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Abstract Winfree’s abstract Tile Assembly Model is a model of molecular self-
assembly of DNA complexes known as tiles, which float freely in solution and attach
one at a time to a growing “seed” assembly based on specific binding sites on their
four sides. We show that there is a polynomial-time algorithm that, given an n × n
square, finds the minimal tile system (i.e., the system with the smallest number of
distinct tile types) that uniquely self-assembles the square, answering an open ques-
tion of Adleman et al. (Combinatorial optimization problems in self-assembly, STOC
2002). Our investigation leading to this algorithm reveals other positive and negative
results about the relationship between the size of a tile system and its “temperature”
(the binding strength threshold required for a tile to attach).

Keywords Self-assembly · Tile complexity · Temperature · Optimization

1 Introduction

Tile self-assembly is an algorithmically rich model of “programmable crystal growth”.
It is possible to design monomers (square-like “tiles”) with specific binding sites so
that, even subject to the chaotic nature of molecules floating randomly in a well-mixed
chemical soup, they are guaranteed to bind so as to deterministically form asingle

H.-L. Chen
National Taiwan University, Taipei, Taiwan
e-mail: holinc@gmail.com

D. Doty (B)
California Institute of Technology, Pasadena, CA, USA
e-mail: ddoty@caltech.edu

S. Seki
Aalto University, Helsinki, Finland
e-mail: shinnosuke.seki@aalto.fi

123



Algorithmica

target shape. This is despite the number of different types of tiles possibly being
much smaller than the size of the shape and therefore having only “local information”
to guide their attachment. The ability to control nanoscale structures and machines
to atomic-level precision will rely crucially on sophisticated self-assembling systems
that automatically control their own behavior where no top-down externally controlled
device could fit.

A practical implementation of self-assembling molecular tiles was proved experi-
mentally feasible in 1982 by Seeman [22] using DNA complexes formed from artifi-
cially synthesized strands. Experimental advances have delivered increasingly reliable
assembly of algorithmic DNA tiles with error rates of 10 % per tile in 2004 [20], 1.4 %
in 2007 [14], 0.13 % in 2009 [5]. Winfree [29] introduced the abstract Tile Assem-
bly Model (aTAM)—based on a constructive version of Wang tiling [27,28]—as a
simplified mathematical model of self-assembling DNA tiles. Winfree demonstrated
the computational universality of the aTAM by showing how to simulate an arbitrary
cellular automaton with a tile assembly system. Building on these connections to com-
putability, Rothemund and Winfree [21] investigated a self-assembly resource bound
known as tile complexity, the minimum number of tile types needed to assemble a
shape. They showed that for most n, the problem of assembling an n × n square has
tile complexity �(

log n
log log n ), and Adleman et al. [2] exhibited a construction showing

that this lower bound is asymptotically tight. Under natural generalizations of the
model [1,4,6–11,13,15,16,18,25,26], tile complexity can be reduced for tasks such
as square-building and assembly of more general shapes.

The results of this paper are originally motivated by the following problem posed
in 2002. Adleman et al. [3] proposed a polynomial time algorithm for finding a min-
imum size tile system (i.e., system with the smallest number of distinct tile types)
to uniquely self-assemble a given n × n square,1 subject to the constraint that the
tile system’s “temperature” (binding strength threshold required for a tile to attach)
is 2. This algorithm works by brute-force search over the set of all temperature-2 tile
systems with at most O(

log n
log log n ) tile types, using the fact proven by Adleman et al. [2]

that such an upper bound on tile complexity suffices to assemble any n × n square. A
simple counting argument shows that for any constant τ , the number of tile systems
with glue strengths and temperature at most τ and O(

log n
log log n ) tile types is bounded by

a polynomial in n. They asked whether their algorithm could be modified to remove
the temperature 2 constraint.

One conceivable approach is to prove that for any tile system with K tile types,
the strengths and temperature can be re-assigned so that they are upper-bounded by
a constant or slow-growing function of K , without affecting the behavior of the tile
system.2 However, we show that this approach cannot work, by demonstrating that for
each K , there is a tile system with K tile types whose behavior cannot be preserved
using any temperature less than 2K/4 (Theorem 5.1).

1 The square is encoded by a list of its points, so the algorithm’s running time is polynomial in n.
2 We define “behavior” more formally in Sect. 3. Briefly, we consider a tile system’s behavior unaltered
by a reassignment of strengths and temperature if, for each tile type t , the reassignment has not altered the
collection of subsets of sides of t that have sufficient strength to bind.
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Despite this exponential temperature lower bound, we can engineer a polynomial-
time algorithm that, given any tile system T with K tile types specified by its desired
binding behavior, finds a temperature and glue strengths at most 2O(K ) that implement
this behavior or reports that no such strengths exist. This algorithm is used to show
our main result (Theorem 4.2), that there is a polynomial-time algorithm that, given
an n × n square, determines the smallest tile assembly system (at any temperature)
that uniquely self-assembles the square,3 answering affirmatively the open question
by Adleman et al. [3].

Through the design of this algorithm, we address more fundamental questions
about how finely divided molecular binding energies must be in a real molecular self-
assembly system and we answer them partially. The requirement of integer strengths
does not cause any loss of generality but is simply one way of “quantizing” the mini-
mum distinction we are willing to make between energies and then re-scaling so that
this quantity is normalized to 1.4

The exponential temperature lower bound therefore shows that in general, certain
self-assembling systems that have very large gaps between some of their binding ener-
gies nonetheless require other binding energies to be extremely close (exponentially
small in terms of the larger gaps) and yet still unequal. This can be interpreted as an
infeasibility result if one defines “exponentially fine control” of binding energies as
“infeasible” to execute in any real laboratory, since no implementation of the specified
tile behavior can use courser energies.

This infeasibility is however, perhaps not broadly applicable. The proof of expo-
nential temperature lower bound crucially relies on 3-cooperative binding, meaning
attachment events that require three different glues of a tile to match the assembly. As
3-cooperative binding has been rarely used in the literature, the class of 2-cooperative
tile systems captures a wide and useful class of systems. We show that any system in
this class with K tile types can be efficiently converted into a behaviorally equivalent
system with temperature at most 2K + 2 (Theorem 5.2), a more feasible threshold for
experimental implementation.

2 Abstract Tile Assembly Model

This section gives a brief informal sketch of the abstract Tile Assembly Model (aTAM).
See Sect. 7 for a formal definition of the aTAM. Doty [12] provides a high-level
overview of the field, reviewing several aTAM results.

A tile type is a unit square with four sides, each having a glue label (often represented
as a finite string). We assume a finite set T of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. An assembly (a.k.a., supertile) is a
positioning of tiles on (part of) the integer lattice Z

2; i.e., a partial function Z
2 ��� T .

For a set of tile types T , let �(T ) denote the set of all glue labels of tile types in T . We

3 The algorithm works in fact for a broader family of shapes of practical importance, as stated at the end
of Sect. 4.
4 Indeed, our proof does not require that strengths be integer, merely that the distance between the smallest
energy strong enough to bind and the largest energy too weak to bind be at least 1.
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may think of a tile type as a function t : {N, S, E, W} → �(T ) indicating, for each
direction d ∈ {N, S, E, W} (“north, south, east, west”), the glue label t (d) appearing
on side d. A strength function is a function g : �(T ) → N indicating, for each glue
label �, the strength g(�) with which it binds. Two adjacent tiles in an assembly interact
if the glue labels on their abutting sides are equal and have positive strength according
to g. Each assembly induces a binding graph, a grid graph whose vertices are tiles,
with an edge between two tiles if they interact. The assembly is τ -stable if every cut
of its binding graph has strength at least τ , where the weight of an edge is the strength
of the glue it represents. That is, the assembly is stable if at least energy τ is required
to separate the assembly into two parts.

A tile assembly system (TAS) is a quadruple T = (T, σ, g, τ ), where T is a finite
set of tile types, σ : Z

2 ��� T is a finite, τ -stable seed assembly, g : �(T ) → N

is a strength function, and τ is a temperature. In this paper, we assume that all seed
assemblies σ consist of a single tile type (i.e., |dom σ | = 1). Given a TAS T =
(T, σ, g, τ ), an assembly α is producible if either α = σ or if β is a producible
assembly and α can be obtained from β by placing a single tile type t on empty space
(a position p ∈ Z

2 such that β(p) is undefined), such that the resulting assembly α is
τ -stable. In this case write β →1 α (α is producible from β by the stable attachment of
one tile), and write β → α if β →∗

1 α (α is producible from β by the stable attachment
of zero or more tiles). An assembly is terminal if no tile can be stably attached to it.
Let A[T ] be the set of producible assemblies of T , and let A�[T ] ⊆ A[T ] be the set
of producible, terminal assemblies of T . Given a connected shape S ⊆ Z

2, a TAS T
uniquely self-assembles S if A�[T ] = {̂α} and dom α̂ = S.

3 Finding Strengths to Implement a Tile System

In this section we show that there is a polynomial-time algorithm that, given a desired
behavior of a tile set with unspecified glue strengths or temperature, can find strengths
and temperature to implement that behavior that are at most exponential in the number
of tile types, or report that no such strengths and temperature exist. This algorithm is
the primary technical tool used in the proof of our main result, Theorem 4.2.

First, we formalize what we mean by the “behavior” of a tile system by introducing
the notion of strength-free TAS. Let T be a set of tile types, and let t ∈ T . Given a
strength function g : �(T ) → N and a temperature τ ∈ Z

+, define the cooperation
set of t with respect to g and τ to be the collection

Dg,τ (t) =
{

D ⊆ {N, S, E, W}
∣

∣

∣

∣

∣

∑

d∈D

g(t (d)) ≥ τ

}

,

i.e., the collection of subsets of sides of t whose glues have sufficient strength to bind
cooperatively. Given an assembly α : Z

2 ��� T as well as g and τ , we can decide
if a tile t can stably attach at an (empty) position to α by just checking whether the
set of sides of t that get adjacent to α once being put there belongs to the cooperation
set Dg,τ (t). The cooperation set thus completely determines how an individual tile
behaves locally, and hence, we can say it formally defines the tile’s local behavior.
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Let σ : Z
2 ��� T be a seed assembly, let τ1, τ2 ∈ Z

+ be temperatures, and let
g1, g2 : �(T ) → N be strength functions. We say that the TAS’s T1 = (T, σ, g1, τ1)

and T2 = (T, σ, g2, τ2), differing only on their strength function and temperature, are
locally equivalent if, for each tile type t ∈ T , Dg1,τ1(t) = Dg2,τ2(t).

5 If T1 and T2 are
locally equivalent, then A[T1] = A[T2] and A�[T1] = A�[T2].6

Even without any strength function or temperature, by specifying a cooperation set
for each tile type, one can describe a “behavior” of a TAS in the sense that its dynamic
evolution can be simulated knowing only the cooperation set of each tile type. We call
a system thus specified a strength-free TAS. More formally, a strength-free TAS is a
triple (T, σ,D), where T is a finite set of tile types, σ : Z

2 ��� T is the size-1 seed
assembly, and D : T → P(P({N, S, E, W})) is a function from a tile type t ∈ T to
a cooperation set D(t). For a standard TAS T = (T, σ, g, τ ) and a strength-free TAS
Tsf = (T, σ,D) sharing the same tile set and seed assembly, we say that T and Tsf
are locally equivalent if Dg,τ (t) = D(t) for each tile type t ∈ T .

Note that every TAS has a unique cooperation set for each tile type, and hence, has
a locally equivalent strength-free TAS. Given a TAS, we define its behavior by the
unique locally-equivalent strength-free TAS. Say that a strength-free TAS is imple-
mentable if there exists a TAS locally equivalent to it. Not every strength-free TAS is
implementable. This is because cooperation sets could be contradictory; for instance,
two tile types t1 and t2 could satisfy t1(N) = t2(N) and {N} ∈ D(t1) but {N} �∈ D(t2).

Theorem 3.1 There is a polynomial time algorithm that, given a strength-free TAS
Tsf = (T, σ,D), determines in O(|T |5)-time whether there exists a locally equivalent
TAS T = (T, σ, g, τ ) and outputs such a T if it exists. Furthermore, it is guaranteed
that τ ≤ 2O(|T |).
Proof Intuitively, we count the number of different total behaviors a tile can have,
based on equating its behavior with its cooperation set. We then cast the problem of
finding strengths to implement a given strength-free tile system as finding solutions
to a certain system of linear inequalities, which is solved by Gaussian elimination.
We then argue that the vertices of the polytope defined by this system have rational
numbers with numerator and denominator that are at most exponential in the number
of inequalities, which is itself linear in the number of tile types. This implies that
by multiplying the rational numbers at one of these vertices by their least common
multiple, which preserves the inequalities, we obtain an integer solution with values
at most exponential in the number of tile types.

Formally, let Tsf be a strength-free TAS with a tile set T of k tile types with
u ≤ k +1 different glues.7 We would like to decide whether Tsf is in fact realizable by
a TAS. To have the tightest upper bound on the temperature, ideally we should solve the

5 Note that the definition of equivalence is independent of the seed assembly; we include it only to be able
to talk about the equivalence of TAS’s rather than the more cumbersome “equivalence of triples of the form
(T, g, τ ).”
6 The converse does not hold, however. For instance, some tile types may have a subset of sides whose
glues never appear together at a binding site during assembly, so it would be irrelevant to the definition of
A[T ] and A�[T ] whether or not that combination of glues have enough strength to bind.
7 Each tile type has 4 sides so it might seem that there could be 4k total glues if there are k tile types.
However, in a nontrivial system (one that has no “effectively null” glues that appear on only one side of
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problem of finding the minimum temperature TAS that is locally equivalent to Tsf . This
optimization problem can be cast as an integer linear program on a temperature variable
τ and a set of glue-strength variables s1, s2, . . . , su as in the following example:

Minimize τ

subject to τ, s1, s2, . . . , su ∈ N

s1 + s3 − τ ≥ 0
s1 + s4 + s6 − τ ≥ 0

. . .

s1 + s2 + s4 − τ ≤ −1
s2 + 2s3 − τ ≤ −1

. . .

The “≥ 0” inequalities correspond to the union of all cooperation sets of all tile
types, and the “≤ −1” inequalities correspond to the union of all complements of the
cooperation sets; i.e., each set P({N, S, E, W}) \D(t), where D(t) is the cooperation
set of t . Since we require each strength to be an integer, “≤−1” is equivalent to “<0”.
Since each tile type t has |D(t)| “≥0” inequalities (one for each subset of sides in its
cooperation set) and 16 − |D(t)| “≤−1” inequalities, there are 16k inequalities in the
integer linear program.

However, solving this optimization problem is not necessary to prove the theorem.
Our goal will not be to find the smallest temperature TAS that satisfies the constraints
above (which remains an open problem to do in polynomial time), but simply to
find any feasible integer solution with temperature and strengths at most 2O(k). Call
the above system of constraints (including the integer constraint) S1. Consider the
real-valued system of linear inequalities S2 defined as the above inequalities with the
integer constraint τ, s1, s2, . . . , su ∈ N relaxed to simply τ, s1, s2, . . . , su ≥ 0. Then
we have the implication “S1 has a solution” 	⇒ “S2 has a solution”. Conversely,
any rational-valued solution to S2 can be converted to an integer-valued solution to
S1 by multiplying each value by the least common multiple L of the denominators
of the rational numbers.8 Furthermore, since the input coefficients are integers, if the
feasible polytope of S2 is non-empty, then all of its vertices are rational. Therefore S2
has a solution if and only if it has an integer solution. Since any integer solution to
S2 is a solution to S1, we have the full bidirectional implication “S1 has a solution”
⇐⇒ “S2 has an integer solution”. We can pick any n linearly independent inequalities
of S2, interpret them as equalities, and use Gaussian elimination (with exact rational
arithmetic) to obtain some vertex of the feasible polytope described by the inequalities,
and convert these to integer solutions to S1 through multiplication as described above.
If we cannot find n linearly independent inequalities (testable by computing the rank
of the matrix defining the inequalities) then there is no TAS implementing the behavior

any tile type), for each side of a tile type, the choice of glue for that side is limited to those glues on the
opposite side of the k tile types, or alternately we could choose the null strength-0 glue.
8 This actually enforces the stronger condition that each “≤−1” inequality is actually “≤−L”. This is
possible because we have no upper bound on the variables, which would prevent multiplication from
necessarily preserving the inequalities.
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of Tsf . It remains to show that in case there is a solution, the integers we obtain by this
method obey the stated upper bound 2O(k).

Each coefficient has absolute value at most 2 (since we may assume N/S glues
are disjoint from E/W glues), and each equation has at most 5 nonzero left side
terms since each tile type has only 4 sides (together with the −1 coefficient for τ ).
Applying Lemma 3.2 (stated and proven after the current proof) with n = u+1, c1 = 2,
and c2 = 5, we obtain that each vertex is a rational vector x = (

p1
q1

, . . . ,
pu+1
qu+1

) such

that, for each 1 ≤ i ≤ u+1, |pi |, |qi | ≤ 2u+16(u+1)/2 = 2u+1+((u+1)/2)·log 6 < 23u+3.
Since we enforce nonnegativity, pi = |pi | and qi = |qi |. We multiply the rational
vector x by L = LCM(q1, . . . , qu+1) to obtain the integer vector x′. By Lemma 3.2,
L ≤ 23u+3. Then each integer solution value x ′

i obeys x ′
i = L · xi ≤ (23u+3)2 ≤

22(3(k+1)+3) = 2O(k). �
Lemma 3.2 Let c1, c2 ∈ Z

+ be constants, and let b be an n ×1 integer column vector
and A = (ai j ) be a nonsingular n ×n integer matrix such that for each i, j , |ai j | ≤ c1
and |b j | ≤ c1, and each row of A contains at most c2 nonzero entries. Then the solution
to the linear system Ax = b is a rational vector x ∈ Q

n such that, if each component
xi = pi

qi
is written in lowest terms with pi , qi ∈ Z, then |pi | ≤ cn

1(c2 + 1)n/2 and

|qi | ≤ cn
1cn/2

2 . Furthermore, the least common multiple of all the qi ’s is at most cn
1cn/2

2 .

Proof Recall Hadamard’s inequality | det A| ≤ ∏n
i=1 ‖vi‖2, where vi is the i th row

of A.9 Since vi has at most c2 nonzero entries that are each at most absolute value

c1, Hadamard’s inequality tells us that | det A| ≤ ∏n
i=1

√

c2 · c2
1 = cn

1cn/2
2 . Similarly,

letting Ai be A with column vector b replacing A’s i th column, Ai has at most c2 + 1
nonzero entries per row, so a similar argument gives | det Ai | ≤ cn

1(c2 + 1)n/2. The
i th solution is xi = det Ai

det A by Cramer’s rule. Since A and Ai are integer-valued,
so are det A and det Ai , whence the upper bounds on | det A| and | det Ai | also
apply to |qi | and |pi |, respectively, since they are xi ’s lowest terms representation.
Since the lowest terms representation of each qi necessarily divides det A, this implies
that their least common multiple is also at most cn

1cn/2
2 . �

4 Finding the Minimum Tile Assembly System Assembling a Square
at any Temperature

This section shows the main result of this paper, that there is a polynomial-time algo-
rithm that, given an n × n square Sn , computes the smallest TAS that uniquely self-
assembles Sn . Adleman et al. [3] showed that this problem is polynomial-time solvable
when the temperature is restricted to be 2, and asked whether there is an algorithm
that works when the temperature is unrestricted, which we answer affirmatively.

The next proposition is useful in the proof of Theorem 4.2.

9 Hadamard’s inequality is typically stated for vi a column of A, but the determinant of a matrix and its
transpose are equal so the bound holds when taking the product over rows as well.
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Proposition 4.1 For each k ∈ Z
+, there are at most 168kk4k+2 implementable

strength-free TAS’s with at most k tile types.

Proof If T = (T, σ,D) is an implementable strength-free TAS, then for all t ∈ T , the
cooperation set D(t) of t is a collection of subsets of {N, S, E, W} that is closed under
the superset operation, i.e., if D ⊆ D′ ⊆ {N, S, E, W} and D ∈ D(t), then D′ ∈ D(t).
This closure property is due to the fact that having strictly more sides available to bind
cannot inhibit binding that would otherwise occur, as long as strengths are assumed
to be nonnegative. Each cooperation set D is defined by a unique antichain, which is
a subcollection D′ = {D′

1, . . . , D′
m} ⊆ D such that, for all 1 ≤ i, j ≤ m, D′

i �⊆ D′
j ,

whose closure under the superset operation is equal to D. The antichain consists of
the minimal elements of D under the partial order ⊆. The number of antichains of
subsets of {N, S, E, W} is given by the fourth Dedekind number M(4) = 168 [24].
Thus, a tile type has at most 168 different possible cooperation sets.

For each side of a tile type, there are at most k glue labels to choose, so there are at
most k4 ways to assign these labels to each side. Therefore, encoding each tile type as a
list of 4 glue labels and cooperation set, and encoding a TAS as a list of tile types, there
are at most (168k4)k = 168kk4k different strength-free tile sets with k tile types. Since
there are k choices for the seed tile, there are at most 168kk4k+1 different strength-free
TAS’s with k tile types. Thus there are at most

∑k
i=1 168i i4i+1 ≤ 168kk4k+2 such

TAS’s with at most k tile types. �

The following theorem is the main result of this paper.

Theorem 4.2 There is a polynomial-time algorithm that, given an n × n square Sn,
outputs a minimal TAS T that uniquely self-assembles Sn.

Proof In [3], the authors study the variant of the minimum tile set problem restricted
to squares where the temperature is fixed at τ = 2. They use the following argument to
show the problem is solvable in polynomial time. For all n ∈ N, let Sn = {0, 1, . . . , n−
1}2 denote the n × n square. Adleman et al. [2] showed that for all n ∈ N, there is
a TAS with at most O(

log n
log log n ) tile types that uniquely self-assembles Sn . The proof

of [3] first shows by a simple counting argument that there are at most a polynomial
in n number of temperature-2 TAS’s with at most O(

log n
log log n ) tile types, using the fact

that all strengths may without loss of generality be assumed to be 0, 1, or 2. They
then make use of a polynomial-time algorithm Unique- Shape devised in the same
paper [3] that, given any shape S and any TAS T , determines whether T uniquely
self-assembles S. Finding the minimum TAS for Sn then amounts to iterating over
every “small” (O(

log n
log log n ) tile types) TAS T and using the algorithm Unique- Shape

to check which of these systems assemble Sn . The upper bound of [2] guarantees that
Unique- Shape will report a positive answer for at least one of these systems.

Let c ∈ Z
+ be the constant, shown to exist in [2], such that, for all n ∈ N, some

tile system with at most c log n/ log log n tile types uniquely self-assembles Sn . Let
k = c log n/ log log n. Enumerate each strength-free TAS with at most k tile types and
test whether it has a locally equivalent standard TAS T , using the algorithm described
in Theorem 3.1. For each such T , run the algorithm Unique- Shape of [3] to test
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whether T is directed and strictly self-assembles Sn . Output the TAS T with the
smallest number of tile types that passes this test.

Since Unique- Shape and the algorithm of Theorem 3.1 run in polynomial time,
it remains to show that there are a polynomial (in n) number of strength-free TAS’s
to search with at most k = c log n/ log log n tile types. Proposition 4.1 tells us that
the number of strength-free TAS’s with at most k tile types is at most 168kk4k+2. We
have that 168k ≤ 168c log n/ log log n ≤ 168c log n ≤ (2log n)c log 168 ≤ n8c, and

k4k+2 ≤ k2(c log n/ log log n)4c log n/ log log n

= k2(2log(c log n/ log log n))4c log n/ log log n

= k2(2log c+log log n−log log log n)4c log n/ log log n

= k224c log n(log c+log log n−log log log n)/ log log n

= k2(2log n)4c(log c+log log n−log log log n)/ log log n

= k2n4c log c/ log log n+4c−4c log log log n/ log log n

≤ n4c log c+4c+2,

whence the number of strength-free TAS’s to search is at most n4c log c+12c+2 =
poly(n). �

To bound the runtime, note that the algorithm of Theorem 3.1 needs only poly-
logarithmic time in n, while Unique- Shape takes time O(n4). Using the tighter
bound 168k ≤ nc log 168, the algorithm hence runs in time O(nc log 168+4c log c+4c+6).
For n large enough, one can take c = 12, and then substituting this into the tighter
bound gives the runtime O(n318).

We note that while we have stated the theorem for the family of square shapes,
our method, as well as that of [3], works for any family of shapes S1, S2, . . .

where |Sn| = poly(n) and the tile complexity of Sn is at most O(
log n

log log n ).
This includes, for instance, the family {T1, T2, . . .}, where Tn is a width-n right tri-
angle, and for each q ∈ Q

+ the family {Rq,1, Rq,2, . . .}, where Rq,n is the n × �qn�
rectangle.

5 Bounds on Temperature Relative to Number of Tile Types

This section reports two bounds relating the number of tile types in a TAS to its
temperature. The first bound, Theorem 5.1, shows that there are TAS’s that require
temperature exponential in the number of tile types (in the sense of local equiva-
lence as defined in Sect. 3), if any combination of sides may be used for binding.
This result can be interpreted to mean that the algorithm of [2] to find the minimum
temperature-2 TAS for assembling an n × n square, which searches over all possible
assignments of strengths to the glues, cannot be extended in a straightforward man-
ner to handle larger temperatures, which is why it is necessary for the algorithm of
Theorem 4.2 to “shortcut” through the behaviors of tile types rather than enumerating
strengths.The second bound, Theorem 5.2, on the other hand, shows that if we restrict
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Fig. 1 A set of tile types requiring temperature that is exponentially larger than the number of tile types.
There are stages 1, 2, . . . , n, with stage i containing four tiles, and stage i ensuring that the gap between
the largest and smallest strength in the stage is at least 2i . In each stage, each of the top two light tiles
represents a triple (a pair in stage 1) of glues whose sum is at least τ . Each of the bottom two dark tiles
represents a triple of glues whose sum is less than τ . The inequalities are satisfiable, for instance, by setting
An = 3n−1, A′

n = 2An , A′′
n = 3An , Bn = τ − An , B′

n = τ − A′
n , B′′

n = τ − A′′
n

attention to those (quite prevalent) classes of tile systems that use only one or two
sides of tiles to bind, then linear temperature always suffices.

5.1 Tile Assembly Systems Requiring Temperature Exponential in Number
of Tile Types

In this section, we prove that a temperature that is exponential in the number of tile
types given by Theorem 3.1 is optimal, although there is a gap between the exponents
(2|T |/4 for Theorem 5.1 below versus O(26|T |) for Theorem 3.1).

Theorem 5.1 For every n ∈ Z
+, there is a TAS T = (T, σ, g, τ ) such that |T | = 4n

and for every TAS T ′ = (T, σ, g′, τ ′) that is locally equivalent to T , τ ′ ≥ 2n .

Proof The tile set T is shown in Fig. 1.10 In each stage, each of the top two light tile
types represents a triple (a pair in stage 1) of glues whose sum is at least τ . Each of
the bottom two dark tiles represents a triple of glues whose sum is less than τ . For
the dark tile types to be nontrivial, we could imagine that the (unlabeled) north glue
is strong enough to cooperate with some of the other glues. The actual strengths of

10 We do not specify the seed assembly since we are concerned only with the local behavior of the tiles.
To make the local equivalence nontrivial, we would need to add a small number of tile types to the TAS
to ensure that each tile shown is actually attachable at some point during assembly. This however would
not affect the asymptotic size of the tile set as n → ∞, so the exponential lower bound on the temperature
would still hold.
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the glues are left as variables, but the caption of Fig. 1 gives one example of strengths
that would satisfy the inequalities that the tile types represent.

We prove by induction on n that A′′
n ≥ An +2n . For the base case, in the first stage,

the top light tile type and top dark tile type enforce that A′
1 + B ′

1 ≥ τ > A1 + B ′
1, so

A1 < A′
1. Similarly, the bottom light tile type and the bottom dark tile type enforce

that A′
1 < A′′

1. Therefore A′′
1 ≥ A1 + 2.

For the inductive case, assume that A′′
n−1 ≥ An−1 + 2n−1. The top dark tile type

enforces that τ > A′′
n−1+An+B ′

n, and by the induction hypothesis, A′′
n−1+An+B ′

n ≥
An−1 + 2n−1 + An + B ′

n . The top light tile type enforces that A′
n + An−1 + B ′

n ≥ τ,

which combined with the previous two inequalities shows that A′
n ≥ 2n−1 + An . A

similar analysis with the bottom light tile type and bottom dark tile type shows that
A′′

n ≥ 2n−1 + A′
n, whence A′′

n ≥ 2n−1 + 2n−1 + An, establishing the inductive case.
Since it can be assumed without loss of generality that strengths are at most τ , this

shows that the tile set consisting of n stages, having |T | = 4n tile types, requires
τ ≥ 2n to be realized. �

5.2 Temperature Linear in the Number of Tile Types Suffices for 2-Cooperative
Equivalence

Theorem 5.1 shows that temperature exponentially larger than the number of tile
types is sometimes necessary for a TAS’s behavior to be realized by integer strengths.
However, the definition of local equivalence assumes that all possible combinations of
sides of a tile type may be present in an assembly. Many TAS’s are more constrained
than this. There is a wide class of TAS’s that we term 2-cooperative, meaning that
all binding events during all assembly sequences use only 1 or 2 sides that bind with
positive strength. Nearly all theoretical TAS’s found in the literature are 2-cooperative
(indeed, temperature 2 systems by definition cannot require three sides to be present,
although the model allows tile attachments with excess strength). In this section we
show that the 3-cooperativity of Fig. 1 is necessary, by showing that 2-cooperative
systems can always be realized by strengths linear in the number of tile types.

Theorem 5.2 Let T = (T, σ, g, τ ) be a TAS, and let D(2)
g,τ (t) ⊆ Dg,t (t) be the

cooperation set of t with respect to g and τ restricted to containing only subsets
of {N, S, E, W} of cardinality 1 or 2. Then there is a TAS T ′ = (T, σ, g′, τ ′) with
τ ′ ≤ 2|T | + 2 such that, for each t ∈ T , D(2)

g,τ (t) = D(2)

g′,τ ′(t).

That is, T ′ is equivalent in behavior to T , so long as all attachments involve only
1 or 2 sides.

Proof Let K = |T |. Let �(T ) denote the set of all glue labels on tile types in T . Let
G = {g(σ ) | σ ∈ �(T ) } \{0, τ }. That is, G is the set of all positive but insufficient
glue strengths used in this system. |G| ≤ 2K since there are at most |T | north-south
glues and at most |T | east-west glues.

We split G into two subsets L = {g ∈ G | 0 < g < τ/2 } and H = {g ∈ G | τ/2 ≤
g < τ }. Let L = {ell1, �2, . . . , �n} such that �1 < �2 < . . . < �n < τ/2, and let
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H = {h1, h2, . . . , hm} with τ/2 ≤ h1 < h2 . . . hm < τ. For descriptive purposes,
define �0 = 0 and �n+1 = τ/2 (although these numbers may not be glue strengths).

We aim at designing an algorithm to find a glue function g′ satisfying:

1. For any label σ ∈ {σ1, . . . , σ2K }, g(σ ) ≥ τ ⇐⇒ g′(σ ) ≥ 2n + 2;
2. For any pair of labels {σ, σ ′} ⊂ {σ1, . . . , σ2K }, g(σ ) + g(σ ′) ≥ τ ⇐⇒ g′(σ ) +

g′(σ ′) ≥ 2n + 2.

Then for τ ′ = 2n + 2, the TAS T ′ = (T, σ, g′, τ ′) satisfies the 2-cooperative equiva-
lence with T that we seek.

First, we define an equivalence relation ≡ on H defined as: for h, h′ ∈ H , h ≡ h′
if (∀ 1 ≤ i ≤ n)(h + �i ≥ τ ⇐⇒ h′ + �i ≥ τ). This partitions H into subsets
Hn+1, . . . , H2, H1 such that h ∈ Hj if and only if τ − � j ≤ h < τ = � j−1. In other
words, h ∈ Hj if h + � j ≥ τ implies i ≥ j .

A glue function g′ : �(T ) → N is defined as follows: for a label σ ∈ �(T ),

g′(σ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if g(σ ) = 0;
i, if g(σ ) = �i (1 ≤ i ≤ n);
2n + 2 − j, if g(σ ) ∈ Hj (1 ≤ j ≤ n + 1);
2n + 2, if τ ≤ g(σ ).

It is trivial that this satisfies condition (5.2) above. Let σ, σ ′ ∈ �(T ) with 0 <

g(σ ) ≤ g(σ ′) < τ. There are two cases.

1. Suppose that τ ≤ g(σ ) + g(σ ′). Note that τ/2 ≤ g(σ ′). If τ/2 ≤ g(σ ), then by
definition n +1 ≤ g′(σ ) and n +1 ≤ g′(σ ′), whence their sum it at least 2n +2. If
g(σ ) < τ/2, then let g(σ ) = �i for some 1 ≤ i ≤ n. Since τ ≤ g(σ )+ g(σ ′), this
means that τ = �i ≤ g(σ ′), which in turn implies g(σ ′) ∈ Hi ∪ Hi−1 ∪ . . . ∪ H1.
By definition, g′(σ ) = i and g′(σ ′) ≥ 2n + 2 − i . Consequently, 2n + 2 ≤
g′(σ ) + g′(σ ′).

2. Suppose that g(σ ) + g(σ ′) < τ . In this case, g(σ ) < τ/2. If g(σ ′) < τ/2,
then by the definition of g′, both g(σ ) and g(σ ′) are at most n so that their sum
cannot reach 2n + 2. Otherwise, let g(σ ) = �i . An argument similar to the one
above gives g(σ ′) ∈ Hn+1 ∪ . . . ∪ Hi+1, whence g′(σ ′) < 2n + 2 − i . Thus,
g′(σ ) + g′(σ ′) < 2n + 2.

This verifies that g′ satisfies condition (5.2). �

6 Conclusion

Our polynomial-time algorithm for finding the minimal tile system to self-assemble a
square made crucial use of our polynomial-time algorithm that, given a strength-free
tile system Tsf, finds strengths and a temperature to implement a locally equivalent TAS
T , or reports that none exists. It is natural to wonder whether there is a polynomial-time
algorithm that, given a strength-free TAS Tsf, outputs a TAS of minimal temperature
that is locally equivalent to Tsf, or reports that none exists.

Seki and Okuno [23], however, proved that this problem is NP-hard. However,
it is possible that there remains a polynomial-time algorithm for finding, among all
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minimum-size tile systems that self-assemble a given square, the tile system of mini-
mum temperature.

The next question is less formal. Our results relating to 3-cooperative and
2-cooperative systems (Theorems 5.1 and 5.2, respectively), show that there is a dif-
ference in self-assembly “power” between these two classes of systems when we
consider two tile systems to “behave the same” if and only if they are locally equiv-
alent, which is a quite strict notion of behavioral equivalence. For example, two tile
systems could uniquely self-assemble the same shape even though they have different
tile types (hence could not possibly be locally equivalent). It would be interesting to
know to what extent 3-cooperative systems – or high temperature tile systems in gen-
eral (a tile system can only be nontrivially 3-cooperative at temperature 3 or higher)
– are strictly more powerful than temperature 2 systems under more relaxed notions
of equivalence.

Seki and Okuno [23] showed that, for an arbitrary temperature τ ∈ Z
+, there are

shapes whose tile complexity is strictly less at temperature τ than at temperatures
below τ . For example, there is an infinite family of shapes S1, S2, . . . such that for
each i , the temperature-2 tile complexity of Si is at least 7

6 larger than the temperature-3
tile complexity of Si .

How far apart can this gap be pushed? Are there shapes with temperature-2 tile com-
plexity that is “significantly” greater than their absolute (i.e., unrestricted temperature)
tile complexity?
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7 Appendix: Formal Definition of the Abstract Tile Assembly Model

This section gives a terse definition of the abstract Tile Assembly Model (aTAM, [29]).
This is not a tutorial; for readers unfamiliar with the aTAM, [21] gives an excellent
introduction to the model.

Fix an alphabet 	. 	∗ is the set of finite strings over 	. Given a discrete object O ,
〈O〉 denotes a standard encoding of O as an element of 	∗. Z, Z

+, N, R
+ denote the

set of integers, positive integers, nonnegative integers, and nonnegative real numbers,
respectively.

For a set A, P(A) denotes the power set of A. Given A ⊆ Z
2, the full grid graph

of A is the undirected graph Gf
A = (V, E), where V = A, and for all u, v ∈ V ,

{u, v} ∈ E ⇐⇒ ‖u − v‖2 = 1; i.e., if and only if u and v are adjacent on the integer
Cartesian plane. A shape is a set S ⊆ Z

2 such that Gf
S is connected.
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A tile type is a tuple t ∈ (	∗)4; i.e., a unit square with four sides listed in some stan-
dardized order, each side having a glue label (a.k.a. glue) � ∈ 	∗. For a set of tile types
T , let �(T ) ⊂ 	∗ denote the set of all glue labels of tile types in T . Let {N, S, E, W}
denote the directions consisting of unit vectors {(0, 1), (0,−1), (1, 0), (−1, 0)}. Given
a tile type t and a direction d ∈ {N, S, E, W}, t (d) ∈ �(T ) denotes the glue label on
t in direction d. We assume a finite set T of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. An assembly is a nonempty connected
arrangement of tiles on the integer lattice Z

2, i.e., a partial function α : Z
2 ��� T

such that Gf
dom α is connected and dom α �= ∅. The shape of α is dom α. Given two

assemblies α, β : Z
2 ��� T , we say α is a subassembly of β, and we write α � β, if

dom α ⊆ dom β and, for all points p ∈ dom α, α(p) = β(p).
A strength function is a function g : �(T ) → N indicating, for each glue label

�, the strength g(�) with which it binds. Let α be an assembly and let p ∈ dom α

and d ∈ {N, S, E, W} such that p + d ∈ dom α. Let t = α(p) and t ′ = α(p + d).
We say that the tiles t and t ′ at positions p and p + d interact if t (d) = t ′(−d) and
g(t (d)) > 0, i.e., if the glue labels on their abutting sides are equal and have positive
strength. Each assembly α induces a binding graph Gb

α , a grid graph G = (Vα, Eα),
where Vα = dom α, and {p1, p2} ∈ Eα ⇐⇒ α(p1) interacts with α(p2).11 Given
τ ∈ Z

+, α is τ -stable if every cut of Gb
α has weight at least τ , where the weight of

an edge is the strength of the glue it represents. That is, α is τ -stable if at least energy
τ is required to separate α into two parts. When τ is clear from context, we say α is
stable.

A tile assembly system (TAS) is a triple T = (T, σ, g, τ ), where T is a finite set
of tile types, σ : Z

2 ��� T is the finite, τ -stable seed assembly, g : �(T ) → N is
the strength function, and τ ∈ Z

+ is the temperature. Given two τ -stable assemblies
α, β : Z

2 ��� T , we write α →T
1 β if α � β and |dom β \ dom α| = 1. In this

case we say α T -produces β in one step.12 If α →T
1 β, dom β \ dom α = {p},

and t = β(p), we write β = α + (p �→ t). The T -frontier of α is the set ∂T α =
⋃

α→T
1 β dom β \ dom α, the set of empty locations at which a tile could stably attach

to α.
A sequence of k ∈ Z

+∪{∞} assembliesα = (α0, α1, . . .) is aT -assembly sequence
if, for all 1 ≤ i < k, αi−1 →T

1 αi . We write α →T β, and we say α T -produces
β (in 0 or more steps) if there is a T -assembly sequence α = (α0, α1, . . .) of length
k = |dom β \ dom α| + 1 such that 1) α = α0, 2) dom β = ⋃

0≤i<k dom αi , and
3) for all 0 ≤ i < k, αi � β. In this case, we say that β is the result of α, written
β = res(α). If k is finite then it is routine to verify that res(α) = αk−1.13 We say α is

11 For Gf
dom α = (Vdom α, Edom α) and Gb

α = (Vα, Eα), Gb
α is a spanning subgraph of Gf

dom α : Vα =
Vdom α and Eα ⊆ Edom α .
12 Intuitively α →T

1 β means that α can grow into β by the addition of a single tile; the fact that we
require both α and β to be τ -stable implies in particular that the new tile is able to bind to α with strength
at least τ . It is easy to check that had we instead required only α to be τ -stable, and required that the cut of
β separating α from the new tile has strength at least τ , then this implies that β is also τ -stable.
13 If we had defined the relation →T based on only finite assembly sequences, then →T would be simply
the reflexive, transitive closure (→T

1 )∗ of →T
1 . But this would mean that no infinite assembly could be

produced from a finite assembly, even though there is a well-defined, unique “limit assembly” of every
infinite assembly sequence.
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T -producible if σ →T α, and we write A[T ] to denote the set of T -producible
canonical assemblies. The relation →T is a partial order on A[T ] [19,17].14 A
T -assembly sequence α0, α1, . . . is fair if, for all i and all p ∈ ∂T αi , there exists
j such that α j (p) is defined; i.e., no frontier location is “starved”.

An assembly α is T -terminal if α is τ -stable and ∂T α = ∅. It is easy to check that
an assembly sequence α is fair if and only res(α) is terminal. We write A�[T ] ⊆ A[T ]
to denote the set of T -producible, T -terminal canonical assemblies.

A TAS T is directed (a.k.a., deterministic, confluent) if the poset (A[T ],→T ) is
directed; i.e., if for each α, β ∈ A[T ], there exists γ ∈ A[T ] such that α →T γ

and β →T γ .15 We say that a TAS T strictly self-assembles a shape S ⊆ Z
2 if, for

all α ∈ A�[T ], dom α = S; i.e., if every terminal assembly produced by T has
shape S. If T strictly self-assembles some shape S, we say that T is strict. Note that
the implication “T is directed 	⇒ T is strict” holds, but the converse does not
hold. We say that T uniquely self-assembles a shape S if T is directed and it strictly
self-assembles S.

When T is clear from context, we may omit T from the notation above and instead
write →1, →, ∂α, frontier, assembly sequence, produces, producible, and terminal.

We also assume without loss of generality that every single glue or double glue
occurring in some tile type in some direction also occurs in some tile type in the
opposite direction, i.e., there are no “effectively null” single or double glues.
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