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Abstract. We show that some natural output conventions for error-free computation in chemical
reaction networks (CRN) lead to a common level of computational expressivity. Our main results are
that the standard definition of error-free CRNs have equivalent computational power to 1) asymmetric
and 2) democratic CRNs. The former have only “yes” voters, with the interpretation that the CRN’s
output is yes if any voters are present and no otherwise. The latter define output by majority vote
among “yes” and “no” voters.

Both results are proven via a generalized framework that simultaneously captures several definitions,
directly inspired by a recent Petri net result of Esparza, Ganty, Leroux, and Majumder [CONCUR 2015].
These results support the thesis that the computational expressivity of error-free CRNs is intrinsic, not
sensitive to arbitrary definitional choices.

1 Introduction

Turing machines solve exactly the same class of yes/no decision problems whether they report
output via accept/reject states, or if instead they write a 1 or 0 on a worktape before halting.
Similarly, finite-state transducers compute the same class of functions whether they emit output
on a state (Moore machine [21]) or a transition (Mealy machine [20]). In general, if the power of
a model of computation is insensitive to minor changes in the definition, this lends evidence to
the claim that the model is robust enough to apply to many real situations, and that theorems
proven in the model reflect fundamental truths about reality, rather than being artifacts of arbitrary
definitional choices.

The theory of chemical reaction networks (CRNs) studies the general behavior of chemical
reactions in well-mixed solutions, abstracting away spatial properties of the molecules. Formally, a
CRN is defined as a finite set of reactions such as 2A+ C → 2B, where A, B, and C are abstract
chemical species. In a discrete CRN the state of the system is given by molecule counts of each
species and the system updates by application of individual reactions.

CRNs have only recently been considered as a model of computation [23], motivated partially
by the ability to implement them using a basic experimental technique called DNA strand dis-
placement [24]. Discrete CRNs are Turing complete if allowed an arbitrary small, but nonzero,
probability of error [23], improved to probability 0 in [11]. Using a result from the theory of popu-
lation protocols [3, 4], it is known that error-free CRNs decide exactly the semilinear sets [6].4
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4 We use the term “error-free” in this section to refer to a specific requirement of “stability” defined formally in
Section 2.2. When the set of configurations reachable from an initial configuration is always finite (for instance,
with population protocols, or more generally mass-conserving CRNs), then stability coincides with probability 0 of
error. See [11] for an in-depth discussion of how these notions can diverge when the set of configurations reachable
from an initial configuration is infinite.



We study the computational robustness of error-free CRNs under different output conventions.
The original output convention [3] for deciding predicates (0/1-valued functions) is that each species
is classified as voting either 0 (“no”) or 1 (“yes”), and a configuration (vector of nonnegative integer
counts of each species) o has output i ∈ {0, 1} if all species present in positive count are i-voters,
i.e., there is a consensus on vote i. As an example, the CRN with reactions X1 + N → Y and
X2 + Y → N , with initial configuration {x1X1, x2X2, 1N}, where N,X2 vote 0 and Y,X1 vote 1,
decides if x1 > x2; Y and N alternate being present as each reacts with an input, so the first input
to run out determines whether we stop at Y or N . More formally, we say o is output-stable if every
configuration o′ reachable from o has the same output as o (i.e., the system need not halt, but
it stops changing its output). Finally, it is required that a correct output-stable configuration is
reachable not only from the initial configuration i, but also from any configuration reachable from i;
under mild assumptions (e.g., conservation of mass), this implies that a correct stable configuration
is actually reached with probability 1 under the standard stochastic kinetic model [16]. It has been
shown in [3] that the computational power is not reduced, that is, it still decides precisely all
semilinear sets, when we restrict to those CRNs where (1) each reaction has two reactants and two
products (e.g., disallowing reactions such as 2A + C → 2B and A → B + C, a model known as a
population protocol [3]) and (2) the system eventually halts for every possible input (see also [7]).

One can imagine alternative output conventions, i.e., ways to interpret what is the output
of a configuration, while retaining the requirement that a correct output-stable configuration is
reachable from any reachable configuration. Rather than requiring every species to vote 0 or 1, for
example, allow the CRN to designate some species as nonvoters. It is not difficult to show (see
Section A)that such CRNs have equivalent computational power: They are at least as powerful
since one can always choose all species to be voters. The reverse direction follows by converting
a CRN with a subset of voting species into one in which every species votes, by replacing every
nonvoting species S with two variants S0 and S1, whose voting bit is swayed by reactions with the
original voting species, and which are otherwise both functionally equivalent to S.

We investigate two output conventions that are not so easily seen to be convertible to the original
convention. The first convention is the asymmetric model, in which there are only 1-voters, whose
presence or absence indicates a configuration-wide output of 1 or 0, respectively. It is not obvious
how to convert an asymmetric CRN into a symmetric CRN, since this appears to require producing
0-voters if and only if 1-voters are absent. The second convention is the democratic model, in which
there are 0- and 1-voters, but the output of a configuration is given by the majority vote rather
than being defined only with consensus. Intuitively, the difficulty in converting a democratic CRN
into a symmetric consensus CRN is that, although the democratic CRN may stabilize on a majority
of, for example, 1-voters over 0-voters, the exact numerical gap between them may never stabilize.
A straightforward attempt to convert a democratic CRN into a consensus CRN results in a CRN
that changes the output every time a new 0- or 1-voter appears. For instance, suppose we use the
previously described CRN for computing whether x1 > x0, where x1 and x0 respectively represent
the count of 1- and 0-voters. If the original democratic CRN repeatedly increments x0 and then x1,
the resulting CRN flips between Y and N indefinitely — thus never stabilizing in the consensus
model — even if x1 > x0 remains true indefinitely.

We show that these conventions have equivalent power as the original definition. Our techniques
further establish that the class of predicates computable by CRNs is robust to two additional
relaxations of the classical notion of stable computation [3]: (1) a correct output configuration need
not be reachable from every reachable configuration, only the initial configuration, and (2) the set

2



of output configurations need not be “stable” (i.e., closed under application of reactions), so long
as each initial configuration can reach only a correct output.

After defining existing notions of computation by CRNs in Section 2, we introduce in Section 3
a very general computational model for CRNs, called a generalized chemical reaction decider (gen-
CRD). Its definition is directly inspired by a recent powerful result from Petri net theory [15],
restated here as Theorem 3.2. Using this result we show that under mild conditions, gen-CRDs
decide only semilinear sets. We then show that the original symmetric consensus model, the asym-
metric consensus model, and the symmetric majority model all fit into this framework, establishing
their common expressivity.

2 Chemical reaction networks and deciders

2.1 Chemical reaction networks

Let Z and N denote the integers and nonnegative integers, respectively. Let Λ be a finite set. The
set of vectors over N indexed by Λ (i.e., the set of functions c : Λ → N) is denoted by NΛ. The
zero vector is denoted 0. For c, c′ ∈ NΛ we write c ≤ c′ if and only if c(S) ≤ c′(S) for all S ∈ Λ.
For c ∈ NΛ and Σ ⊆ Λ, the projection of c to Σ, denoted by c�Σ , is an element in NΣ such that
c�Σ (S) = c(S) for all S ∈ Σ. Let ‖c‖ = ‖c‖1 =

∑
S∈Λ c(S) denote the L1 norm of c. We sometimes

use multiset notation, e.g., c = {1A, 2C} to denote c(A) = 1, c(C) = 2, c(S) = 0 for S 6∈ {A,C},
or when defining reactions, additive notation, i.e., A+ 2C.

A reaction α over Λ is a pair (r,p) with r,p ∈ NΛ and r 6= p, where r and p are the reactants
and products of α, respectively. We write r→ p to denote a reaction (r,p), e.g., A+B → 2A+C
denotes the reaction ({A,B}, {2A,C}).

Definition 2.1. A chemical reaction network (CRN) is an ordered pair N = (Λ,R) with Λ a finite
set and R a finite set of reactions over Λ.

The elements of Λ are called the species of N . The elements of NΛ are called the configurations of
N . Viewing c as a multiset, each element of c is called a molecule. For c, c′ ∈ NΛ, we write c⇒N c′

if there is a reaction α = (r,p) ∈ R such that r ≤ c and c′ = c− r + p. The transitive and reflexive
closure of ⇒N is denoted by ⇒∗N . If N is clear from the context, then we simply write ⇒ and ⇒∗
for ⇒N and ⇒∗N , respectively. If c⇒∗ c′, then we say c′ is reachable from c.

For c ∈ NΛ, we define preN (c) = {c′ ∈ NΛ | c′ ⇒∗N c} and postN (c) = {c′ ∈ NΛ | c ⇒∗N c′}.
Again we omit the subscript N if the CRN N is clear from the context. Note that for c, c′ ∈ NΛ,
we have c ∈ pre(c′) if and only if c′ ∈ post(c) if and only if c⇒∗ c′. We extend pre(c) and post(c)
to sets X ⊆ NΛ in the natural way: pre(X) =

⋃
c∈X pre(c) and post(X) =

⋃
c∈X post(c).

Petri net theory is a very well established theory of concurrent computation [22]. We recall
here that CRNs are essentially equivalent to Petri nets. In Petri net terminology, molecules are
called “tokens”, species are called “places”, reactions are called “transitions”, and configurations
are called “markings”. Due to this correspondence, we can apply results from Petri net theory to
CRNs (which we will do in this paper, cf. Theorem 3.2). Conversely, the results shown in this paper
can be reformulated straightforwardly in terms of Petri nets. Vector addition systems [19] form a
model nearly equivalent to CRNs and Petri nets, where reactions roughly correspond to vectors
with integer entries.5 In the special case of population protocols [3], each reaction α = (r,p) obeys

5 The only difference is catalysts: reactants that are also products, e.g., C +X → C + Y , are allowed in CRNs and
Petri nets but not in vector addition systems. Most results for these models are insensitive to this difference.
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‖r‖ = ‖p‖ = 2. As a result, for each configuration c of a population protocol, both pre(c) and
post(c) are finite (because there are only a finite number of configurations c′ with ‖c′‖ = ‖c‖).
In that model, molecules are called “agents”, species are called “states”, and reactions are called
“transitions”.

2.2 Symmetric output-stable deciders

We now recall how one can compute using CRNs. Say we want to decide whether or not the number
n of molecules of species X is even. One way to do this is by introducing the reaction X+X → ∅.6

If n is even, then eventually all molecules are consumed, and if n is odd, then eventually there is
exactly one molecule of species X present. Once the CRN has stabilized, the presence of a molecule
of species X signals that n is odd (i.e., there were an odd number of molecules of species X present
initially). Note that in this example there is no molecule of any species that signals that n is even.
One may think of a more elaborate example where the presence of say, a molecule of species Veven,
signals (once the CRN has stabilized) that n is even. In this way, once the CRN has stabilized, X
“votes” that n is odd, while Veven “votes” that n is even.

A chemical reaction decider D (introduced in [8]) is a reformulation in terms of CRNs of the
notion of population protocol [3] from the field of distributed computing. We define a set of input
configurations I and two sets of “trap configurations”, called output-stable configurations, O0 and
O1. We then say that D is output-stable and decides the set I1 ⊆ I (with I0 = I \ I1) if for
each i ∈ {0, 1} (1) starting from a configuration in Ii, the CRN remains always within reach of a
configuration in Oi (i.e., post(Ii) ⊆ pre(Oi)), and (2) once a configuration is in Oi, it is stuck in Oi
(i.e., post(Oi) = Oi).

The sets I, O0, and O1 are all of a specific form. There is a subset of input species Σ ⊆ Λ; I
consists of nonzero configurations where the all molecules present are in Σ. The output is based
on consensus: all the molecules present in an output configuration must agree on the output. More
precisely, there is a partition {Γ0, Γ1} of Λ (called 0-voters and 1-voters, respectively),7 such that
configuration c has output i ∈ {0, 1} if all molecules present in c are from Γi (i.e., c�Γ1−i= 0) and
c 6= 0). A configuration o is defined to be in Oi — it is output-stable — if all configurations of
post(o) also have output i.

Our definition, though equivalent, is phrased differently from the usual one [3], being defined in
terms of I, O0, and O1 instead of Σ, Γ0, and Γ1. This simplifies our generalization of this notion
in Section 3.

Definition 2.2. A symmetric output stable chemical reaction decider (sym-CRD) is a 4-tuple
D = (N , I,O0,O1), where N = (Λ,R) is a CRN and there are Σ ⊆ Λ and a partition {Γ0, Γ1} of
Λ such that

1. I = {c ∈ NΛ | c�Λ\Σ= 0} \ {0},
2. Oi = {c ∈ NΛ | post(c) ⊆ Li \ L1−i}, with Li = {c ∈ NΛ | c�Γi 6= 0} for i ∈ {0, 1}.
3. There is a partition {I0, I1} of I such that post(Ii) ⊆ pre(Oi) for i ∈ {0, 1}.

6 Notation ∅ indicates that this reaction has no products.
7 The definition of [8] allows only a subset of Λ to be voters, i.e., Γ0 ∪Γ1 ⊆ Λ. This convention is more easily shown

to define equivalent computational power than our main results about asymmetric and democratic voting. See
Section A for details.
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output 0 output 1output undefined

output stable output stable

Fig. 1. Venn diagram of configurations that define sym-
CRD. Subset relationships depicted in their most general
form: Ii ⊆ post(Ii) ⊆ pre(Oi), and Oi ⊆ Li \L1−i. pre(O0)
and pre(O1) partition the set I = I0 ∪ I1.

Condition 1 states that only species in Σ
may be present initially, and at least one must
be present. Condition 2 defines Li to be config-
urations with an i-voter, so those in Li \ L1−i
unanimously vote i, and those in Oi are sta-
ble (“stuck” in the set Li \ L1−i). Condition 3
states that from every configuration reachable
from an initial configuration, a “correct” output
stable configuration is reachable from there; this
is the usual way of expressing stable computa-
tion [6,8]. The relationships between these sets
are depicted in Figure 1.

Remark 2.3. A different definition is found
in [8] and a number of other papers. That defini-
tion relaxes ours in two ways: (1) having both voting and non-voting species, (2) allowing non-input
species in the input configuration (e.g., {1N} in the Introduction). In Appendix A, we show that
(1) does not affect the computational power of the model. It is also known [3] that (2) does not
alter the computational power (though it may affect the time complexity [5, 14]).

Remark 2.4. We can equivalently define Oi = NΛ \pre(L1−i∪{0}), a form that will be useful later.
To see that this definition is equivalent, observe that NΛ \Oi is the set of configurations from which
it is possible either to reach L1−i, or to reach outside of Li, and the only point outside both is 0,
so NΛ \ Oi = pre(L1−i ∪ {0}). Thus Oi = NΛ \ pre(L1−i ∪ {0}).

Remark 2.5. The Oi are disjoint and closed under application of reactions: O0 ∩ O1 = ∅ and
post(Oi) = Oi.

Remark 2.6. Definition 2.2 implies the (weaker) condition that Ii = I ∩pre(Oi). This can be shown
as follows. First, Ii ⊆ I and Ii ⊆ post(Ii) ⊆ pre(Oi), so Ii ⊆ I ∩ pre(Oi). To see the reverse
containment, assume c ∈ I ∩ pre(Oi), but c /∈ Ii, i.e., c ∈ I1−i ∩ pre(Oi). Let o ∈ post(c) be
such that o ∈ Oi; such o exists since c ∈ pre(Oi). Since o ∈ post(I1−i) ⊆ pre(O1−i), we have
o ∈ Oi ∩ pre(O1−i). Let o′ ∈ post(o) such that o′ ∈ O1−i. Then o′ ∈ post(Oi) ∩ O1−i — a
contradiction because post(Oi) = Oi is disjoint from O1−i.

Since I0 = I ∩ pre(O0) and I1 = I ∩ pre(O1) are disjoint, we say that a sym-CRD D decides
the set I1. If a sym-CRD D decides the set X ⊆ NΛ, then the entries indexed by Λ \ Σ are zero
for each c ∈ X. Therefore, by abuse of notation, we also say that D decides the set X�Σ⊆ NΣ . We
will use this convention for all chemical reaction deciders with I of the given form.

Example 2.7. We construct a sym-CRD D that decides the set x 6≡ y mod m where x and y are
non-negative integer variables, not both zero, and m ≥ 2 is an integer constant. The variables
x and y represent initial counts of species X and Y , respectively. Let Σ = {X,Y }, Γ0 = {V0},
Γ1 = {X,Y }, and Λ = Γ0 ∪ Γ1 be as in Definition 2.2, with the following reactions:

mX → V0, mY → V0, X + Y → V0, (2.1)

Y + V0 → Y, X + V0 → X. (2.2)
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We argue that D decides the set {c ∈ NΣ \ {0} | c(X) 6≡ c(Y ) mod m}. Indeed, if x ≡ y mod m,
then eventually all X and Y molecules are consumed by the reactions of (2.1). The last time one of
these reactions occurs introduces a V0 molecule (there is a last reaction since x and y are not both
zero). So eventually we obtain a configuration c ∈ L0 \ L1 for which no reaction can be applied
anymore. Thus c ∈ O0. If x 6≡ y mod m, then eventually we reach a configuration with one of
X or Y , but not both, remaining. The remaining X or Y molecules consume all V0 molecules by
the reactions of (2.2), without the possibility of producing any more. So eventually we obtain a
configuration c′ ∈ L1 \ L0 for which no reaction can be applied anymore. Thus c′ ∈ O1.

2.3 Semilinear sets

We say that X ⊆ NΛ is linear if there is a finite set {v1, . . . ,vk} ⊆ NΛ and b ∈ NΛ such that
X = {b +

∑k
i=1 nivi | n1, . . . , nk ∈ N}. We say that X ⊆ NΛ is semilinear if X is the union

of a finite number of linear sets. Semilinear sets are precisely the sets definable in Presburger
arithmetic, which is the first-order theory of natural numbers with addition. As a consequence, the
class of semilinear sets is closed under union, intersection, complementation, and projection [17].
A useful characterization of semilinear sets is that they are exactly the sets expressible as finite
unions, intersections, and complements of sets of one of the following two forms: threshold sets of
the form {x |

∑k
i=1 ai · x(i) < b} for some constants a1, . . . , ak, b ∈ Z or mod sets of the form

{x |
∑k

i=1 ai · x(i) ≡ b mod c} for some constants a1, . . . , ak ∈ Z and b, c ∈ N.

The following result was shown in [3,4]. In fact, the result was shown for output-stable popula-
tion protocols, which form a subclass of the sym-CRDs. However, the proof is sufficiently general
to hold for sym-CRDs as well.8

Theorem 2.8 ( [3,4]). Let X ⊆ NΣ \{0}. Then X is semilinear if and only if there is a sym-CRD
that decides X.

For a configuration c ∈ NΣ , pre(c) and post(c) are in general not semilinear [18]. Hence the
semilinearity of Theorem 2.8 is due to additional “computational structure” of a sym-CRD. We
repeatedly use the following notion of upwards closure to prove that certain sets are semilinear.
The results below were shown or implicit in earlier papers [4,12]. We say X ⊆ NΛ is closed upwards
if, for all c ∈ X, c′ ≥ c implies c′ ∈ X.

For X ⊆ NΛ, define min(X) = {c ∈ X | (∀c′ ∈ X) c′ ≤ c =⇒ c′ = c} to be the minimal
elements of X.

Lemma 2.9 (Dickson’s lemma [12]). For all X ⊆ NΛ, min(X) is finite.

Lemma 2.10. Every closed upwards set X ⊆ NΛ is semilinear.

Proof. For each b ∈ min(X) we consider the linear set Lb = {b +
∑|Λ|

i=1 nivi | n1, . . . , n|Λ| ∈ N}
where the vi’s are the |Λ| unit vectors of NΛ. Now, X =

⋃
b∈min(X) Lb. Since min(X) is finite by

Lemma 2.9, X is semilinear. ut
8 Indeed, the negative result of [4] that sym-CRDs decide only semilinear sets is more general than stated in

Theorem 2.8, applying to any reachability relation ⇒∗ on NΛ that is reflexive, transitive, and “additive” (x⇒∗ y
implies x + c⇒∗ y + c). Also, the negative result of [4] implicitly assumes that the zero vector 0 is not reachable
(i.e., pre(0) = {0}). This assumption is manifest for population protocols (if the population size is non-zero). For
CRNs, this assumption can be readily removed; see Lemma 2.12.
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Lemma 2.11. If X ⊆ NΛ is closed upwards, then so are pre(X) and post(X).

Proof. Let c ∈ pre(X) and c′ ≥ c. We show that c′ ∈ pre(X). Let d = c′ − c. Since c ∈ pre(X),
there exists c′′ such that c ⇒∗ c′′ and c′′ ∈ X. Thus c′ = c + d ⇒∗ c′′ + d. Since X is closed
upwards, c′′ + d ∈ X, so c′ ∈ pre(X). The post(X) case is symmetric. ut

Our results require pre(0) to be semilinear.9 Observe that pre(0) = {0} if and only if for each
reaction α = (r,p), p 6= 0. The next lemma shows that we can assume this holds for sym-CRDs
without loss of generality.

Lemma 2.12. For every sym-CRD D, there is a sym-CRD D′ deciding the same set such that, for
each reaction α = (r,p) of D′, p 6= 0.

Proof. Let D be a sym-CRD that decides a set X. Add to D two new species D0 and D1. Species
Di will function as a “dummy” i-voter. Replace each reaction α : r → 0, where r contains only
i-voters, by α′ : r→ Di. Replace each reaction α : r→ 0, where r contains both 0 and 1-voters, by
α′ : r→ D0. (The choice for D0 here instead of D1 is arbitrary.) Moreover, for every species S we
add the reactions S +D0 → S and S +D1 → S. Let D′ be the obtained system.

We see that D and D′ operate similarly. The only difference is that in the latter Di’s may be
produced and consumed. Now, in D, once a configuration o ∈ Oi is reached, we have that for each
o′ ∈ postD(o), every molecule of o′ is an i-voter (this holds in particular for the case o′ = o). A
corresponding configuration d in D′ may have some additional dummy molecules of species D1−i.
But eventually, these molecules will all be removed by the reactions S + D1−i → S. So, it suffices
to verify that no D1−i molecule may be produced in some d′ ∈ postD′(d). Now, D1−i can only be
produced if there is at least one (1 − i)-voter (distinct from D1−i) present. But such a molecule
does not occur in any o′ ∈ postD(o) and therefore also does not occur in any d′ ∈ postD′(d). ut

3 Generalized chemical reaction deciders

In this section, we formulate a more generalized definition of CRDs that captures the original
“symmetric” definition (sym-CRD) in Section 2.2 and the new “asymmetric” definition (asym-
CRD) in Section 4, as well as the “democratic” definition (dem-CRD) in Section 5. In this section
we show how to use a result of [15] to re-prove the result of Angluin, Aspnes, and Eisenstat [4] that
sym-CRDs decide only semilinear sets. This is a warmup to our main results, shown in Sections 4
and 5, that asym-CRDs and dem-CRDs decide exactly the semilinear sets.

In the generalized notion defined below we have dropped the specific structure of I, O0, and O1

(they are now arbitrary subsets of NΛ) and we have replaced the requirement that post(Ii) ⊆ pre(Oi)
by the weaker condition that Ii = I ∩ pre(Oi) (recall Remark 2.6). Also, we do not use the term
“stable” in reference to this generalized notion, since there is no requirement that the output
configurations Oi be closed under application of reactions (i.e., we allow Oi ( post(Oi)).
9 pre(0) is not semilinear for every CRN. Hopcroft and Pansiot [18] show that post(c) may be non-semilinear:

they define c = {1P, 1Y } and reactions P + Y → P + X, P → Q, Q + X → Q + 2Y , Q → P + A, with
post(c) = {c | 0 < c(X) + c(Y ) ≤ 2c(A) or 0 < 2c(X) + c(Y ) ≤ 2c(A)+1}, which is not semilinear. To see that
post(0) can be non-semilinear, modify this CRN by adding a fifth reaction ∅→ P +Y , which applied to 0 reaches
c = {1P, 1Y }. Moreover, the set S = {x | x(P ) +x(Q) = 1} is semilinear, so if post(0) were semilinear, S ∩post(0)
would be as well. Since a second execution of ∅→ P +Y permanently exits S, we have that S∩post(0) = post(c),
i.e., non-semilinear. By replacing all reactions with their reverse, we obtain a CRN such that pre(0) is not semilinear.
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Fig. 2. Venn diagram of configurations that define general-
ized chemical reaction decider (gen-CRD). Like sym-CRD,
pre(O0) and pre(O1) partition the input set I = I0∪I1. Dif-
ferences with sym-CRD: 1) Possibly Oi ( post(Oi) (out-
put is not necessarily “stable”). 2) Although Ii ⊆ pre(Oi)
(correct output reachable initially), yet possibly post(Ii) 6⊆
pre(Oi) (correct output could become unreachable).

The relationships among the sets relevant to
the definition below are depicted in Figure 2.

Definition 3.1. A generalized chemical reac-
tion decider (gen-CRD) is a 4-tuple D =
(N , I,O0,O1), where N = (Λ,R) is a CRN,
I,O0,O1 ⊆ NΛ, and there is a partition {I0, I1}
of I such that Ii = I ∩ pre(Oi) for i ∈ {0, 1}.

Observe that every sym-CRD is a gen-CRD.
However, the requirements to be a gen-CRD are
weaker than for sym-CRDs: (1) the condition
post(Oi) = Oi need not hold for gen-CRDs, so
it may be possible to “escape” from Oi, and (2)
since post(Ii) ⊆ pre(Oi) need not hold for gen-
CRDs, it is possible to take a “wrong” route
starting from Ii such that Oi becomes unreach-
able.10

Despite these relaxations, observe that the
following property of sym-CRDs is retained in gen-CRDs: I is the disjoint union of I0 = I∩pre(O0)
and I1 = I ∩ pre(O1), i.e., from each input configuration, exactly one of the two output sets O0 or
O1 is reachable. We say that a gen-CRD D decides the set I1.

Definition 3.1 is inspired by the following key Petri net result from [15, Theorem 10] (formulated
here in terms of CRNs).

Theorem 3.2 ( [15]). Let N be a CRN and O0,O1, I ⊆ NΛ be semilinear. If {I0, I1} is a partition
of I with Ii = I ∩ pre(Oi) for i ∈ {0, 1}, then I0 and I1 are semilinear.

We say that a gen-CRD D = (N , I,O0,O1) is semilinear if I, O0, and O1 are all semilinear.
We immediately have the following corollary to Theorem 3.2.

Corollary 3.3. If a semilinear gen-CRD decides X ⊆ NΛ, then X is semilinear.

As a by-product of the results shown in [15], the reverse direction of Theorem 2.8 (which is
the most difficult implication) was reproven in [15] for the case of population protocols. That proof
however essentially uses the fact that, for population protocols, post(c) is finite for all configurations
c, which is not true for CRNs in general. Fortunately, one may still obtain the full reverse direction
of Theorem 2.8 by showing that every sym-CRD is semilinear (cf. the proof of Theorem 3.4 below)
and then invoking Corollary 3.3.

We now use this machinery to re-prove the result, due originally to Angluin, Aspnes, and
Eisenstat [4], that sym-CRDs decide only semilinear sets.

Theorem 3.4. Every sym-CRD decides a semilinear set.

10 While Definition 3.1 appears almost too general to be useful, Corollary 3.3 says that if I,O0,O1 are semilinear,
then so are I0, I1, which implies that any CRD definition that can be framed as such a gen-CRD must decide only
semilinear sets.
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Proof. Let D = (N , I,O0,O1) be a sym-CRD. Let I ′ = {c ∈ NΛ | c�Λ\Σ= 0}. The complement of
I ′ is closed upwards, thus I ′ is semilinear, as is I = I ′ \ {0}.

We now show that each Oi is semilinear. Let Li = {c ∈ NΛ | c�Γi 6= 0} as in Definition 2.2. By
Remark 2.4, Oi = NΛ \pre(L1−i∪{0}) = NΛ \ (pre(L1−i)∪pre(0)). By Lemma 2.12 we may assume
that each reaction α = (r,p) of D has p 6= 0, so pre(0) = {0}, which is semilinear. Since L1−i is
closed upwards, by Lemma 2.11, pre(L1−i) is also closed upwards, so semilinear by Lemma 2.10.
Since semilinear sets are closed under union and complement, Oi is also semilinear, so D is a
semilinear gen-CRD. The theorem follows by Corollary 3.3. ut

Remark 3.5. From the hypothesis post(Ii) ⊆ pre(Oi) in Definition 2.2, we used only the weaker
conclusion Ii = I ∩ pre(Oi). In other words, we need merely that Oi is initially reachable from Ii
itself (and that O1−i is unreachable from Ii, since pre(O0) and pre(O1) partition I). We do not
require that Oi remains reachable from every configuration reachable from Ii (i.e., post(Ii)). Hence
one could weaken part 3 of Definition 2.2 to use the condition Ii = I ∩ pre(Oi), and Theorem 3.4
still holds.11

Despite Remark 3.5, if a gen-CRD does obey the stronger condition post(Ii) ⊆ pre(Oi), then
a convenient property holds: each Oi may be enlarged without altering the set I1 decided by the
gen-CRD, so long as O1−i remains unreachable from Oi. The following lemma formalizes this.

Lemma 3.6. Let D = (N , I,O0,O1) be a gen-CRD that decides I1 and let I0 = I \ I1. For
i ∈ {0, 1}, assume that post(Ii) ⊆ pre(Oi), and let O′i ⊇ Oi with post(O′i) ∩ O1−i = ∅. Then
D′ = (N , I,O′0,O′1) is a gen-CRD deciding I1.

Proof. We have Ii = pre(Oi) ∩ I ⊆ pre(O′i) ∩ I for i ∈ {0, 1}. To show that this inclusion is an
equality, it suffices to show that pre(O′0) ∩ I and pre(O′1) ∩ I are disjoint.

Let i ∈ Ii. Then i ∈ pre(Oi) ⊆ pre(O′i). Assume to the contrary i ∈ pre(O′1−i). Let o ∈
O′1−i ∩ post(i), so o ∈ post(i) ⊆ post(Ii) ⊆ pre(Oi). Thus O′1−i ∩ pre(Oi) 6= ∅. In other words,
post(O′1−i) ∩ Oi 6= ∅ — a contradiction. Hence pre(O′0) ∩ I and pre(O′1) ∩ I are disjoint. ut

4 Asymmetric output-stability

We now give a natural alternative output convention for CRDs, which we call an asymmetric output-
stable CRD (asym-CRD). Whereas the output i of a sym-CRD is based on both the presence of
species of one type Γi and the absence of a species of a different type Γ1−i, the output of an
asym-CRD is based solely on the presence or absence of a single species type Γ1.

For each i ∈ I the CRD can either (1) reach a configuration o so that for each configuration
o′ reachable from o (including o itself) we have o′ �Γ1 6= 0 or (2) reach a configuration o so that
for each configuration o′ reachable from o we have o′ �Γ1= 0. Similarly to gen-CRDs, and unlike
sym-CRDs,12 it is not required that such a configuration o is reachable from any configuration c
reachable from the initial i, merely that such a o is reachable from i itself. Even this more liberal
assumption does not allow the CRD to decide a non-semilinear set.

Definition 4.1. An asymmetric output-stable chemical reaction decider (asym-CRD) is a gen-
CRD D = (N , I,O0,O1), where there are Σ ⊆ Λ and voting species Γ1 ⊆ Λ such that

11 In contrast, the proof of [4] crucially requires the hypothesis post(Ii) ⊆ pre(Oi).
12 As noted, sym-CRDs could be defined by replacing the requirement post(Ii) ⊆ pre(Oi) with Ii = I ∩ pre(Oi) and

retain the same power, but for clarity we retain the original definition.
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1. I = {c ∈ NΛ | c�Λ\Σ= 0} \ {0}, and

2. Oi = {c ∈ NΛ | post(c) ⊆ Vi} for i ∈ {0, 1}, with V1 = {c ∈ NΛ | c�Γ1 6= 0} and V0 = NΛ \ V1.13

Condition 1 states that only species in Σ may be present initially, and at least one must be
present. Condition 2 defines V1 and V0 to be configurations with and without Γ1 voters, and Oi to
be the stable subsets of Vi.

Example 4.2. Consider the following asym-CRD D′, where Σ = {X,Y } and Γ1 = {X,Y }, which
decides the same set as in Example 2.7 (i.e., x 6≡ y mod m).

mX → ∅, mY → ∅, X + Y → ∅. (4.1)

If x ≡ y mod m, then eventually all X and Y molecules are consumed and we obtain configuration
c = 0 ∈ O0. Otherwise, all X and Y cannot be consumed, and we are in O1. This example illustrates
that the asym-CRD computing convention may permit a simpler implementation in some cases.
Indeed, compared with Example 2.7, (4.1) has 2 fewer reactions and 1 fewer species (and is also
“faster” since fewer reactions need to occur).

We first observe that asym-CRDs have at least the computational power of sym-CRDs.

Observation 4.3. Let D = (N , I,O0,O1) be a sym-CRD deciding X, with voter partition {Γ0, Γ1}.
Then D′ = (N , I,O′0,O′1), where, for i ∈ {0, 1}, O′i = {c ∈ NΛ | post(c) ⊆ Vi}, with Vi as in Defi-
nition 4.1 (with respect to Γ1), is an asym-CRD deciding X.

Proof. This follows from Lemma 3.6 since (1) Oi ⊆ O′i and (2) post(O′i) = O′i is disjoint from O1−i
for i ∈ {0, 1}. ut

We now show that asym-CRDs have no greater computational power than sym-CRDs. This is
not as immediate as the other direction. First, observe that an asym-CRD may not be a sym-CRD;
if we interpret species V0 ∈ Λ \ Γ1 as voting “0”, then a sym-CRD is required to eliminate them
to output “1”, but not an asym-CRD. Moreover, a direct transformation of an asym-CRD into a
sym-CRD appears difficult. Intuitively, the problem is that the absence of molecules in Γ1 is not
detectable by a CRN, so there is no obvious way to ensure that a species V0 ∈ Λ \ Γ1 is produced
only if all V1 ∈ Γ1 are absent. The next obvious proof strategy would be to show, as in the proof
of Theorem 3.4, that every asym-CRD is a semilinear gen-CRD. However, it is not clear whether
O1 is semilinear. Nonetheless, due to the generality of Definition 3.1 and Theorem 3.2, we can
define a semilinear gen-CRD that decides the same set, by taking a subset of O1 that is provably
semilinear and still satisfies the necessary reachability constraints, even though the gen-CRD we
define is not in fact an asym-CRD (in particular, its “output” set O1 is not closed under application
of reactions).

Recall that a homomorphism f : NΛ → Z obeys f(c+c′) = f(c) +f(c′) for all c, c′ ∈ NΛ. Some
examples include f(c) = c(S) for some S ∈ Λ, f(c) = ‖c�∆‖ for some∆ ⊆ Λ, or f(c) = c(S1)−c(S2)
for some S1, S2 ∈ Λ.

For a CRN N and a function f : NΛ → Z, we define nondecf = {c ∈ NΛ | ∀c′ ∈ post(c), f(c′) ≥
f(c)} as the set of configurations c in which f is minimal among all the configurations reachable
from c.

We now prove a key lemma, which will be used for characterizing both asym-CRDs in this
section and dem-CRDs in Section 5.
13 Just as for sym-CRDs, post(Oi) = Oi. Note that V1 above is the same as L1 in Definition 2.2, but L0 6= V0, since
L1 and L0 can have nonempty intersection if there are conflicting voters present in some configuration.
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Lemma 4.4. Let N be a CRN and f : NΛ → Z a homomorphism. Let O = {c ∈ NΛ | post(c) ⊆ V}
with V = {c ∈ NΛ | f(c) > 0}. Then O ∩ W is semilinear and pre(O ∩ W ) = pre(O), where
W = nondecf .

Proof. We first prove pre(O∩W ) = pre(O). Obviously, pre(O∩W ) ⊆ pre(O). To prove the reverse
containment, let c ∈ pre(O). Hence c ∈ pre(o) for some o ∈ O. Since every o′ ∈ post(o) satisfies
f(o′) > 0, there is o′ ∈ post(o) such that f(o′) is minimal among all configurations in post(o). Thus
o′ ∈W . Since post(O) = O, we have o′ ∈ O. Hence, o′ ∈ O ∩W . Now, o ∈ pre(o′) and c ∈ pre(o),
and so c ∈ pre(o′). Therefore, c ∈ pre(O ∩W ), so pre(O) ⊆ pre(O ∩W ).

We now show that O ∩ W is semilinear. Observe that the set NΛ \ W = {c ∈ NΛ | ∃c′ ∈
post(c), f(c′) < f(c)} is closed upwards. Indeed, if c ∈ NΛ \W and c′ ∈ post(c) with f(c′) < f(c),
then for all d ∈ NΛ, c′+d ∈ post(c+d) and f(c′+d) = f(c′)+f(d) < f(c)+f(d) = f(c+d). Thus
NΛ \W is semilinear by Lemma 2.10, and hence also W . Since O ⊆ V, we have O ∩W ⊆ V ∩W .
Conversely, if c ∈ V ∩W , then f(c) > 0 since c ∈ V, and for all c′ ∈ post(c), f(c′) ≥ f(c) > 0 since
c ∈W . Thus c ∈ O ∩W , showing O ∩W = V ∩W , which is semilinear since V and W are. ut

Using Lemma 4.4 we show that every asym-CRD can be changed into a semilinear gen-CRD
by choosing O1 ∩W , rather than O1, as its “output 1” set of configurations. Note that unlike in
the definition of sym-CRD and asym-CRD, O1 ∩W is not in general closed under application of
reactions.

Lemma 4.5. Let D = (N , I,O0,O1) be an asym-CRD deciding X and Γ1 be as in Definition 4.1.
Let W = nondecf (Γ1) with f : NΛ → Z defined as f(c) = ‖c�Γ1‖ for all c ∈ NΛ. Then D′ =
(N , I,O0,O1 ∩W ) is a semilinear gen-CRD deciding X.

Proof. Observe that f is a homomorphism. Now, Lemma 4.4 tells us that pre(O1 ∩W ) = pre(O1);
thus D′ decides X.

To complete the proof, it suffices to show that D′ is semilinear. I is obtained from the closed-
upwards set NΣ\{0} by padding zeros for the species of Λ\Σ, so I is semilinear.O1∩W is semilinear
by Lemma 4.4. To see that O0 is semilinear, let V0 and V1 be as in Definition 4.1. Clearly V1 is
closed upwards, so semilinear. So, (1) pre(V1) is also closed upwards and therefore semilinear (by
Lemma 2.11 and Lemma 2.10) and (2) V0 = NΛ \ V1 is semilinear. Thus, O0 = V0 \ pre(V1) is
semilinear since the class of semilinear sets is closed under set difference. ut

The following is the first of two main results of this paper. It says that the computational power
of sym-CRDs equals that of asym-CRDs; they both decide exactly the semilinear sets.

Theorem 4.6. Let X ⊆ NΣ \ {0}. Then X is semilinear if and only if there is an asym-CRD that
decides X.

Proof. The forward direction follows from Observation 4.3 and Theorem 2.8. For the reverse direc-
tion, let D be an asym-CRD deciding X. By Lemma 4.5, there is a semilinear gen-CRD D′ deciding
X, which is semilinear by Corollary 3.3. ut

5 Democratic output-stability

Another reasonable alternative output convention is the one most naturally associated with the
term “voting”: a democratic output convention in which, rather than requiring a consensus, we
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define output by majority vote. In this case, for sets of voting species Γ0 and Γ1, the only undefined
outputs occur in “tie” configurations c where ‖c�Γ0‖ = ‖c�Γ1‖. In this section we show that such
CRDs have equivalent computing power to sym-CRDs.

Definition 5.1. A democratic output-stable chemical reaction decider (dem-CRD) is a gen-CRD
D = (N , I,O0,O1), where there are Σ ⊆ Λ and a partition {Γ0, Γ1} of Λ such that

1. I = {c ∈ NΛ | c�Λ\Σ= 0} \ {0},
2. Oi = {c ∈ NΛ | post(c) ⊆Mi}, with Mi = {c ∈ NΛ | ‖c�Γi‖ > ‖c�Γ1−i‖} for i ∈ {0, 1}.

Note that M0 ∩ M1 = ∅, and that Oi is stable, i.e., Oi = post(Oi). A sym-CRD reaches
a consensus, the strongest kind of majority, leading to the following observation implying that
dem-CRDs are at least as powerful as sym-CRDs.

Observation 5.2. Let D = (N , I,O0,O1) be a sym-CRD deciding X, with voter partition {Γ0, Γ1}.
Then D′ = (N , I,O′0,O′1), where O′i = {c ∈ NΛ | post(c) ⊆ Mi} for i ∈ {0, 1}, with Mi as in
Definition 5.1, is a dem-CRD deciding X.

Proof. This follows from Lemma 3.6 since (1) Oi ⊆ O′i and (2) post(O′i) = O′i is disjoint from O1−i
for i ∈ {0, 1}. ut

The converse result, that dem-CRDs are no more powerful than sym-CRDs, implies the second
main result of this paper.

Theorem 5.3. Let X ⊆ NΣ \ {0}. Then X is semilinear if and only if there is a dem-CRD that
decides X.

Lemma 5.4. Let D = (N , I,O0,O1) be a dem-CRD that decides X and Mi for i ∈ {0, 1} be
as in Definition 5.1. Let, for i ∈ {0, 1}, Wi = nondecfi with fi : NΛ → Z such that fi(c) =
‖c�Γi‖ − ‖c�Γ1−i‖ for all c ∈ NΛ. Then D′ = (N , I,O0 ∩W0,O1 ∩W1) is a semilinear gen-CRD
deciding X.

Proof. Let i ∈ {0, 1}. Observe that fi is a homomorphism. Lemma 4.4 says that pre(Oi ∩Wi) =
pre(Oi), so D′ decides X. To see that D′ is semilinear, note that I is semilinear, and for i ∈ {0, 1},
Oi ∩Wi is semilinear by Lemma 4.4. ut

We are now ready to prove Theorem 5.3.

Proof (of Theorem 5.3). The forward direction follows from Observation 5.2 and Theorem 2.8. For
the reverse direction, let D be a dem-CRD deciding X. By Lemma 5.4, there is a semilinear gen-
CRD D′ deciding X, which is semilinear by Corollary 3.3. ut

6 Discussion

Using a recent result about Petri nets [15] (cf. Theorem 3.2) we have presented a framework
able to capture different output conventions for computational CRNs. The original symmetric
consensus-based definition [3] can be fitted in this framework, giving a new proof that such CRNs
are limited to computing only semilinear sets. Two additional definitions, an asymmetric existence-
based convention, and a symmetric majority-vote convention, can be fitted in this framework, and
thus have the same expressive power as the original.
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We show that asym-CRDs and dem-CRDs are no more powerful than sym-CRDs by showing
that they are limited to deciding semilinear sets, which is known also to apply to sym-CRDs. It
would be informative, however, to find a proof that uses a direct simulation argument, showing how
to transform an arbitrary asym-CRD or dem-CRD into a sym-CRD deciding the same set. Along
a similar line of thinking, we have defined the computational ability of CRDs without regard to
time complexity, which is potentially sensitive to definitional choices, even if the class of decidable
sets remains the same [1, 2, 5, 13, 14]. It would be interesting to find cases in which asym-CRDs or
dem-CRDs are be able to compute faster than any equivalent sym-CRD.

An open problem is to consider other output conventions, where we possibly step out of semilin-
earity. For example, consider a designated species V1 such that for each input configuration d ∈ I,
(1) d ∈ I1 if we always eventually reach a configuration c such that all configurations reachable
from c has a V1 molecule, and (2) d ∈ I0 if we can never reach such a configuration c. Hence the
output of a configuration is then based on a behavioral property of the system (whether it is stable)
instead of a syntactic property of the configuration (whether it contains a particular molecule). It
is not clear how to apply Theorem 3.2, which requires that I0 = I ∩ pre(S) for some semilinear set
S.

It would be interesting to find generalizations of Theorem 3.2 beyond semilinearity of the sets
I,O0,O1, showing that if they satisfy some condition, then so do I0 and I1.

In addition to predicates (functions with binary output), computation by CRNs computing in-
teger -valued functions has also been extensively investigated [8–11,13,23]. It remains to investigate
alternative output conventions for such functions, and in particular how composable such conven-
tions are with each other, since the output of a function f : N → N can be the input of another
function g : N→ N.

Acknowledgements. R.B. thanks Grzegorz Rozenberg for interesting and useful discussions regard-
ing chemical reaction networks. D.D. thanks Ryan James for suggesting the democratic CRD model.
The authors are grateful to the anonymous reviewers for comments that have helped improve the
presentation.
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A Symmetric CRDs with nonvoters

A slightly modified definition of a sym-CRD is found in the literature [8], in which only a subset
of species is designated as voters, and nonvoting species do not affect the output. Unlike asym-
CRDs, which also have only a subset of voting species, these CRDs treat “yes” and “no” votes
symmetrically with respect to interpreting what is the “output” of a configuration. We refer to this
as a delegating CRD (in analogy to delegates who vote on behalf of others).

Definition A.1. A delegating symmetric output-stable chemical reaction decider (del-sym-CRD)
is a gen-CRD D = (N , I,O0,O1) where N = (Λ,R) is a CRN and there are Σ ⊆ Λ and disjoint
subsets of voting species Γ0, Γ1 ⊆ Λ such that

1. I = {c ∈ NΛ | c�Λ\Σ= 0} \ {0},
2. Oi = {c ∈ NΛ | post(c) ⊆ Li \ L1−i}, with Li = {c ∈ NΛ | c�Γi 6= 0} for i ∈ {0, 1}.
3. There is a partition {I0, I1} of I such that post(Ii) ⊆ pre(Oi) for i ∈ {0, 1}.

The only difference between a sym-CRD and a del-sym-CRD is that the latter relaxes the
requirement that Γ0 ∪ Γ1 = Λ, so each sym-CRD is a del-sym-CRD. To show they have equivalent
computational power, it then suffices to show that any del-sym-CRD can be turned into a sym-CRD
deciding the same set. This equivalence is simpler to establish than for asym-CRDs and dem-CRDs,
using a direct simulation argument that does not require the machinery of gen-CRDs.

Lemma A.2. For each del-sym-CRD, there is a sym-CRD deciding the same set.

Proof. Let D = (N , I,O0,O1) be an del-sym-CRD deciding X, with N = (Λ,R) and voting species
Γ0, Γ1 ⊆ Λ as in Definition A.1. Let ∆ = Λ \ (Γ0 ∪ Γ1) be the nonvoting species. Intuitively, we
define a CRN N ′ in which all nonvoting species S ∈ ∆ of N have an additional bit that determines
whether S is a 0-voter or a 1-voter. We add reactions so that species in Γi flip this bit to i in any
molecule in ∆. More precisely, let N ′ be obtained from N by first replacing every species S ∈ ∆ by
two species S0 and S1. Let Λ′ be the obtained set of species of N ′. Replace every reaction α = (r,p)
of N by reactions α′ = (r′,p′) with r′,p′ ∈ NΛ′ such that π(r′) = r and π(p′) = p, where π : Λ′ → Λ
sends every species Si to S and sends each Vi ∈ Γi to itself (and π is applied component-wise to
vectors). Moreover, for i ∈ {0, 1}, add reactions Vi + S1−i → Vi + Si for all S ∈ ∆ and Vi ∈ Γi.

Let D′ = (N ′, I ′,O′0,O′1), with I ′, O′0, and O′1 defined as in Definition 2.2 and I ′ defined with
respect to Σ′ = {S1 | S ∈ Σ} where Σ corresponds to I. (The choice of 1 instead of 0 is arbitrary.)
We observe that D′ is a sym-CRD. Indeed, once a configuration c ∈ Oi in D is reached from an
input configuration, we have that for each c′ ∈ post(c), c′ contains at least one molecule of species
Vi and none of V1−i. A configuration d in D′ corresponding to c will turn every molecule into
a i-voter. In other words, we eventually reach a configuration d′ ∈ O′i. Hence D′ is a sym-CRD
deciding X. ut

Although the converse is trivial since, in creating a del-sym-CRD from a sym-CRD, one can
choose the voting species Γ0, Γ1 to be the same, in some cases it is preferable to have a strict subset.
One case in particular, in which there are exactly two voting species, i.e., |Γ0| = |Γ1| = 1, merits
mention since this is often a convenient assumption to make about a CRD. The following lemma
shows that we can make this assumption without loss of generality.

Lemma A.3. For each sym-CRD, there is a del-sym-CRD with exactly two voting species deciding
the same set.
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Proof. Let D = (N , I,O0,O1) be a sym-CRD that decides X, with voting species Γ0, Γ1 that
partition Λ. Let N ′ be the CRN obtained from N by adding two new species V0, V1 to D and
adding, for each S ∈ Γi, the reactions S → S + Vi and S + V1−i → S. Let D′ = (N ′, I ′,O′0,O′1),
with I ′, O′0, and O′1 defined as in Definition A.1 and I ′ defined with respect to the same Σ. Indeed,
once an output-stable configuration c ∈ Oi in D is reached from an input configuration, we have
that for each c′ ∈ post(c), every molecule of c′ is an i-voter and c′ has at least one molecule. A
configuration d in D′ corresponding to c may have some additional molecules of species V0 or V1.
The i-voters will eventually remove all molecules of species V1−i and will produce molecules of
species Vi, but no molecules of species V1−i. Hence, eventually we reach a configuration d′ with no
molecules of species V1−i and at least one molecule of species Vi. We have that each configuration
in post(d′) has this property. In other words, d′ ∈ O′i. Hence D′ is a del-sym-CRD. ut
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