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Abstract. Engineering molecular systems that exhibit complex behavior
requires the design of kinetic barriers. For example, an effective catalytic
pathway must have a large barrier when the catalyst is absent. While pro-
gramming such energy barriers seems to require knowledge of the specific
molecular substrate, we develop a novel substrate-independent approach.
We extend the recently-developed model known as thermodynamic bind-
ing networks, demonstrating programmable kinetic barriers that arise
solely from the thermodynamic driving forces of bond formation and the
configurational entropy of forming separate complexes. Our kinetic model
makes relatively weak assumptions, which implies that energy barriers
predicted by our model would exist in a wide variety of systems and con-
ditions. We demonstrate that our model is robust by showing that several
variations in its definition result in equivalent energy barriers. We apply
this model to design catalytic systems with an arbitrarily large energy
barrier to uncatalyzed reactions. Our results yield robust amplifiers using
DNA strand displacement, a popular technology for engineering synthetic
reaction pathways, and suggest design strategies for preventing undesired
kinetic behavior in a variety of molecular systems.

1 Introduction

Abstract mathematical models of molecular systems, such as chemical reaction
networks, have long been useful in natural science to study the properties of
natural molecules. With recent experimental advances in synthetic biology and
DNA nanotechnology [1, 3, 8, 9], such models have come to be viewed also as
programming languages for describing the desired behavior of synthetic molecules.

We can describe a chemical program with abstract chemical reactions such as

A+ C → B + C (1)
A→ B. (2)

In particular, a program may require (1) and forbid (2). But what remains hidden
at this level of abstraction is a well-known chemical constraint: if (1) is possible,
then (2) must also be, no matter the exact substances. Knowing this, we might
try to slow (2) by ensuring B has high free energy. But then B + C must also



have high free energy, so (1) slows in tandem. The only option to slow (2) but
not (1) is to use a kinetic barrier : designing A so that, although it is possible for
A to reconfigure into B, the system must traverse a higher energy (less favorable)
intermediate in the absence of C.

To develop a substrate-independent approach to engineering kinetic barriers
we need to rely on a universal thermodynamic property that would be relevant in
a wide variety of chemical systems. We focus on the entropic penalty of association
(decreasing the number of separate complexes). Intuitively, the entropic penalty
is due to decreasing the number of microstates corresponding to the independent
three-dimensional positions of each complex (configurational entropy). This
thermodynamic penalty can be made dominant compared with other factors by
decreasing the concentration.

To formalize this entropic penalty, we use the thermodynamic binding networks
(TBN) model [5]. TBNs represent molecules as abstract monomers with binding
sites that allow them to bind to other monomers. For a configuration γ, the TBN
model defines H(γ) as the number of bonds formed, and S(γ) as the number of
free complexes,3 and the energy E(γ) = −wH(γ)−S(γ) as a (negative) weighted
sum of the two.4 To be applicable to a wide variety of chemical systems, the
TBN model does not impose geometric constraints on bonding (monomers are
simply multisets of binding sets). Implementation of TBNs requires choosing a
concrete physical substrate and geometric arrangement that permits the desired
configurations to form.

We augment the TBN model with a notion of kinetic paths (changes in
configuration) due to merging of different complexes and splitting them up (and
in the full version of this paper, making, breaking, or exchanging bonds). This
gives rise to a notion of paths of configurations, with different energies. Define

3The quantities H(γ) and S(γ) are meant to evoke the thermodynamic quantities
of enthalpy and entropy, although the mapping is not exact. Indeed, there are other
contributions to physical entropy besides the number of separate complexes, and the
free energy contribution of forming additional bonds typically contains substantial
enthalpic and entropic parts.

4In typical DNA nanotechnology applications, the Gibbs free energy ∆G(γ) of a
configuration γ can be estimated as follows. Bonds correspond to domains of length l
bases, and forming each base pair is favorable by ∆G◦bp. Thus, the contribution of H(γ)
to ∆G(γ) is (∆G◦bp · l)H(γ). At 1 M, the free energy penalty due to decreasing the
number of separate complexes by 1 is ∆G◦assoc. At effective concentration C M, this
penalty increases to ∆G◦assoc +RT ln(1/C). As the point of zero free energy, we take
the configuration with no bonds, and all monomers separate. Thus, the contribution of
S(γ) to ∆G(γ) is (∆G◦assoc +RT ln(1/C))(|γ| − S(γ)), where |γ| is the total number of
monomers. To summarize,

∆G(γ) = (∆G◦bp · l)H(γ) + (∆G◦assoc +RT ln(1/C))(|γ| − S(γ)).

Note that, as expected, this is a linear combination ofH(γ) and S(γ), and that increasing
the length of domains l weighs H(γ) more heavily, while decreasing the concentration
C weighs S(γ) more heavily. Typically G◦bp ≈ −1.5 kcal/mol, and G◦assoc ≈ 1.96
kcal/mol [7].



Fig. 1: Two configurations γ1 and γ2 of the TBN T = {{a, a}, {a∗, b}, {a∗, b}}. Note
that T has 3 monomers but 2 monomer types and 6 sites but 3 site types. A dashed box
indicates monomers that are part of the same polymer. A single configuration (bottom)
can correspond to multiple ways of binding complementary sites (top), which are not
distinguished in our model. In γ2 the polymer on the left has exposed sites {b, a∗} and
the polymer on the right {a, b}; they are thus compatible since the exposed site a∗
of the left is complementary to exposed site a of the right. Since γ2 has compatible
polymers it is not saturated, but γ1 is.

the height of a path starting at γ as the maximum value of E(δ) − E(γ) over
all configurations δ on the path. Then the kinetic energy barrier separating
configuration δ from configuration γ is the height of the minimum-height path
from γ to δ.

In Section 2 we introduce our main kinetic model. We further show that
when w ≥ 1, it is sufficient to consider only fully bonded configurations in the
energy barrier analysis. In Sections 3.1 and 3.2 we develop two constructions
for catalytic systems. Both constructions yield families of TBNs parametrized
by a complexity parameter n such that the uncatalyzed energy barrier scales
linearly with n. The catalyzed energy barrier is always 1. We show a direct
DNA strand displacement implementation of one of the constructions. Finally we
show an autocatalytic TBN, with an arbitrarily large energy barrier to undesired
triggering, that exponentially amplifies its input signal (Section 3.2.1).

2 Kinetic model

Our kinetic models build on thermodynamic binding networks (TBN) [5]. Intu-
itively, we model a chemical system as a collection of molecules, each of which
has a collection of binding sites, which can bind if they are complementary.
Although the TBN model is more general, DNA domains can be thought of as
the prototypical example of binding sites. No geometry is enforced, which allows
the model to handle topologically complex structures, such as pseudoknots.

TBN (Figure 1 illustrates the concepts of the following two subsections.)
Formally, a TBN is a multiset of monomer types. A monomer type is a multiset



of site types. A site type is a formal symbol, such as a, and has a complementary
type, denoted a∗. We call an instance of a monomer type a monomer and an
instance of a site type a site.

Configuration We may describe the configuration of a TBN at any moment in
terms of which monomers are grouped into polymers. This way a polymer is a set
of monomers, and a configuration is a partition of the monomers into polymers.5

The exposed sites of a polymer is the multiset of site types that would remain
if one were to remove as many complementary pairs of sites as possible. Each
such pair is counted as a bond. Note that bonds are not specified as part of a
configuration, and intuitively we think of polymers as being maximally bonded.
Two polymers are compatible if they have some complementary exposed sites. A
configuration is saturated if no two polymers are compatible. This is equivalent
to having the maximum possible number of bonds.

Notice that a polymer may have two incompatible halves. This represents
spontaneous co-localization and comes with an energy penalty, as discussed later.

Path (Figure 2 illustrates the concepts of the following three subsections.)
One configuration can change into another by a sequence of small steps. If γ
can become δ by replacing two polymers with their union, then γ merges to δ
and δ splits to γ, and we write γ <1 δ. We denote by ≤1, <, ≤ the reflexive,
transitive, and reflexive transitive closures of <1. A path is a nonempty sequence
of configurations where each merges or splits to the next. Note that there is a
path between any two configurations.6

We could imagine smaller steps that manipulate individual bonds. But sur-
prisingly, a bond-aware model leads to essentially equivalent kinetic barriers,
which we prove in the full version of this paper. Thus keeping track of bonds is
an unnecessary complication.

Energy For a configuration γ, denote by H(γ) the number of bonds summed
over all polymers. Denote by S(γ) the number of polymers. Note that a saturated
configuration has maximum H(γ). The energy of γ is

E(γ) = −wH(γ)− S(γ),

where the bond strength w represents the benefit from gaining a bond relative
to gaining a polymer. Note that H(γ) ≥ 0 and S(γ) > 0, so E(γ) < 0, and that
lower energy, which results from more bonds or more polymers, is more favorable.
The choice to make favorability correspond to lower energy (more negative) is

5Note that swapping two monomers of the same type between different polymers
produces a different configuration. Distinguishing different monomers of the same type
allows us to equate the space of configurations with the lattice of partitions, which is a
key tool in the full version of this paper.

6For instance, although this path is likely energetically unfavorable, we can merge
all initial polymers into one, and then split into the desired end polymers.



Fig. 2: A path p consisting of the configurations γ1, γ2, γ3, γ4 and a path p′ consisting of
the configurations δ1, δ2, δ3, δ4 of the TBN T = {{a}, {b}, {a, b}, {a∗, b∗}}. The energy
of each configuration is shown below it. A large wavy disc indicates energy due to a
bond. A small solid disc indicates energy due to a polymer. Here bond strength w = 2,
so a wavy disc is twice as tall as a solid disc. The height of p is h(p) = E(γ3)−E(γ1) =
(−4)− (−2w − 2) = 2. The height of p′ is h(p′) = E(δ2)− E(δ1) = 1.

motivated by consistency with the standard physical chemistry notion of free
energy. We call a minimum energy configuration stable.

Merging incompatible polymers forms no additional bonds and so is always
unfavorable, since S(γ) drops without H(γ) rising. In contrast, when bond
strength w > 1, merging compatible polymers is always favorable. So every stable
(that is, minimum energy) configuration is saturated. This regime is typical of
many real systems, and in particular, we can engineer DNA strand displacement
systems [10] to have large bond strength w by increasing the length of domains
(see also footnote 4).

Barrier With notions of paths and energy, we can establish the difficulty of
passing from a configuration γ to another δ. The height h(p) of a path p starting
from γ is the greatest energy difference E(δ)−E(γ) from γ to any configuration
δ along p. Notice that h(p) ≥ E(γ)− E(γ) = 0. The barrier b(γ, δ) from γ to δ
is the least height of any path from γ to δ. Notice that b(γ, δ) ≥ 0 as well.



2.1 Bounds on energy change

Merging compatible polymers or splitting into incompatible polymers changes
energy in a predictable way. Splitting into incompatible polymers keeps all bonds
and results in one more polymer, so overall it drops energy by 1. Similarly,
merging compatible polymers results in one fewer polymer but at least one more
bond. So overall it drops energy by w − 1 when bond strength w ≥ 1.

To make this precise, we introduce two other partial orders on configurations.
Let γ E δ mean that γ can become δ by merges of compatible polymers. Let
γ � δ mean that γ can become δ by merges of incompatible polymers.

Claim 2.1. If γ � δ, then E(γ) = E(δ)− (S(γ)− S(δ)). If γ E δ, then E(δ) ≤
E(γ)− (w − 1)(S(γ)− S(δ)).

The above claim says nothing about the general case γ ≤ δ. In order to apply
the bounds, it will prove useful to decompose ≤ into � and E. Any sequence of
merges can be modified so that all merges between compatible polymers come
first:

Claim 2.2. If γ ≤ δ, then some α has γ E α � δ.

Proof (sketch). Intuitively we want to reorder merges. In the full version of the
paper, we show how to treat a merge as an object that can be applied in a context
other than its original configuration, where the original polymers involved may
not exist. With this machinery, the overall argument shows that if γ ≤ δ, then
we can form α by starting with γ and doing as many merges as possible while
preserving γ E α ≤ δ. No additional merge forms a bond, so α � δ. ut

2.2 Saturated paths

We prefer to reason about saturated configurations because there are substantially
fewer of them and they have special properties, which simplifies proofs. In this
section we show that the barrier remains essentially the same even if we consider
paths that traverse only saturated configurations. This may be surprising since
breaking some bonds might seem to allow a path to bypass an otherwise large
barrier.

We see an example of the special properties of saturated configurations in
the following claim, which is used in later sections to show a large energy barrier
in our constructions.

Claim 2.3. If γ and δ are saturated, then b(γ, δ) ≥ S(γ)− S(δ).

Proof. Consider a path p from γ to δ. Since γ and δ are saturated, H(γ) = H(δ),
so h(p) ≥ E(δ)− E(γ) = S(γ)− S(δ). So b(γ, δ) ≥ S(γ)− S(δ). ut

Now we turn to the main result of this section. A saturated path is a path
along which every configuration is saturated. For example, the bottom path p′
in Figure 2 is saturated. If γ and δ are saturated, then let bsat(γ, δ) denote the



Fig. 3: An example of the two cases of the proof of Claim 2.5. An underline indicates a
quantity constructed in the proof.

barrier from γ to δ when allowing only saturated paths. Since a saturated path
is a path, bsat(γ, δ) ≥ b(γ, δ). It turns out that if bond strength w ≥ 2, then
the reverse inequality also holds, so bsat(γ, δ) = b(γ, δ). And if w ≥ 1, then the
reverse inequality “almost” holds.

We first need a technical result proven in the full version of this paper:

Claim 2.4. If γ <1 δ and γ ≤ γ′, then some α has δ ≤ α and γ′ <1 α.

As in the proof of Claim 2.2, the proof of the above claim relies on treating
merges as objects that can be applied in different contexts. In particular, the
same merge that changes γ to δ is applied to get from γ′ to α.

To connect bsat(γ, δ) to b(γ, δ), we first focus on a single step along a path
and then extend to the full path. Let [γ] denote the set of saturated γ′ with
γ E γ′.

Claim 2.5. Let bond strength w ≥ 1. If γ merges or splits to δ and γ′ ∈ [γ],
then some δ′ ∈ [δ] and saturated path p′ from γ′ to δ′ has

Emax(p′) ≤ max{E(γ), E(δ)}+ max{0, 2− w} ,

where Emax(p′) is the maximum energy of any configuration along p′.

Proof. Let bond strength w ≥ 1, and suppose γ′ ∈ [γ].
First consider the case where γ splits to δ (see Figure 3, left). Then δ <1 γ.

So δ ≤ γ. By assumption γ′ ∈ [γ], so γ ≤ γ′, so transitively δ ≤ γ′. By Claim 2.2,
there is δ′ with δ E δ′ � γ′. By assumption γ′ is saturated, and now δ′ � γ′,
so δ′ is saturated, and so δ′ ∈ [δ]. So let p′ be the path from γ′ to δ′ by splits
into incompatible polymers guaranteed to exist by δ′ � γ′. Each such split drops
energy, so the claim holds.

Next consider the case where γ merges to δ (see Figure 3, right). Then γ <1 δ.
If γ = γ′, then let δ′ = δ, and let p′ be γ followed by δ. Otherwise γ < γ′. In
that case let α be the configuration guaranteed by Claim 2.4. Then δ ≤ α. So
by Claim 2.2, there is δ′ with δ E δ′ � α. Now by assumption γ′ is saturated,



and by construction γ′ ≤ α, so α is saturated. Next δ′ � α means δ′ is saturated,
and so δ′ ∈ [δ].

Let p′ be the concatenation of two paths p′1 and p′2 defined as follows. Let p′1
be γ′ followed by α. This merge can at worst result in one less polymer and no
additional bonds, so E(α) ≤ E(γ′) + 1.

Then let p′2 be the path from α to δ′ by splits into incompatible polymers
guaranteed to exists by δ′ � α. Each such split drops energy, so α is the highest
energy intermediate configuration. But by assumption γ E γ′ and γ 6= γ′, so
S(γ)− S(γ′) ≥ 1. So by Claim 2.1, and assuming bond strength w ≥ 1, we get
E(γ′) ≤ E(γ)− (w − 1). So

E(α) ≤ E(γ′) + 1
≤ E(γ) + 2− w ,

which implies the claim. ut

To extend the result to a full path, we apply it to each configuration along the
path.

Claim 2.6. For bond strength w ≥ 1 and saturated γ and δ, we have

bsat(γ, δ) ≤ b(γ, δ) + max{0, 2− w} .

Proof. Suppose bond strength w ≥ 1 and γ and δ are saturated, and consider a
path p from γ to δ. By assumption γ is saturated, so γ ∈ [γ]. So we can apply
Claim 2.5 to each configuration of p in turn to get a saturated path p′.

Let E′ denote the maximum energy along p′ and E denote the maximum
energy along p. Then Claim 2.5 ensures E′ ≤ E + max{0, 2 − w}. And both
p′ and p start in the same configuration with the same energy, so h(p′) ≤
h(p) + max{0, 2− w}. So bsat(γ, δ) ≤ b(γ, δ) + max{0, 2− w}. ut

Since b(γ, δ) ≤ bsat(γ, δ), we have the following corollary of Claim 2.6.

Corollary 2.7. For bond strength w ≥ 2 and saturated γ and δ, we have
bsat(γ, δ) = b(γ, δ) .

For Claim 2.6 and Corollary 2.7, bond strength w ≥ 1 is necessary. If w < 1,
then bsat(γ, δ) can be larger than b(γ, δ) by an arbitrary amount.

3 TBNs with programmable energy barriers

We present two constructions for TBNs with equal energy (stable) “initial” and
“triggered” configurations, such that the energy barrier to get from one to the
other can be made arbitrarily large: both constructions are parameterized by
n, with the energy barrier scaling linearly with n. Further, both constructions
admit catalysts that reduce the energy barrier to 1.

The first construction (translator cycle), discussed Section 3.1, is based on a
DNA strand displacement catalyst, and the progress from the initial to triggered



Fig. 4: The two stable configurations of a translator cycle with complex length z = 3
and number of complex types c = 5.

configurations with the catalyst can be physically implemented as a strand
displacement cascade. Although this system has been previously proposed in [11],
for the first time we rigorously prove an energy barrier.

The second construction (grid gate), discussed in Section 3.2, does not have
an evident physical implementation (e.g., as a strand displacement system), but
surpasses the translator cycle system in the following ways: (1) a proof of copy
tolerance7: the energy barrier is proven in more general contexts where multiple
copies of monomers are present, in any ratio, (2) autocatalysis: the grid gate can
be modified so that the catalyst transforms the gate into a polymer that has the
same excess domains as the catalyst, which can itself catalyze the transformation
of additional gates (leading to exponential amplification).

Throughout both sections, we make the assumption that w ≥ 2, so that
by Corollary 2.7, it is sufficient to describe energy barriers by pathways in the
saturated model; if we weaken this assumption to w ≥ 1, then by Claim 2.6
the barrier proved is within 1 of the barrier in the unrestricted pathway model
(allowing unsaturated configurations).

The constructions demonstrate that catalysts and autocatalysts with arbi-
trarily high energy barriers can be engineered solely by reference to the general
thermodynamic driving forces of binding and formation of separate complexes,
which are captured in the TBN model.

3.1 Translator cycle

Consider the TBN illustrated in Figure 4. There are two particular configura-
tions that interest us, an initial configuration γI and a triggered configuration
γT . The two configurations are stable. In the presence of a catalyst monomer
{x4, x0, x1, x2} (or an extra copy of any top monomer—any of the monomers with
unstarred domains), a height 1 pathway exists to reach γT , illustrated by Figure 5.
Further, this catalytic system is realizable as a DNA strand displacement cascade;
more information about this connection can be found in the full version of this
paper, and in [11]. In the case of many copies of each complex, since the catalyst
is in fact any of the top monomers, the system may be used as an amplifier:
at the end of the pathway shown in Figure 5, another monomer with domains

7Our proof technique for the barrier of the translator cycle does not seem sufficient
to prove copy tolerance, although we conjecture the translator cycle is copy tolerant.



Fig. 5: A segment of the height 1 path which is possible because an extra copy of a
top monomer, {x4, x0, x1, x2}, is present to act as a catalyst. If no catalyst is initially
present, if one complex splits—thus reducing the number of bonds by z—the top
monomer from the split complex can be used as a catalyst, resulting in a path of height
z + 1 similar to the path shown in the figure.

{x4, x0, x1, x2} becomes free which can catalyze another set of complexes which
are in the initial configuration. Note, however, that proving the energy barrier
for the translator cycle in the multi-copy setting remains open.

To program a large energy barrier, we give a formal definition for generalizing
the translator cascade, parameterized by complex length z and number of complex
types c. Given z ≤ c, a (z, c)-translator cycle is a TBN with monomers M ={
mi,m

∗
i | i ∈ {0, · · · , c − 1}, where mi = {xi, xi+1 (mod c), · · · , xi+z (mod c)}

and m∗i = {x∗i , x∗i+1 (mod c), · · · , x
∗
i+z−1 (mod c)}

}
. The initial configuration is

γI =
{
{mi,m

∗
i } | i ∈ {0, · · · , c − 1}

}
and the triggered configuration is γT ={

{mi−1 (mod c),m
∗
i } | i ∈ {0, · · · , c− 1}

}
.
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Fig. 6: The monomer types in the grid gate TBN for the case n = 4.

What we want is that when the catalyst is absent, there is a large energy
barrier to move from γI to γT . This barrier depends on the complex length z
and the number of complex types c, and can be made arbitrarily large.

We can begin a path to γT by splitting any complex apart, thus reducing the
number of bonds by z, and then use the top monomer as a catalyst in the same
way as the with-catalyst pathway shown in Figure 5. So, if z is not large, then
there is a small barrier. We can also bring all complexes together while reducing
the number of polymers by c− 1, and then split into the triggered complexes,
so if c is not large, there is also a small barrier. Somewhat surprisingly, it is not
sufficient to set z = c = n to attain a barrier of Ω(n); a complicated path exists
which has height Θ( cz ) which is illustrated in the full version of the paper.

Note that if the cascade has c = z2, then the uncatalyzed paths described
above have height Ω(z). Are there other paths with smaller heights (that is, is
the energy barrier Ω(z) in that case)? We prove that indeed the energy barrier
is Ω(z):

Theorem 3.1. If z = n and c = n2, then b(γI , γT ) = Ω(n).

The proof appears in the full version of this paper.

3.2 Grid gate

Consider the TBN illustrated in Figure 6. We focus on two polymer types GH and
GV depicted in the figure, and show that there is a barrier to convert GH to GV
and vice versa. To generalize to arbitrarily high energy barriers, we parameterize
the construction by n as follows. Define the following monomer types: “horizontal”
Hi := {xij}nj=1 for i ∈ {1, . . . , n}, “vertical” Vj := {xij}ni=1 for j ∈ {1, . . . , n},
and “gate” G := {x∗ij}ni,j=1. We fix a network T which contains any number of



any of these monomer types, so long as there are enough of other monomers to
completely bind all the G monomers (i.e., in saturated configurations there are
no exposed starred sites).

The main result of this section is that there is an energy barrier of n to convert
a GH polymer to a GV polymer and vice versa. In the notation of chemical
reaction networks, this binding network implements the net reaction

GH 
 GV

with energy barrier n. In Section 3.2.1 we will show how this energy barrier can
be reduced to 1 by a catalyst.

We state our results in increasing order of strength. First, we show an energy
barrier to changing a single GH to a single GV (and vice versa), in the presence
of exactly one of each Vj monomer (i.e., just enough to create a GV ). Let γH
denote the configuration of the TBN depicted in Figure 6 in which G and each
Hi are grouped into a single polymer GH , and each Vj is in its own polymer. Let
γV denote the symmetric configuration in which G and each Vj are grouped into
a single polymer GV , and each Hi is in its own polymer.
Claim 3.2. b(γH , γV ) = b(γV , γH) = n.
Proof. Consider a saturated path p from γH to γV . Let δ denote the first con-
figuration in the path with some Hi separate from G. Since δ is saturated but
in this configuration Hi is not bound to G, all of the Vj must be bound to-
gether with G. So the configuration δ′ which immediately precedes δ in the path
must have all of the monomers in a single polymer. Since p is a saturated path,
H(γH) = H(δ′), and since p was arbitrary, b(γH , γV ) ≥ h(p) ≥ E(δ′)−E(γH) =
S(γH) − S(δ′) = n. The path which achieves height n proceeds by merging
GH and all the Vj ’s, and then splitting off all the Hi’s, leaving GV behind. By
symmetry, b(γH , γV ) = b(γH , γV ). ut

We can generalize this basic result to a copy-tolerant setting, in which we
assume the starting configuration has several copies of each GH and GV , as well
as excess copies of each Hi and Vj , showing that the energy barrier of n remains
for conversion of any GH ’s into GV ’s, and vice versa.

To make our result precise, we parameterize a set of configurations of the
network based upon the count of polymers GH and GV and the number of
horizontal and vertical monomers that are unbound. For cGH

, cGV
∈ N, define

Γ (cGH
, cGV

) to be the set of configurations of the network T that contain precisely
cGH

polymers of type GH and cGV
polymers of type GV , and in which all other

monomers are in separate polymers by themselves. It turns out that the stable
configurations of the network are exactly the ones in some Γ (cGH

, cGV
) (proof in

the full version of this paper). The following theorem generalizes Claim 3.2 to
the multi-copy context. Note that obtaining a similar copy-tolerant result for the
translator cycle remains open.
Theorem 3.3. Let γ ∈ Γ (cGH

, cGV
). If γ′ ∈ Γ (cGH

− ∆, cGV
+ ∆) for some

nonzero ∆ ∈ N, then b(γ, γ′) = n.
The proof appears in the full version of this paper.
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Fig. 7: Catalysts and autocatalysts in the grid gate TBN for the case n = 4. left: C
is a single monomer that acts as a catalyst to convert between GH and GV . middle:
Modified vertical monomers {Ṽj}n

j=1 with extra sites. right: After C converts GH to
GV with modified vertical monomers, GV has the same excess sites as C and acts as a
catalyst itself.

3.2.1 Catalysis and autocatalysis The kinetic barrier shown for the grid
gate can be disrupted by the presence of new monomer types. In fact, the model
admits a catalyst monomer C that lowers the energy barrier from n to 1, i.e.,
in the presence of C, a GH can be converted into a GV , and vice versa, with a
sequence of merge-split pairs. In the notation of chemical reaction networks, this
binding network implements the net reaction

GH + C � GV + C

with energy barrier 1 but maintains a high energy barrier for the reaction
GH � GV .

For the grid gate of size n × n, we define a catalyst: C := {xij | 1 ≤ i, j ≤
n, i 6= j} ∪ {x11}, illustrated in Figure 7 (left). C is a monomer containing all of
the non-diagonal unstarred sites, while retaining exactly one of the diagonal sites.
The mechanism by which C can transform GH to GV with merge-split pairs is
by an alternating processes of merges and splits shown in Figure 8. Intuitively,
in step i of the catalyzed reaction GH + C → GV + C, site x∗ii on G switches its
association from xii on Hi (left) to its counterpart on Vi (right) by merging the
evolving polymer (center) with Vi and then splitting off Hi. Only the diagonal
sites need be considered in the intermediate steps since the catalyst C (blue,
center, overlaid) balances the other sites of G.

Consider a network T C := {G,C} ∪ {Hi}ni=1 ∪ {Vj}nj=1 which includes one
instance of every monomer type that has been introduced, as well as the catalyst.
As before, we shall be interested in net transitions between GH and GV , and so for
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Fig. 8: Full pathway for reaction GH + C → GV + C. In each stage, exactly one merge
and one split occurs, and the center polymer remains saturated.



the network T C we define the following configurations: γCH := {GH , C}∪{Vj}nj=1
and γCV := {GV , C} ∪ {Hi}ni=1.

Theorem 3.4 states that transitions that previously had arbitrarily large
energy barriers are reduced in barrier to one.

Theorem 3.4. b(γCH , γCV ) = b(γCV , γCH) = 1.

By adding to the network additional instances of {G} ∪ {Hi}ni=1 ∪ {Vj}nj=1,
these results can be extended to the more general case of γ(cGH

, cGV
) ∪ {C} by

induction.
The grid gate can also be modified to act in an autocatalytic manner. By

modifying the vertical monomers it is possible for GV to have a set of exposed
monomers acting as a “catalyzing region”, which has the same structure and
function as C (see Figure 7, middle and right). We give the formal construction
and related proofs in the full version of this paper.

4 Future work

Single-molecule applications are rare compared with multi-copy situations. Indeed,
using a catalyst or autocatalyst for amplification requires many copies of the
components. Although we proved the correctness of the grid gate in the multi-
copy context, we could not easily generalize our proof of the correctness of
the translator cycle. Since the translator cycle has a straightforward strand
displacement implementation, it is important to show that the uncatalyzed energy
barrier is still n in bulk applications typical of strand displacement experiments.
Success in this line of research provides a promising approach to making leakless
strand displacement amplifiers [10]. More generally, it is important to develop
general methods for extending single-copy TBN results to multi-copy contexts.

Ideally we not only want a large energy barrier to “bad” configurations, but
we want to avoid getting stuck in local minima that keep us from getting to the
good configurations. We can define “self-stabilizing” TBNs with the property
that from any configuration, the TBN can reach some stable configuration with a
low energy barrier path. As argued in the full version of this paper, this property
is true for the grid gate, but it is not true for the translator cycle. This property
is worth more general exploration.

Can we use the definition of energy in TBNs to boostrap a reasonable notion of
probability of configurations or paths? For instance, in statistical thermodynamics
it is common to consider the Boltzmann distribution induced by energy E, where
for each configuration γ, Pr[γ] = e−E(γ)/(

∑
β e
−E(β)). This is the probability of

seeing γ at thermodynamic equilibrium. One can also use the relative energy
between two states to predict the relative rates of transition between them, which
might allow defining a notion of path probability in the kinetic theory of TBNs.

A useful chemical module consists of the reaction X +X → Y + Y (or more
generally converting k > 1 copies of X to Y ), which can act as a “threshold” to
detect whether there are at least k copies of X. Analogous to a catalytic system,
implementing the above reaction while forbidding X → Y requires control of the



energy barrier, and cannot be done simply by varying the energies of X and Y .
Can we construct TBNs with arbitrarily large energy barriers in this case?

What is the computational complexity of deciding whether b(γ, δ) ≤ k,
given two configurations γ, δ and a threshold k? This problem is decidable in
polynomial space in the number of monomers in γ: any configuration can be
written down in polynomial space, and guessing merges and splits yields a
nondeterministic polynomial space algorithm (placing it in PSPACE by Savitch’s
Theorem). However, low-height paths could be of exponential length, and thus it
is not clear that the problem is in NP, since the obvious witness is a path with
height ≤ k. Is this problem possibly PSPACE-complete?

Can kinetic barriers be proven in geometric self-assembly models such as the
abstract Tile Assembly Model (aTAM) [4, 6, 12]? One approach to providing
thermodynamic arguments for correctness of self-assembly systems is by showing
the stable configurations of the system as a TBN are exactly the desired terminal
assemblies in the aTAM. It has been shown that the class of systems which have
this notion of stability is limited [2]. An alternative approach would be to relax
the requirement that the set of desired assemblies correspond exactly to stable
configurations, and instead argue that there is a large kinetic barrier to reach
undesired assemblies even if they are stable.
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