate-independent approach to engineer-
ing kinetic barriers we need to rely on a universal thermo-
dynamic property that would be relevant in a wide variety
of chemical systems. We focus on the entropic penalty of
association (decreasing the number of separate complexes).
Intuitively, the entropic penalty is due to decreasing the
number of microstates corresponding to the independent
three-dimensional positions of each complex (configurational
entropy). This thermodynamic penalty can be made dominant
compared with other factors by decreasing the concentration.

To formalize this entropic penalty, we use the thermody-
namic binding networks (TBN) model [?], [5]. TBNs represent
molecules as abstract monomers with binding sites that allow
them to bind to other monomers. For a configuration γ, the
TBN model defines H(γ) as the number of bonds formed,
and S(γ) as the number of free complexes, and the energy
E(γ) = −wH(γ)− S(γ) as a (negative) weighted sum of the
two. To be applicable to a wide variety of chemical systems,
the TBN model does not impose geometric constraints on
bonding (monomers are simply multisets of binding sets).
Implementation of TBNs requires choosing a concrete physical
substrate and geometric arrangement that permits the desired
configurations to form.

We augment the TBN model with a notion of kinetic
paths (changes in configuration) due to merging of different
complexes and splitting them up (and in Section 5 making,
breaking, or exchanging bonds). This gives rise to a notion
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Fig. 1. Two configurations γ1 and γ2 of the TBN T =
{{a, a}, {a∗, b}, {a∗, b}}. Note that T has 3 monomers but 2 monomer
types and 6 sites but 3 site types. A dashed box indicates monomers
that are part of the same polymer. A single configuration (bottom) can
correspond to multiple ways of binding complementary sites (top), which
are not distinguished in our model. In γ2 the polymer on the left has
exposed sites {b, a∗} and the polymer on the right {a, b}; they are thus
compatible since the exposed site a∗ of the left is complementary to
exposed site a of the right. Since γ2 has compatible polymers it is not
saturated, but γ1 is.

of paths of configurations, with different energies. Define the
height of a path starting at γ as the maximum energy difference
E(δ) − E(γ) over all configurations δ on the path. Then
the kinetic energy barrier separating configuration δ from
configuration γ is the height of the minimum-height path from
γ to δ.

In Section 2 we introduce our main kinetic model. In
Section 3 we give a sufficient condition for large kinetic barriers.
In Section 4 we develop two constructions for catalytic systems.
Both constructions yield families of TBNs parametrized by
a complexity parameter n such that the uncatalyzed energy
barrier scales linearly with n. The catalyzed energy barrier
is always 1. We show a direct DNA strand displacement
implementation of one of the constructions. Finally we show
an autocatalytic TBN, with an arbitrarily large energy barrier
to undesired triggering, that exponentially amplifies its input
signal (Section 4.2.1). In Section 5 we show that our main
model predicts the same barriers as a more complicated model,
one that keeps track of individual bonds on top of whole
polymers.

2 Kinetic model

Our kinetic models build on thermodynamic binding networks
(TBN) [?], [5]. Intuitively, we model a chemical system as a
collection of molecules, each of which has a collection of binding
sites, which can bind if they are complementary. Although the
TBN model is more general, DNA domains can be thought
of as the prototypical example of binding sites. No geometry
is enforced, which allows the model to handle topologically
complex structures, such as pseudoknots.

2.1 TBN

(See Fig. 1.) Formally, a TBN is a multiset of monomer types.
A monomer type is a multiset of site types. A site type is
a formal symbol, such as a, and has a complementary type,
denoted a∗. We call an instance of a monomer type a monomer
and an instance of a site type a site.

2.2 Configuration

(See Fig. 1.) We may describe the configuration of a TBN at
any moment in terms of which monomers are grouped into
polymers. This way a polymer is a multiset of monomer types,
and a configuration is a partition of the TBN into polymers.1

The exposed sites of a polymer is the multiset of site
types that would remain if one were to remove as many
complementary pairs of sites as possible. Each such pair is
counted as a bond. Note that bonds are not specified as part
of a configuration, and intuitively we think of polymers as
being maximally bonded. Two polymers are compatible if they
have some complementary exposed sites. A configuration is
saturated if no two polymers are compatible. This is equivalent
to having the maximum possible number of bonds.

2.3 Path

(See Fig. 2.) One configuration can change into another by a
sequence of elementary steps. If γ can become δ by replacing
two polymers in γ with their union, then γ merges to δ and
δ splits to γ, and we write γ �1 δ.2 We denote by �1, �, �
the reflexive, transitive, and reflexive transitive closures of �1.
A path is a nonempty sequence of configurations where each
merges or splits to the next. Note that there is a path between
any two configurations.3

We could imagine smaller steps that manipulate individual
bonds. But surprisingly, such a bond-aware model leads to
essentially equivalent kinetic barriers, which we prove in
Section 5.

2.4 Energy

(See Fig. 2.) For a configuration γ, denote by H(γ) the number
of bonds summed over all polymers. Denote by S(γ) the
number of polymers.4 Note that a saturated configuration
has maximum H(γ). The energy of γ is

E(γ) = −wH(γ)− S(γ),

1Consider swapping two monomers of the same type between two
polymers in a configuration. We do not consider the result a different
configuration. Note that monomers of the same type correspond to an
entropy contribution that we ignore (see also footnote 4).

2Note that this would form a lattice of partitions if the configura-
tions were sets instead of multisets.

3Our model allows incompatible polymers to be merged (i.e., two
polymers merge without forming any new bonds). This represents
spontaneous co-localization and comes with an energy penalty, as
discussed later. For instance, to get from any configuration to any
other, we can merge all initial polymers into one and then split into the
desired end polymers; however, such a path could be very energetically
unfavorable.

4The quantities H(γ) and S(γ) are meant to evoke the thermody-
namic quantities of enthalpy and entropy, although the mapping is not
exact. Indeed, the free energy contribution of forming additional bonds
typically contains substantial enthalpic and entropic parts. Further,
while S(γ) captures entropy due to independent positions of separate
polymers, chemical free energy may consider a variety of other entropic
contributions. These may include geometric configurations of a single
polymer, as well as the entropy due to swapping indistinguishable
monomers. We can justify focusing on S(γ) because its contribution
arbitrarily predominates in taking the limit of large solution volume—
that is, the low concentration regime [5].
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Fig. 2. A path p consisting of γ, α1, α2, δ and a path p′ consisting of
γ, β1, β2, δ in the TBN T = {{a}, {b}, {a, b}, {a∗, b∗}}. The energy
of each configuration is shown graphically below it. A large wavy disc
indicates energy due to a bond. A small solid disc indicates energy
due to a polymer. Lower is more favorable. Here bond strength w =
2, so a wavy disc is twice as tall as a solid disc. The height of p is
h(p) = E(α2) − E(γ) = (−4) − (−2w − 2) = 2. The height of p′ is
h(p′) = E(β1)− E(γ) = (−2w − 1)− (−2w − 2) = 1.

where the bond strength w represents the benefit from gaining
a bond relative to gaining a polymer.5 Note that H(γ) ≥ 0 and
S(γ) > 0, so E(γ) < 0, and that lower energy, which results
from more bonds or more polymers, is more favorable. (The
choice to make favorability correspond to lower energy, that is
more negative, is motivated by consistency with the standard
physical chemistry notion of free energy.) We call a minimum
energy configuration stable.

Merging incompatible polymers forms no additional bonds
and so is unfavorable, since S(γ) drops without H(γ) rising.
In contrast, when bond strength w > 1, merges between
compatible polymers are energetically favorable. So every

5Our notion of energy idealizes the physical Gibbs free energy. In
typical DNA nanotechnology applications, the Gibbs free energy is like-
wise a linear combination ofH(γ) and S(γ). We can estimate the Gibbs
free energy ∆G(γ) of a configuration γ as follows. Bonds correspond to
domains of length l bases, and forming each base pair is favorable by
∆G◦bp. Thus, the contribution ofH(γ) to ∆G(γ) is (∆G◦bp ·l)H(γ). At 1
M concentration, the free energy penalty due to decreasing the number
of separate complexes by one is ∆G◦assoc. At lower concentration
cM < 1 M, this penalty increases to ∆G◦assoc +RT ln((1 M)/c). The
point of zero free energy is taken to be the configuration with no bonds,
and all monomers separate. Thus, the contribution of S(γ) to ∆G(γ) is
(∆G◦assoc +RT ln((1 M)/c))(m− S(γ)), wherem is the total number
of monomers. To summarize,

∆G(γ) = (∆G◦bp · l)H(γ) + (∆G◦assoc +RT ln((1 M)/c))(m− S(γ)).

Note that, as expected, this is a linear combination of H(γ) and
S(γ), and that increasing the length of domains l weighs H(γ) more
heavily, while decreasing the concentration c weighs S(γ) more heavily.
Domains are routinely 15−25 bases long, and at 100 nM concentration
at room temperature this corresponds to a relative bond strength w of
1.9–3.2.

stable (that is, minimum energy) configuration is saturated.
This regime is typical of many real systems, and in particular,
we can engineer DNA strand displacement systems [12] to have
large bond strength w by increasing the length of domains.

2.5 Barrier
(See Fig. 2.) There are many paths from a start configuration γ
to an end configuration δ. The height h(p) of a particular such
path p is the greatest energy difference E(α)−E(γ) between
any α along p and γ. This measures the difficulty of traversing
p. Notice that h(p) ≥ E(γ)− E(γ) = 0.

Another reasonable definition of height is the greatest
energy difference E(β) − E(α) between any α and later β
on the path. We will be considering paths between stable
(lowest energy) configurations, where the two definitions are
equivalent.

Going from one configuration to another is difficult if each
path has large height. The barrier b(γ, δ) from γ to δ is the
least height of any path from γ to δ. Notice that b(γ, δ) ≥ 0
as well. Since paths are reversible, it is easy to show that if
E(γ) = E(δ) then b(γ, δ) = b(δ, γ).

3 Saturated paths
Analyzing TBNs is simpler if we reason only about saturated
configurations. Clearly, in the limit of large bond strength
w, breaking a bond is so unfavorable that a least height
path has only saturated configurations. The main result of
this section, Corollary 8, shows that the barrier remains the
same even if we consider paths that traverse only saturated
configurations as long as w ≥ 2. Such a threshold may be
surprising: it might seem that breaking some bonds, even if
locally unfavorable, might allow a path to bypass an otherwise
large barrier elsewhere.

We prove Corollary 8 in Section 3.2 by showing how to
transform an arbitrary path into a saturated path with height
no greater. Section 3.1 defines a relation among configurations
that allows us to keep track of changes in energy as we
transform the path.

3.1 Bounds on energy change
When two polymers merge, knowing whether they are com-
patible makes the change in energy predictable. Recall that
merging incompatible polymers results in no more bonds, so
overall energy increases by 1. Merging compatible polymers
results in at least one more bond, so overall energy decreases by
at least w− 1. To make this precise, let γ �1

◦ δ (and let γ �1
• δ)

mean that γ merges to δ by combining two incompatible
(compatible) polymers. Let �◦ (�•) be the reflexive, transitive
closure of �1

◦ (�1
•).

Observation 1. If γ �1
◦ δ, then E(δ) = E(γ) + 1. If γ �1

• δ,
then E(δ) ≤ E(γ) + 1− w.

Observation 2. Let ∆ = S(γ)−S(δ). If γ �◦ δ, then E(δ) =
E(γ) + ∆. If γ �• δ, then E(δ) ≤ E(γ) + ∆(1− w).

To apply these bounds to the general case γ � δ, we decompose
� into �• and �◦. This allows us to identify an intermediate
configuration that has least energy (is most favorable).

Theorem 3. If γ � δ, then some α has γ �• α �◦ δ.
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Proof. Let γ � δ, and let α be a “most merged” configuration
with γ �• α � δ (no α′ � α has γ �• α′ � δ). Then α =
β0 �1 · · · �1 βn = δ for some configurations βi. Consider the
polymers P and Q in βk merged by βk �1 βk+1. We claim P
and Q are incompatible.

To see so, note that P = P1 ∪ · · · ∪ Px and Q = Q1 ∪
· · · ∪ Qy for some polymers Pi and Qj in α. If any Pi and
Qj are compatible, then merging them in α would produce a
configuration that contradicts α being most merged. So they
are pairwise incompatible. Letting [X] denote the exposed sites
of X, we have [P ] ⊆ [P1]∪· · ·∪ [Px] and [Q] ⊆ [Q1]∪· · ·∪ [Qy].
So P and Q are incompatible.

So βk �1
◦ βk+1 for each k, and α = β0 �◦ βn = δ.

3.2 Saturated paths suffice
A saturated path is a path along which every configuration
is saturated. For example, the bottom path p′ in Fig. 2 is
saturated. If γ and δ are saturated, then let bsat(γ, δ) denote
the barrier from γ to δ when allowing only saturated paths.
Since a saturated path is a path, bsat(γ, δ) ≥ b(γ, δ). It turns
out that if bond strength w ≥ 2, then the reverse inequality
also holds, so bsat(γ, δ) = b(γ, δ). And if w ≥ 1, then the
reverse inequality “almost” holds.

To show the reverse inequality, we turn an arbitrary path
into a saturated path without increasing its height (much). We
do this step by step by always merging just enough polymers to
achieve saturation. To make this precise, let [γ] denote the set
of saturated γ′ with γ �• γ′, and let Emax(p) be the maximum
energy of any configuration along the path p.

First we show how to saturate a split step.

Lemma 4. Let w ≥ 1. If γ �1 δ and γ′ ∈ [γ], then some
δ′ ∈ [δ] and some saturated path p′ from γ′ to δ′ has Emax(p′) ≤
E(γ).

Proof. Let γ �1 δ and γ′ ∈ [γ]. Then γ � γ′, so δ � γ′. So by
Theorem 3, some δ′ has δ �• δ′ �◦ γ′. By assumption, γ′ is
saturated, so δ′ is, so δ′ ∈ [δ]. Now let p′ be a path guaranteed
by γ′ �◦ δ′. Then Emax(p′) = E(γ′) ≤ E(γ).

To show how to saturate a merge step, we rely on being able to
transfer a merge from one context to another.

Lemma 5. If γ �1 δ and γ � γ′, then some α has γ′ �1 α
and δ � α.

Proof. Let γ �1 δ and γ � γ′. Let P be the polymer merged
by γ �1 δ, and let γ∗ be γ but with all polymers intersecting
P merged. This way γ∗ = δ and γ′ �1 γ′∗.

Now γ = β0 �1 · · · �1 βn = γ′ for some configurations βi.
So δ = γ∗ = β∗0 �1 · · · �1 β∗n = γ′∗. So choose α = γ′∗.

Now we show how to saturate a merge step.

Lemma 6. Let w ≥ 1. If γ �1 δ and γ′ ∈ [γ], then some
δ′ ∈ [δ] and some saturated path p′ from γ′ to δ′ has Emax(p′) ≤
max{E(γ), E(δ)}+ max{0, 2− w}.

Proof. Let γ �1 δ and γ′ ∈ [γ]. If γ′ = γ, then let δ′ = δ, and
let p′ = γ, δ. Then Emax(p′) = E(δ).

Otherwise γ′ 6= γ. Now by Lemma 5, some α has γ′ �1 α
and δ � α. So by Theorem 3, some δ′ has δ �• δ′ �◦ α.
Since γ′ is saturated, α is, so δ′ is, so δ′ ∈ [δ]. Now let p′ be a
path guaranteed by γ′ �1

◦ α �◦ δ′. Then p′ is saturated. Also,

Emax(p′) = E(α). And γ′ �1
◦ α, so E(α) ≤ E(γ′) + 1. Since

γ′ ∈ [γ] and γ 6= γ′, we have γ �• γ′, so E(γ′) ≤ E(γ) + 1−w.
So Emax(p′) ≤ E(γ) + 2− w, and the result follows from the
identity x ≤ max{x, y}.

To saturate a full path, we saturate each step.

Theorem 7. Let bond strength w ≥ 1 and γ and δ be saturated.
Then

bsat(γ, δ) ≤ b(γ, δ) + max{0, 2− w}.

Proof. Let α1 and αn be saturated. Consider a path p =
α1, . . . , αn. Let α′1 = α1. Then α′1 ∈ [α1]. So by Lemmas 4
and 6, for each i we get α′i+1 ∈ [αi+1] and saturated p′i from α′i
to α′i+1 with Emax(p′i) ≤ max{E(αi), E(αi+1)} + Mw where
Mw = max{0, 2−w}. Now αn is saturated, so α′n = αn. So let
p′ be the concatenation of the p′i. Then p′ is a saturated path
from α1 to αn. And we have

Emax(p′) = maxiEmax(p′i)
≤ maxi max{E(αi), E(αi+1)}+Mw

= maxiE(αi) +Mw

= Emax(p) +Mw.

So h(p′) ≤ h(p) +Mw. So bsat(α1, αn) ≤ b(α1, αn) +Mw.

Notice that we need bond strength w ≥ 1 in Theorem 7. If
w < 1, then bsat(γ, δ) can be larger than b(γ, δ) by an arbitrary
amount.

Also notice that max{0, 2 − w} is tight. To see this, the
reader may check that bsat(γ, δ) = b(γ, δ) + max{0, 2 − w}
for the following example: γ = {{m1,m2}, {m3}} and
δ = {{m1}, {m2,m3}} where m1 = {a, b}, m2 = {a∗},
m3 = {a, c}.

Now since bsat(γ, δ) ≥ b(γ, δ), we have the following
corollary of Theorem 7, which is the main result of this section.

Corollary 8. Let bond strength w ≥ 2 and γ and δ be saturated.
Then bsat(γ, δ) = b(γ, δ) .

4 TBNs with programmable energy barriers
In this section we present two constructions. Each is a family of
TBNs indexed by an integer n. We call certain configurations
of those TBNs initial and triggered and show an energy barrier
between them. As n increases, the size of the energy barrier
increases linearly. Each also has a catalyst, which reduces the
energy barrier to 1 when added.

The first construction (translator cycle), discussed in
Section 4.1, is based on a DNA strand displacement catalyst.
Progress from the initial to triggered configurations with
the catalyst can be physically implemented as a strand dis-
placement cascade. Although this system has been previously
proposed [12], [13], we rigorously prove an energy barrier for
the first time.

The second construction (grid gate), discussed in Sec-
tion 4.2, does not have an evident physical implementation
(e.g., as a strand displacement system), but surpasses the
translator cycle system in two ways. First, the grid gate can
exhibit autocatalysis—that is, it can be modified so that the
catalyst transforms the initial polymer into a polymer that
has the same exposed binding sites as the catalyst, which can
itself catalyze the transformation of additional initial polymers
(leading to exponential amplification). Second, the grid gate
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Fig. 3. The two stable configurations of a translator cycle with complex
length z = 3 and number of complex types c = 5. In place of binding
site xi, we write i for clarity.

Fig. 4. A segment of the height 1 path which is possible because an
extra copy of a top monomer, {x4, x0, x1, x2}, is present to act as a
catalyst. The dotted arrow signifies a sequence of merge/split steps. In
place of binding site xi, we write i for clarity.

is self-stabilizing, which we define to mean that from any
configuration, there is a barrier of zero to reach either an initial
or triggered configuration. This intuitively ensures that the
system cannot get stuck in an undesired local energy minimum.

Throughout both sections, we assume w ≥ 2, so that by
Corollary 8, we can determine energy barriers by considering
only saturated paths. If we weaken this assumption to w ≥ 1,
then by Theorem 7 the barrier proved is within 1 of the barrier
in the unrestricted pathway model (allowing unsaturated
configurations). We believe that for these systems an Ω(n)
energy barrier exists even if w < 1 but sufficiently large.
However, studying the w < 1 regime is left for future work (see
Section 6).

The constructions demonstrate that catalysts and autocat-
alysts with arbitrarily high energy barriers can be engineered
solely by reference to the general thermodynamic driving forces
of binding and formation of separate complexes, which are
captured in the TBN model.

4.1 Translator cycle
Consider the TBN illustrated in Fig. 3. There are two particular
configurations that interest us, an initial configuration γI and
a triggered configuration γT . The two configurations are stable.
In the presence of a catalyst monomer {x4, x0, x1, x2} (or an
extra copy of any top monomer—any of the monomers with
unstarred binding sites), a height one pathway exists to reach

γT , illustrated by Fig. 4. If the catalyst is not present, we
prove there is a barrier which can be made arbitrarily large
by including more and longer monomer types. Further, this
catalytic system is realizable as a DNA strand displacement
cascade; more information about this connection can be found
in Appendix A.1, and in [13]. In the case of many copies of each
complex, since the catalyst is in fact any of the top monomers,
the system may be used as an amplifier: at the end of the
pathway shown in Fig. 4, another monomer with binding sites
{x4, x0, x1, x2} becomes free which can catalyze another set of
complexes which are in the initial configuration.

To program a large energy barrier, we give a formal
definition for generalizing the translator cycle, parameterized
by complex length z and number of complex types c. Given
z ≤ c, a (z, c)−translator cycle is a TBN with monomer types
ti (top monomers) and bi (bottom monomers) for i ∈ Zc, where

ti = {xi, xi+1 (mod c), . . . , xi+z (mod c)},

bi = {x∗i , x∗i+1 (mod c), . . . , x
∗
i+z−1 (mod c)}.

A (z, c)−translator cycle may have any number of each
monomer type as long as (1) for all i, the number of ti is
equal to the number of bi and (2) there is at least one of
each ti and bi. To justify constraint (1) note that including
an extra top monomer can catalyze the cycle so the barrier
disappears, while extra bottom monomers merge the two-
monomer complexes to saturate, disrupting the desired initial
and triggered configurations. Constraint (2) is required for the
catalytic pathway (Fig. 4).

The initial configuration has each bi in a polymer {bi, ti},
and a triggered configuration γT is any saturated configuration
which contains a subset

{
{bi, ti−1} | i ∈ Zc

}
(at least one set

of complexes in the triggered state). The rest of this section
is dedicated to proving that the barrier between γI and γT
depends on the complex length z and the number of complex
types c, and can be made arbitrarily large: Formally, we prove
that if z2 = c, then b(γI , γT ) > z

2+z−1 .
To motivate our choice of z2 = c, it is worth describing

three available pathways that influence how the upper bound
for the uncatalyzed barrier scales with z and c. For the first
path, we can reach a configuration with a free top monomer,
which can subsequently be used as a catalyst as in Fig. 4. For
example, merging the three polymers with exposed sites x4, x0,
and x1 with the polymer {{x4, x0, x1, x2}, {x∗4, x∗0, x∗1}} allows
the top monomer {x4, x0, x1, x2} to be split. In the general
case, this requires merging z polymers and then following a
height 1 path, and the path in total has height z. The second
path brings all complexes together while reducing the number
of polymers by c− 1, and then splits them into the triggered
complexes, resulting in a height c− 1 path. These paths show
that the barrier is not larger than z or c − 1. Surprisingly, it
is still not sufficient to set z = c− 1 = n to attain a barrier of
n; there is a complicated third path which has height 2c

z − 1
which is illustrated in the appendix in Fig. 10. The third path
shows that c must be asymptotically larger than z to achieve
a non-constant barrier. Thus we fix z = n and c = n2 for the
remainder of the section.

Before we get into details, we give an overview of the proof
that b(γI , γT ) > n

2+n−1 . First, we show that we can restrict
our attention to configurations where polymers must have the
same amount of top monomers as bottom monomers (denoted
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as normal form), since other configurations have low polymer
count. We think of pairing top and bottommonomers in normal
form polymers. Initially, top and bottom monomers with the
same indices are paired. In the triggered configuration, the
top and bottom monomers are paired with different indices,
notably ti is bound to bi+1; we say the top index is offset “to
the left” of the bottom index by one, or has offset “minus one”.
We will formalize this notion of offset, and show that the sum
of all offsets between pairs in the configuration, initially zero,
does not change with merges and splits in paths of normal
form configurations. In the single-copy case, this contradicts
any path which reaches a triggered configuration, which must
have a negative total offset.

In the multi-copy case, the negative offset of the triggered
complexes can be canceled by positive offset elsewhere, result-
ing in zero total offset, so the argument is not as simple. We
will show that polymers providing net positive offset have a
size which grows along with the offset. The large size of these
polymers then implies a barrier.

First, we provide an easy way to count how many complexes
are in a configuration of a cycle. Note that since there is at least
one unstarred binding site for each starred site, the starred
sitesmust be bound in a saturated configuration. So we call the
starred sites limiting. We can use this fact to argue about the
number of separate polymers in saturated configurations. Since
the starred binding sites are limiting and γ is saturated, each
bottom monomer must be bound to at least one top monomer,
so we can count S(γ) by counting the number of top monomers
in separate polymers. This leads to:

Observation 9. Given a (z, c)-translator cycle with k in-
stances of top monomers, in a saturated configuration γ, if there
is a polymer with m top monomers, then S(γ) ≤ k −m+ 1.

Now we restrict the configurations and paths we must
consider by describing a normal form for polymers.

Definition 10. Given a configuration of an (n, n2)-translator
cycle, a polymer is normal form if its number of top monomers
is equal to its number of bottom monomers. A configuration is
normal form if every polymer is normal form. A path is normal
form if every configuration is normal form.

Normal form paths are more restricted than arbitrary paths,
and will be easier to reason about. To motivate them, we
show that saturated paths from γI to γT that are not normal
form must have a large height via a large polymer in some
configuration, and so low height paths (if they existed) would
be normal form.

The following lemma is a technical fact used in proofs of
Lemmas 12 and 13. It gives properties for polymers in saturated
configurations with x bottom monomers with n binding sites
each, and y top monomers with (n+ 1) sites each, with x > y.
This will help us restrict to normal form polymers, which have
x = y.

Lemma 11. Assume x, y, n ∈ N, y(n + 1) ≥ xn, and x > y.
Then y ≥ n and x ≥ n+ 1.

Proof. If x > y, then x ≥ y + 1, so y(n+ 1) ≥ xn ≥ (y + 1)n.
So yn+ y ≥ yn+ n. So y ≥ n. Since x > y, x ≥ n+ 1.

The next lemma shows the saturated configurations which
are not normal form must have a large (size Ω(n)) polymer.

Lemma 12. If a saturated configuration is not normal form,
then some polymer has at least n top monomers.

Proof. Since the configuration is not normal form, some
polymer P has either fewer or more top than bottom monomers.
If P has fewer, then let P ′ = P . If P has more, then some other
polymer P ′ has fewer top monomers than bottom monomers.
Let t (resp., b) be the number of top (resp., bottom) monomers
in P ′. The number of unstarred (resp., starred) binding sites
in P ′ is t(n + 1) (resp., bn). Recall that the starred sites
are limiting. So for each starred site in P ′, there is at least
one corresponding unstarred site, so bn ≤ t(n + 1). Since P ′
has b > t, Lemma 11 gives t ≥ n, so P ′ has at least n top
monomers.

So saturated paths with low height must consist of normal
form configurations, since otherwise they would have a polymer
with many top monomers which implies a large height by
Observation 9.

Now we formalize the offset of a pair of compatible
monomers. (Recall that two monomers are compatible if they
have complementary binding sites.) For k ∈ N and a, b ∈ Zk,
define the sequence

[a, b]k = 〈a, a+ 1, . . . , b〉 (mod k).

For example, [1, 3]5 = 〈1, 2, 3〉 and [3, 1]5 = 〈3, 4, 0, 1〉. Also let
`S be the index of element ` in sequence S. Then for monomers
bi and tj , we define the offset to be f(bi, tj) = jS − iS , where
S = [i− n, i+ n− 1]n2 .

We will define the offset of a normal form polymer in terms
of compatible pairs of top and bottommonomers. To choose the
pairs, we use the notion of matchings from graph theory. Given
a normal form polymer P , let T be the set of top monomers
and B be the set of bottom monomers. Define a bipartite graph
GP = {T,B,E} where {bi, tj} ∈ E if and only if bi and tj are
compatible.

Lemma 13. If a polymer P is in a normal form saturated
configuration and has size |P | < 2n + 1, then there exists a
perfect matching on GP .

The proof of Lemma 13 is in Appendix A.2.
For a perfect matching M on GP , the matching offset is

f(M) =
∑

m∈M f(m). It will turn out that for small polymers,
the offset of every perfect matching is the same. So we will
use the matching offset to define the offset of a polymer. To
do so, it will be useful to define a notion of “leftmost” and
“rightmost” monomers in a polymer. For small polymers (of
size less than about n), these are intuitively well-defined since
there are not enough monomers to “wrap-around” the entire
cycle. We formalize this notion via a cutoff value for a polymer:

Definition 14. Given a normal form polymer P , a cutoff
value cP ∈ Zn2 satisfies the following: let C be [cP , cP − 1]n2 ,
then there is no edge {bi, tj} ∈ GP such that iC ≤ n and
jC > n2 − n or jC ≤ n and iC > n2 − n (recall that iC denotes
the index of i in C).

If a cutoff value exists, it means no possible bonds in the
polymer—and equivalently no possible edges in any matching—
cross the cutoff. Then the leftmost and rightmost pairs are
easily defined with respect to the cutoff sequence [cP , cP −1]n2 .
We prove a sufficient condition for there to exist a cutoff point:
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Lemma 15. For a normal form polymer P with size |P | <
2n2

2n+1 , there exists a cutoff value cP .

Proof. First, we give the reasoning behind the choice of |P | <
2n2

2n+1 . Intuitively, we want to choose a cutoff point at an index
where the top monomer with that index is not compatible for
any bottom monomer in the polymer. If there are k bottom
monomers in a polymer, the union of the sets of compatible
top monomers for those bottom polymers is at most k(2n+ 1).
If we have k(2n + 1) < n2, there will exist an index for a
top monomer which is not compatible to any bottom in the
polymer. This gives k < n2

2n+1 , and there are 2k monomers in
the polymer, so we must have |P | = 2k < 2n2

2n+1 . Then let cP
be the index of that incompatible top monomer.

We now show that cP is in fact a cutoff point as in
Definition 14. Towards contradiction, let C be [cP , cP − 1]n2

and assume there does exist an edge {bi, tj} ∈ GP such that
iC ≤ n and jC > n2 − n or jC ≤ n and iC > n2 − n. Then
tj is compatible for bi, but cP is in between i and j, so then
tcP

is a compatible top monomer for bi, which contradicts our
choice of cP as an index of an incompatible top monomer for
any bottom monomer in the polymer.

To use the cutoff value in future lemmas, we consider
configurations and paths with polymers’ size restricted to
less than 2n2

2n+1 . We let n′ = 2n2

2n+1 and define the following:

Definition 16. A polymer is n′-bounded if its size is less than
n′. A configuration is n′-bounded if every polymer is n′-bounded.
A path is n′-bounded if every configuration is n′-bounded.

We can use a cutoff to show that the offset of every matching
is the same.

Lemma 17. For an n′-bounded polymer P in a normal form
saturated configuration, for any two perfect matchingsM and
M ′ on GP , f(M) = f(M ′).

The proof of Lemma 17 is in Appendix A.2.
So we define the polymer offset of P , f(P ), simply as the

offset of any perfect matching on GP . Given a configuration γ,
we can define the configuration offset as

∑
P∈γ f(P ). We now

show that under certain conditions, merges and splits do not
change the configuration offset.

Lemma 18. In a normal form saturated n′-bounded path, if
γ �1 δ, then f(γ) = f(δ).

Proof. Consider the two polymers which merge, P1 and P2, and
call the polymer which is their union P . LetMP1 andMP2 be
any perfect matchings ofGP1 andGP2 . ThenMP = MP1∪MP2

is a perfect matching on GP , and f(MP ) = f(MP1 ) + f(MP2 ).
Since the polymers are n′-bounded, we have by Lemma 17
that the polymer offsets equal the offsets of any matching, so
f(P ) = f(P1) + f(P2). Then f(γ) = f(δ) since their only
different summands are f(P ) and f(P1), f(P2).

From the above lemma, one can prove that in the case of
one copy of each monomer type, the (n, n2)−translator cycle
has a barrier of Ω(n) to trigger. An informal proof follows:
any path which is not normal form or does not have small
polymers must have a large height due to a polymer with many
top monomers (see Observation 9). Otherwise, if we restrict
paths to saturated normal form n′-bounded paths, Lemma 18
gives that from the initial configuration offset of zero, there

is no path which can change the configuration offset to −n2,
which is the offset of the triggered configuration. We leave out
a formal statement of this proof for brevity, as we prove a more
general theorem later—a barrier in the multi-copy case.

The above argument is not sufficient in the multi-copy case
because the −n2 offset given by triggered polymers can be can-
celed out by positive n2 offset in other polymers. We will argue
that having a large positive offset is (roughly) proportional
to having a large polymer or several large polymers, so the
n2 positive offset would require merging many complexes. To
do so, we define and prove existence of a sorted matching on
polymers. Intuitively, a sorted matching is a matching which
has no crossing edges when the indices are sorted.

Lemma 19. Given an n′-bounded polymer P with cutoff cP ,
there exists a sorted matching M on GP which satisfies that
there does not exist {bi1 , tj2}, {bi2 , tj1} ∈ M with i1 ≤ i2 and
j1 ≤ j2 with respect to the ordering given by the cutoff value
sequence, [cP , cP − 1]n2 .

The proof of Lemma 19 is in Appendix A.2.
Using the sorted matching, we show that the maximum

offset (if it is positive) of any one pair in a polymer is
proportional to the size of the polymer. First we relate exposed
sites to the size of a polymer, then relate the exposed sites to
the maximum offset.

Lemma 20. If a polymer P in a saturated normal form
configuration has k exposed sites, it has size 2k.

Proof. Assume P is of size 2s for some s. Then P has sn starred
domains which must be bound in a saturated configuration. P
has s(n+ 1) unstarred domains. So P has exactly s exposed
sites for any s. Then to have k exposed sites, it must have size
2k.

Lemma 21. Given a normal form n′-bounded polymer P ,
consider the sorted matching M of GP . Let m be the value of
the maximum offset of any pair inM , then |P | ≥ 2(m+ 1).

Proof. We will show that P has at least m+ 1 exposed sites,
and thus by Lemma 20 is of size at least 2(m+ 1). Consider the
pairs ordered by smallest bottom index to largest with respect
to the cutoff cP given by Lemma 15. Imagine constructing P
by adding one pair at a time in order. We will show that when
adding a pair, the number of exposed sites cannot decrease
due to the order, and when we add the pair with offset m, the
constructed polymer has m+ 1 exposed sites.

First, consider adding a pair p with nonnegative offset f(p)
to a polymer with k exposed unstarred sites. Note that the
polymer containing only the two monomers in the pair p has
f(p) + 1 exposed unstarred sites, and f(p) exposed starred
sites. By the ordering, we know that the f(p) + 1 exposed
unstarred sites cannot be bound by any bottom monomers in
the polymer constructed thus far. Further, at most f(p) of the
k exposed unstarred sites on the polymer prior to adding p
can be bound after adding p, since only f(p) exposed starred
sites are added. Thus the net change in exposed unstarred
sites is plus one. Further, the number of exposed sites on the
constructed polymer after adding p is at least f(p) + 1.

Next, consider adding a pair p with negative offset to a
polymer with k exposed unstarred sites. Note that due to the
ordering, the bottom monomer in the pair has no domains
in common with the unstarred exposed sites of the polymer
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constructed thus far. So the number of exposed sites does not
decrease.

In both cases, the number of exposed unstarred sites
cannot decrease by adding polymers. Consider the point in
this construction where we have just added the polymer with
positive offset m. The constructed polymer thus far has the
m+ 1 exposed unstarred sites given by the offset m, and the
number of exposed sites cannot be reduced by adding the
remaining polymers, so the final polymer P must have at least
m+ 1 exposed sites. So by Lemma 20, |P | ≥ 2(m+ 1).

We prove two more lemmas before the proof of the
barrier of the translator cycle. The first key lemma is that
triggered polymers’ negative offset must be canceled out by
polymers with positive offset, but since positive offset results
in large polymers (or many slightly larger polymers), such a
configuration implies a large height for the path which contains
it.

Lemma 22. Given a normal form saturated n′-bounded config-
uration γ, if there exists a subset of polymers P = {P1, . . . , Pk}
such that

∑
Pi∈P f(Pi) ≥ n2, then S(γI)− S(γ) > 2n+ 1.

Proof. Consider γ and for each polymer Pi in γ, fix any sorted
matchingMi on GPi given by Lemma 19 and denote the set of
Mi byM. Then for each Pi ∈ P,

f(Pi) ≤
|Pi|
2 max

p∈Mi

f(p),

since there are |Pi|
2 pairs each with offset at most the max over

the offsets. Since γ is n′-bounded, |Pi| < n′, so

f(Pi) <
n′

2 max
p∈Mi

f(p).

So we have the following:∑
Mi∈M

n′

2 max
p∈Mi

f(p) = n′

2
∑
Mi∈M

max
p∈Mi

f(p)

>
∑
Pi∈P

f(Pi)

≥ n2,

and further ∑
Mi∈M

max
p∈Mi

f(p) > 2n2

n′
. (3)

Now we show that

S(γI)− S(γ) ≥
∑
Mi∈M

max
p∈Mi

f(p).

Consider γ′, the (unsaturated) configuration which is given
by taking the polymers in γ and splitting them into pairs
of top and bottom monomers based on the matchings Mi.
Each bottom monomer is in a polymer with exactly one top
monomer, so S(γI) = S(γ′). For each Pi with sorted matching
Mi in P , consider the pair p satisfying maxp∈Mi f(p). We know
that in γ, each polymer Pi with p ∈Mi must have size at least
2(f(p) + 1) by Lemma 21. So Pi must be a polymer containing
at least f(p) other pairs. So

S(γ′)− S(γ) ≥
∑
Mi∈M

max
p∈Mi

f(p).
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Fig. 5. The monomer types in the grid gate TBN for the case n = 4. In
the figure, any two digit number ij represents domain xij , e.g. x∗23 is
represented as 23∗.

Since S(γI) = S(γ′), (3) gives us S(γI) − S(γ) > 2n2

n′ =
2n+ 1.

Theorem 23. Given an (n, n2)-translator cycle, b(γI , γT ) ≥
n

2+n−1 .

Proof. We split the possible paths from γI to γT into three
cases. Case 1: if a saturated path is normal form and n′-
bounded, we have by Lemma 18 that for any γi in the path,
f(γi) = f(γI) = 0. Consider the final configuration on the
path, the triggered configuration γT . By definition, in γT
there exists at least one pair of each bi bound to ti−1 (mod n)2 .
Each of these pairs has offset minus one, contributing minus
n2 to the offset. However, we know that the configuration
offset must be zero. So there must exist a subset of polymers
P = {P1, . . . , Pk} such that

∑k
i=1 f(Pi) ≥ n2, so by Lemma 22,

S(γI)− S(γT ) > 2n+ 1.
Case 2: if a path is not normal form, then by Lemma 12,

there exists a configuration γ with a polymer with n top
monomers. Let k be the total number of top monomers in
the cycle and note that S(γI) = k. Then by Observation 9,
S(γ) ≤ k − n+ 1. Then S(γI)− S(γ) ≥ n− 1.

Case 3: if a path is normal form but is not n′-bounded, then
by definition there exists a polymer of size at least n′ with an
equal number of top and bottom monomers; i.e., a polymer
with at least n′

2 top monomers. Let k be the total number of
top monomers in the cycle and note that S(γI) = k. Then by
Observation 9, S(γ) ≤ k − n′

2 + 1. Note that S(γI) = k. Then
S(γI)− S(γ) ≥ n′

2 − 1 = n2

2n+1 − 1.
By Corollary 8, we restrict analysis to saturated paths.

ThenH(γI) = H(γ), and so E(γ)−E(γI) = − (S(γI)− S(γ)).
Among the three cases, the smallest lower bound on the height
is n2

2n+1 , so the barrier is at least n2

2n+1 = n
2+n−1 .

4.2 Grid gate
Consider the TBN illustrated in Fig. 5. We focus on two
polymer types GH and GV depicted in the figure, and show
that there is a barrier n ∈ N to convert GH to GV and vice
versa. We parameterize the construction by n as follows. Define
the following monomer types: “horizontal” Hi = {xij}nj=1 for
i ∈ {1, . . . , n}, “vertical” Vj = {xij}ni=1 for j ∈ {1, . . . , n}, and
“gate” G = {x∗ij}ni,j=1. In the notation of chemical reaction
networks, the net reaction

GH 
 GV
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can occur in the presence of sufficiently many free Hi’s and
Vj ’s, but an energy barrier of n must be surmounted in order
for this conversion to happen. In Section 4.2.1 we will show
how this energy barrier can be reduced to 1 in the presence of
a catalyst monomer, corresponding to the chemical notion of a
catalyst reducing the activation energy required for a reaction
to occur.

Note that throughout this section, the configurations
considered are saturated, so that for two configurations γ and δ,
we have H(γ) = H(δ), and so E(δ)−E(γ) = − (S(δ)− S(γ)).
That is, the energy difference between two configurations is
the opposite of the difference in their polymer counts.

We fix a network Tgg that contains any number of any of
these monomer types, so long as there are enough of other
monomers to completely bind all the G monomers (i.e., in
saturated configurations there are no exposed starred sites).
We define base configurations of the network to be those
configurations that contain polymers of type GH or GV , with
all other monomers in separate polymers by themselves. In
Theorem 30 we show that these base configurations are stable
(take m = 0).

The following lemma establishes a necessary condition in
any saturated configuration: that any G must be in a polymer
with either all of the horizontal monomers or all of the vertical
monomers.

Lemma 24. In a saturated configuration of Tgg, a polymer
containing G also contains {Hi}ni=1 or {Vj}nj=1 as a subset.

Proof. Suppose a polymer contains G but neither Hi nor Vj
for some i and j. Then site x∗ij on G is exposed, and so by
definition of Tgg, the configuration is not saturated.

The following theorem then establishes that any saturated
configuration in Tgg is self-stabilizing, that is, it can reach a
stable (base) configuration via a path with barrier 0 (i.e. using
all splits).

Theorem 25. For any saturated γ of Tgg, some base π has
γ �◦ π.

Proof. Consider a saturated configuration γ. Suppose γ has
a non-base polymer P . If P contains no G, then we can split
into polymers of type H, V . Otherwise, P contains G, and by
Lemma 24 we can split off a GV or GH polymer. The theorem
holds by repeating this process.

Note that since the base configurations are stable (this
follows from Theorem 30 with m = 0), and by Theorem 25 any
other saturated configuration can reach a base configuration
using only splits, the base configurations are also the only
stable configurations in this network.

We now prove the desired energy barrier between different
base configurations.

Theorem 26. The barrier between different base configura-
tions of Tgg is n.

Proof. Consider a saturated path p from a base configuration
γ to another, δ. Notice that δ 6� γ. So δ 6�◦ γ. So some first
β along p has β 6�◦ γ. But by Theorem 25, some other base
π 6= γ does have β �◦ π.

Now take α just before β along p. Then α �◦ γ by definition
of β. Since α and β are adjacent on p, either α ≺1

◦ β or α �1
◦ β.

The latter contradicts β 6�◦ γ. So α ≺1
◦ β, implying α �◦ π.
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Fig. 6. Catalysts and autocatalysts in the grid gate TBN for the case
n = 4. left: C is a single monomer that acts as a catalyst to convert
between GH and GV . middle: Modified vertical monomers {Ṽj}n

j=1 with
extra sites. right: After C converts GH to GṼ with modified vertical
monomers, GṼ has the same excess sites as C and acts as a catalyst
itself (i.e. is “active” as a catalyst).

Let f(γ) count the H monomers with a G in γ. Since γ and
π are different bases, wlog, f(π) ≥ n+ f(γ). Consider a path
of k merges corresponding to γ �◦ α. It can increase f(·) by at
most k. So f(α) ≤ f(γ) + k. A path of splits does not increase
f(·), so α �◦ π implies f(α) ≥ f(π). So we get

k ≥ f(α)− f(γ)
≥ f(π)− f(γ) ≥ n.

So S(γ)− S(α) = k ≥ n.

4.2.1 Catalysis
The kinetic barrier shown for the grid gate can be disrupted by
the presence of new monomer types. In fact, the model admits
a catalyst monomer C that lowers the energy barrier from n to
1, i.e., in the presence of one or more C, a GH can be converted
into a GV , and vice versa, with a sequence of merge-split pairs.
In the notation of chemical reaction networks, this binding
network implements the net reaction

GH + C � GV + C

with energy barrier 1, while maintaining a large energy barrier
for the reaction GH � GV .

For the grid gate of size n × n, we define a catalyst:
C = {xij | 1 ≤ j ≤ i ≤ n} illustrated in Fig. 6 (left).
C is a monomer consisting of the “lower triangle” of the
unstarred sites. The mechanism by which C can transform
GH to GV with merge-split pairs is by an alternating processes
of merges and splits shown in Fig. 7. Intuitively, in each step
of the catalyzed reaction GH + C → GV + C, G switches
its association with Hi (left) to its counterpart on Vj (right)
by merging the evolving polymer (center) with Vj and then
splitting off Hi.

Consider a network {G,C} ∪ {Hi}ni=1 ∪ {Vj}nj=1 which
includes one instance of every monomer type that has been
introduced, as well as the catalyst. As before, we shall be
interested in net transitions between GH and GV , and so for
this network we define the following configurations: γCH =
{GH , C} ∪ {Vj}nj=1 and γCV = {GV , C} ∪ {Hi}ni=1.

Theorem 27 states that transitions in the single-copy
case, having arbitrarily large energy barriers according to
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Fig. 7. Full pathway for reaction GH + C → GV + C. In each stage,
exactly one merge and one split occurs, and the center polymer remains
saturated.

Theorem 26, in the presence of C have their barrier reduced to
one.

Theorem 27. b(γCH , γCV ) = b(γCV , γCH) = 1.

Proof. Consider the following saturated merge-split pathway
that begins with configuration γCH and ends with γCV (illus-
trated in Figure 7).
• Merge GH with C.
• Split Hn from the resulting polymer P1.
• For 1 ≤ i ≤ n − 1, iteratively merge Vi+1 with Pi, then
split Hi from Pi to form Pi+1.

• Merge V1 with Pn and split off C to form GV .
This path maintains saturation while never decreasing the

polymer count by more than one, and so by Corollary 8 we
have that b(γCH , γCV ) ≤ 1. As it is not possible to reach γCV from

γCH in a saturated merge-split path that uses only splits, it will
not be possible to have a zero barrier, giving b(γCH , γCV ) = 1.

This merge-split path can be be executed in the reverse
fashion to show that b(γCV , γCH) = 1.

To generalize the result to the multi-copy setting, we first
observe that the height 1 pathway guaranteed in Theorem 27
still exists. What remains is to show that the base configu-
rations, plus zero or more separate catalyst monomers, are
stable.

In the arguments that follow, it will be useful to define the
set D↑ = {xi,i+1}n−1

i=1 ∪ {xn,1}, which consists of the domains
from the “shifted diagonal”. Form ∈ N, and let T mgg = Tgg∪{m·
C} denote the TBN Tgg with m additional catalyst monomers.

The next lemma states that each G in a polymer in a
saturated configuration must be accompanied by n additional
monomers, thus giving a lower bound on the size of any polymer
as a function of the number of G’s contained within it.

Lemma 28. If there are k G’s in a polymer P in a saturated
configuration δ of T mgg , then |P | ≥ k(n+ 1).

Proof. Consider the domains from D↑. As the starred versions
of these domains are present on each G, to maintain saturation
in δ, it must be the case that each G in δ is joined in P with
a set of monomers that include these domains; however, no
monomer in {C,H1, . . . ,Hn, V1, . . . , Vn} has more than one of
these domains. Thus, to be saturated, if there exist k instances
of G in P , there must be at least kn additional monomers in P
to bind the above chosen domains.

The following lemma uses Lemma 28 to show that no
saturated configuration has more polymers than are contained
in the base configurations, even when some catalyst monomers
are present.

Lemma 29. If there are k G’s in T mgg , then any saturated
configuration δ has S(δ) ≤ |T mgg | − kn.

Proof. Consider the polymers P1, . . . , Pj in δ containing all
k copies of G, where Pi has ki copies. Then by Lemma 28,∑
|Pi| ≥

∑
ki(n+1) = k(n+1). So S(δ) ≤ j+|T mgg |−k(n+1) ≤

k + |T mgg | − k(n+ 1) = |T mgg | − kn.

The next Theorem establishes that the base configurations,
which were stable in the original network Tgg, are still stable
even if any number of catalysts should also be present in the
network.

Theorem 30. Let m ∈ N and let γ be a base configuration of
Tgg. Then γm = γ ∪ (m · {C}) is stable.

Proof. The base configurations satisfy Lemma 29 with equality,
thus they are stable.

These results show that the catalyzed network is copy
tolerant; that is, it behaves in the expected way even should
the amounts of the constituent monomers (and catalyst) vary.

4.2.2 Autocatalysis
The grid gate can also be modified to act in an autocatalytic
manner. By modifying the vertical monomers it is possible for
GV to have a set of exposed monomers acting as a “catalyzing
region”, which has the same structure and function as C (see
Figure 6, middle and right).
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To obtain an autocatalytic system, we modify the vertical
monomers of the network to include additional sites that, when
combined with G, form a catalyzing region that can act in the
same manner as the catalyst C. See Figure 6 for an illustration.

Formally, we define the modified vertical monomers (see
Fig. ) as:

Ṽj = {xij}ni=1 ∪ {xij}ni=j

We define G
Ṽ

= {G} ∪ {Ṽj}nj=1 to be the version of GV
that uses the modified monomers. This polymer is the so-called
auto-catalyst.

We now consider the network T̃gg = {2 · G} ∪ {Hi}ni=1 ∪
{2 · Ṽj}nj=1 which includes enough monomers to create the
autocatalyst as well as retain enough monomers to analyze
transitions between GH and G

Ṽ
. The two configurations that

we will be most interested in are:
γ̃H = {GH , GṼ } ∪ {Ṽj}

n
j=1

γ̃V = {2 ·G
Ṽ
} ∪ {Hi}ni=1

The following theorem establishes that the autocatalyzed
configurations γ̃H and γ̃V are stable, with a low energy barrier
between them in the presence of the autocatalyst.

Theorem 31. γ̃H and γ̃V are stable.

Proof. Note that there are 3n + 2 total monomers in T̃gg,
and that S(γ̃H) = S(γ̃V ) = n + 2. To show that these are
stable, it suffices to show any other saturated configuration
δ obeys S(δ) ≤ n + 2. Consider the set of domains D↑ =
{xi,i+1}n−1

i=1 ∪ {xn,1}, as in Lemma 28. Each monomer has at
most one of each type of these domains, and except for xn,1,
has exactly one instance of each. The exception is Ṽ1, which
has two instances of xn,1.

Let δ be any saturated configuration of T̃gg. We consider
two cases: 1) that the G’s are in separate polymers, and 2)
that the G’s are in the same polymer. In the case that the
G’s are in separate polymers, as each G contains the starred
versions of the n domain types in D↑, each polymer P with
a single G must have n additional monomers to bind each of
the starred versions of these domains. Note that in this case
a single Ṽ1 cannot bind both instances of x∗n,1, for this would
result in both G’s being on the same polymer. This leaves
at most (3n+ 2)− 2(n+ 1) = n remaining monomers. Thus
S(δ) ≤ n+ 2.

Now consider the case that the G are present in the same
polymer. Let P be a polymer in δ that contains two G’s. Then
in P , the two instances of site x∗n,1 can be bound to one instance
of Ṽ1. (Note that if there were two Ṽ1 in this polymer, then one
copy could be split into its own polymer while still maintaining
saturation, increasing S and putting us in the first case). The
remaining sites in D↑ of these G’s must be bound to monomers
containing 2 · {xi,i+1}n−1

i=1 . No single monomer contains more
than one site from this set, so this requirement must be satisfied
by the inclusion of 2(n − 1) additional non-G monomers in
P . Then there are at least 2n+ 1 monomers in P , leaving at
most (3n+ 2)− (2n+ 1) = n+ 1 additional monomers. Thus
S(δ) ≤ 1 + (n+ 1) = n+ 2.

Since δ was arbitrary, this shows γ̃H and γ̃V have maximal
S, thus are stable.

In particular, the desired feature of this network is that G
Ṽ

acts as an autocatalyst.

Theorem 32. b(γ̃H , γ̃V ) = 1.

Proof. Figure 6 shows that the exposed sites of G
Ṽ
are exactly

the sites of C. The proof then follows as in Theorem 27.

Like the catalyzed network, the results for the auto-
catalyzed network can be extended to the multi-copy case.
The proof follows in straightforward fashion by an inductive
argument.

5 Modeling bonds
The model, in Section 2, represents bonds implicitly. For
example, as Fig. 1 shows, a single configuration can correspond
to multiple ways of pairing up binding sites. This makes it
easier to manipulate and reason about configurations.

But does this simplification of configurations affect the
height of kinetic barriers? One might imagine that by having
to manipulate individual bonds, one would need to overcome
larger energy barriers than in our original model where all
possible bonds are “automatically made”. Since bonds do
change on an individual basis in a chemical system, this would
mean that a barrier that exists in the bond-oblivious model is
misleading. However, we show that the bond-aware model is
essentially equivalent.

We now define the bond-aware model analogously to the
definitions of Section 2.

5.1 Model
A configuration γ of a TBN is a matching among its comple-
mentary sites along with a partition of the components of that
matching. A polymer of γ is a part of this partition. A bond
is an edge in the matching. A configuration is saturated if the
matching is maximal.

For a configuration γ, denote by H(γ) the total number of
bonds. Let S(γ) and E(γ) be as before.

A make adds a missing bond in a polymer. A break removes
an existing bond in a polymer. A three-way swap is changing
one endpoint of a bond to another. A four-way swap is
swapping the endpoint of one bond with the endpoint of
another. A path is a sequence of configurations where each
gets to the next by a merge, split, make, break, or swap.

h(·) is as before. Let bbond(γ, δ) be the barrier in the bond-
aware model. Let bsat-bond(γ, δ) be over only paths with no
break (and so no make).

5.2 Equivalence
We can view the original coarse kinetic model in Section 2 as a
simplification of the more detailed model. To move between the
two perspectives, we introduce some notation. For a polymer P
of the bond-aware model, let 〈P 〉 be the collection of monomers
in P (which is the corresponding polymer in the bond-oblivious
model). For a configuration γ, let 〈γ〉 be the collection of 〈P 〉 for
each polymer P in γ (which is the corresponding configuration
in the bond-oblivious model).

Lemma 33. E(〈α〉) ≤ E(α).

Proof. S(〈α〉) = S(α) and H(〈α〉) ≥ H(α).

The bond-aware model allows as much as the polymer model
and more, so intuitively, a barrier in the bond-aware model
should be no higher.
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Theorem 34. If E(γ) = E(〈γ〉), then bbond(γ, δ) ≤
b(〈γ〉, 〈δ〉).

Proof. Consider a path p = γ1, . . . , γn. Let 〈p〉 =
〈γ1〉, . . . , 〈γn〉, and let 〈γi〉 have highest energy along 〈p〉. By
Lemma 33, E(〈γi〉) ≤ E(γi). So if E(〈γ1〉) = E(γ1), then
h(〈p〉) ≤ h(p).

If γ is saturated, then 〈γ〉 is saturated and E(γ) = E(〈γ〉). So
this proof also proves the inequality for saturated paths in the
two models.

Lemma 35. If γ and δ are saturated, then bsat-bond(γ, δ) ≤
bsat(〈γ〉, 〈δ〉).

What may be more surprising is that we can also establish a
reversed inequality.

Theorem 36. bbond(γ, δ) + 1 ≥ b(〈γ〉, 〈δ〉).

Proof. Consider a path p from 〈γ〉 to 〈δ〉. Form a path p′ from
γ to δ by adding makes, breaks, and swaps as follows. Before
each split, swap enough to break as few bonds as possible.
After each merge, make as many bonds as possible.

A saturated path simply needs no makes or breaks, so this
proof also proves the inequality for saturated paths in the two
models.

Corollary 37. bsat-bond(γ, δ) + 1 ≥ bsat(〈γ〉, 〈δ〉).

6 Future work
An important type of kinetic barrier is the barrier to nucleation
in self-assembly processes. For example, in the abstract Tile
Assembly Model (aTAM) [4], [6] a large nucleation barrier is
necessary to ensure correct assembly of complex structures.
Prior work demonstrated programmable nucleation barriers,
both theoretically and experimentally [?], [8], [9]. The TBN
model could be used to develop aTAM kinetic barriers that do
not rely on the tile geometry. These barriers would be stronger,
in the sense that they would exist even allowing lattice errors
in assembled structures.

Ideally we not only want a large energy barrier to “bad”
configurations, but we want to avoid getting stuck in local
minima that keep us from getting to the good configurations.
We can define “self-stabilizing” TBNs with the property that
from any configuration, the TBN can reach some stable
configuration with a low energy barrier path. This property
is true for the grid gate (Theorem 25), but it is not true for
the translator cycle. Is there a systematic way to test for
self-stabilization, or ensure that a system is self-stabilizing by
satisfying certain general properties?

Most of this paper considers the regime where forming a
new bond is favorable even if it results a loss of a separate
polymer (specifically, w ≥ 1 and w ≥ 2). However, we
conjecture that both the translator cycle and the grid gate have
Ω(n) energy barriers even when bond strength is weak (w < 1)
as long as w = Ω(1/n). Showing that our constructions work in
a wider range of experimental conditions would increase their
practical applicability.

Can we use the definition of energy in TBNs to bootstrap a
reasonable notion of probability of configurations or paths? For
instance, in statistical thermodynamics it is common to con-
sider the Boltzmann distribution induced by energy E, where

for each configuration γ, Pr[γ] = e−E(γ)/(
∑

β e
−E(β)). This

is the probability of seeing γ at thermodynamic equilibrium.
One can also use the relative energy between two states to
predict the relative rates of transition between them, which
might allow defining a notion of path probability in the kinetic
theory of TBNs.

A useful chemical module consists of the reaction X+X →
Y + Y (or more generally converting k > 1 copies of X to
Y ), which can act as a “threshold” to detect whether there
are at least k copies of X. Analogous to a catalytic system,
implementing the above reaction while forbidding X → Y
requires control of the energy barrier, and cannot be done
simply by varying the energies of X and Y . Can we construct
TBNs with arbitrarily large energy barriers in this case?

What is the computational complexity of deciding whether
b(γ, δ) ≤ k, given two configurations γ, δ and a threshold k?
This problem is decidable in polynomial space in the number
of monomers in γ: any configuration can be written down
in polynomial space, and guessing merges and splits yields
a nondeterministic polynomial space algorithm (placing it in
PSPACE by Savitch’s Theorem). However, low-height paths
could be of exponential length, and thus it is not clear that
the problem is in NP, since the obvious witness is a path with
height ≤ k. Is this problem possibly PSPACE-complete?

Both the grid gate and translator cycle use n2 unique site
types to achieve an energy barrier of n. This can be reduced for
the grid gate (for example, to use n domains, one can simply
make each “row” of the grid the same site type), although
we do not know how to make such a system work properly
with a catalyst. Specifically, Theorem 30 fails with our initial
attempts to create a catalyst for systems with O(n) site types.
It is an interesting open question to design a catalytic system
similarly to the grid gate, using only O(n) site types, that
has a programmable energy barrier of n in the absence of the
catalyst.

Appendix A
Translator cycle
A.1 Strand displacement cascade
Fig. 8 shows the design scheme in which the
monomers/polymers of the TBN studied in Section 4.1
are modeling an implementable substrate. The substrate are
double-stranded DNA complexes. The complexes undergo a
kinetic process called strand displacement, shown in Fig. 9,
in which one strand attaches and displaces another, freeing
a new strand which can then displace strands on other
complexes in the system (hence the term cascade). Note that
the displacement shown in Fig. 9 corresponds to one merge
and one split of the pathway shown in TBN form in Fig. 4.

A.2 Barrier of the translator cycle
Here we give proofs which were omitted in the main body.

Lemma 13. If a polymer P is in a normal form saturated
configuration and |P | < 2n + 1, then there exists a perfect
matching on GP .

Proof. Given a set S of vertices, let N(S) be the set of vertices
adjacent to a vertex in S. Hall’s condition states that a perfect
matching exists on a bipartite graph {V1, V2, E} if and only if
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Fig. 8. DNA strand displacement implementation of the translator cycle.
The schematic shows how the complexes in the translator cycle TBN
correspond to DNA complexes. ∆xi denotes a truncated version of
domain xi. Note that these truncated domains, typically called toeholds,
are not included in our TBN abstraction because they bind weakly and
do not contribute to the energy barrier we consider.

Fig. 9. The desired catalyzed pathway of the translator cycle consists
of the strand displacement reactions shown. The displacement reaction
initiates when the blue strand binds to the green complex at the toehold
domain (red). The top strands compete for bonds in a random walk,
eventually displacing the top green strand. Note that this displacement
corresponds to one merge then split of the pathway shown in TBN form
in Fig. 4.

for all subsets S ⊆ V1, |S| ≤ |N(S)|. We prove this holds for
GP .

Consider any subset S ⊆ B. There are n|S| starred
(limiting) binding sites. The number of sites on compatible
top monomers for the set S is given by (n + 1)|N(S)|. Since
P is saturated, the n|S| starred sites must be bound to the
(n+ 1)|N(S)| unstarred sites, so we have n|S| ≤ (n+ 1)|N(S)|.
If |S| > |N(S)|, Lemma 11 gives us that |S| > n + 1 and
|N(S)| > n, so to avoid contradicting the assumption that
|P | < 2n+ 1, it must be that |S| ≤ |N(S)|.

Lemma 17. For an n′-sized polymer P in a normal form
saturated configuration, for any two perfect matchingsM and
M ′ on GP , f(M) = f(M ′).

Proof. Intuitively, first we will shift the indices of the top and
bottom monomers so that the leftmost index has value zero.
Let cP be a cutoff value given by Lemma 15. We rewrite each
bi or ti as bi−cP mod n2 or ti−cP mod n2 . Since originally no
edge crossed the cutoff, now no edge crosses zero. Note that
this does not change the offset of any pair and thus does not
change the offset of any matching. For each f(bi, tj), since
no edge {bi, tj} crosses zero we can think of the indices on a
line, so we can rewrite the offset as f(bi, tj) = j − i. Then
f(M) =

∑
k(jk − ik) =

∑
k jk −

∑
k ik. This expression is

independent of the matching and only depends on the indices
of the monomers in the polymer, so for any two matchingsM
andM ′, f(M) = f(M ′).

Lemma 19. Given an n′-sized polymer P with cutoff cP , there
exists a sortedmatchingM onGP which satisfies that there does
not exist {bi1 , tj2}, {bi2 , tj1} ∈M with i1 ≤ i2 and j1 ≤ j2 with
respect to the ordering given by the cutoff value, [cP , cP − 1]n2 .

Fig. 10. A path from γI to γT with height 2c
z
− 1, showing that the

complex length z must be asymptotically larger than the number of
complex types c to achieve a super-constant barrier. This example has
monomer size z = 4 and number of complexes c = 8. The circular
representation helps to visualize when a group of monomers covers all site
types x0, . . . , x7. Each row of polymers denotes a different configuration
on the path. Each is separated by several merges or splits. First, two
initial complexes are brought together, chosen such that every starred
binding site appears at least once. This size 2c

z
polymer acts as a catalyst

in the following sense: another similar set of initial complexes can be
merged into this polymer, and then split into their triggered complexes.
Note in the fourth row, the large polymer is still saturated, although
each bottom monomer is not in a polymer with its initial or triggered
top monomer.

Proof. Given any matching M ′ which is not sorted, we show
that we can swap the offending edges, resulting in a new
matching which is in sorted order. Let Sik be [ik−n, ik+n−1]n2 ,
the sequence giving the indices of compatible top monomers
for bik . For any {bi1 , tj2}, {bi2 , tj1} ∈ M with i1 ≤ i2 and
j1 ≤ j2, note that j2 ∈ Si1 and j1 ∈ Si2 . The orderings
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given by the sequences Si1 , Si2 are the same orderings as
given by [cP , cP − 1]n2 , since Si1 , Si2 are both subsequences of
[cP , cP − 1]n2 . Since i1 ≤ i2, Si1 contains no elements greater
than any of those in Si2 , and Si2 contains no elements less than
any of those in Si1 . So j2 ∈ Si1 and j1 ∈ Si2 with j1 ≤ j2 gives
that both j1, j2 ∈ Si1 and further j1, j2 ∈ Si2 . So both tj1 and
tj2 are compatible for both bi1 and bi2 . Since the edges of GP
are between bottom monomers and their compatible tops, we
can swap {bi1 , tj2}, {bi2 , tj1} with {bi1 , tj1}, {bi2 , tj2} and the
result is a matching on GP . So given any perfect matching
on GP , we can construct a sorted matching by swapping the
offending edges one-by-one.
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