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ABSTRACT
Understanding the algorithmic behaviors that are in princi-
ple realizable in a chemical system is necessary for a rigorous
understanding of the design principles of biological regula-
tory networks. Further, advances in synthetic biology herald
the time when we’ll be able to rationally engineer complex
chemical systems, and when idealized formal models will be-
come blueprints for engineering.

Coupled chemical interactions in a well-mixed solution are
commonly formalized as chemical reaction networks (CRNs).
However, despite the widespread use of CRNs in the natural
sciences, the range of computational behaviors exhibited by
CRNs is not well understood. Here we study the following
problem: what functions f : Rk → R can be computed by
a chemical reaction network, in which the CRN eventually
produces the correct amount of the “output” molecule, no
matter the rate at which reactions proceed? This captures
a previously unexplored, but very natural class of computa-
tions: for example, the reactionX1+X2 → Y can be thought
to compute the function y = min(x1, x2). Such a CRN is
robust in the sense that it is correct whether its evolution
is governed by the standard model of mass-action kinetics,
alternatives such as Hill-function or Michaelis-Menten kinet-
ics, or other arbitrary models of chemistry that respect the
(fundamentally digital) stoichiometric constraints (what are
the reactants and products?). We develop a formal defini-
tion of such computation using a novel notion of reachability,
and prove that a function is computable in this manner if
and only if it is continuous piecewise linear.

Categories and Subject Descriptors
F.1 [Theory of Computation]: Computation by Abstract
Devices; C.1.3 [Computer systems organization]: Other
Architecture Styles—Analog computers
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1. INTRODUCTION
Both the engineering of complex artificial molecular sys-

tems, as well as the understanding of the constraints im-
posed upon biology, require the understanding of what is,
in principle, achievable in chemistry. The natural language
for describing the interactions of molecular species in a well-
mixed solution is that of chemical reaction networks (CRNs),
i.e., finite sets of chemical reactions such as A+B → A+C.
The intuitive meaning of this expression is that a unit of
chemical species A reacts with a unit of chemical species B,
producing a unit of a new chemical species C and regenerat-
ing a unit of A back. Typically (in mass-action kinetics) the
rate with which this occurs is proportional to the product
of the amounts of the reactants A and B.

Traditionally CRNs have been used as a descriptive lan-
guage to analyze naturally occurring chemical reactions, as
well as various other systems with a large number of in-
teracting components such as gene regulatory networks and
animal populations. However, CRNs also constitute a nat-
ural choice of programming language for engineering arti-
ficial systems. For example, nucleic-acid networks can be
rationally designed to implement arbitrary chemical reac-
tion networks [7, 10, 20]. Thus, since in principle any CRN
can be physically built, hypothetical CRNs with interesting
behaviors are becoming of more than theoretical interest.
One day artificial CRNs may underlie embedded controllers
for biochemical, nanotechnological, or medical applications,
where environments are inherently incompatible with tradi-
tional electronic controllers. However, to effectively program
chemistry, we must understand the computational power at
our disposal. In turn, the computer science approach to
CRNs is also beginning to generate novel insights regarding
natural cellular regulatory networks [8].

Informally speaking we can identify two sources of com-
putational power in CRNs. First, the reaction stoichiome-
try transforms some specific ratios of reactants to products.
For example, X→ 2Y makes two units of Y for every unit
of X. Second, in mass-action kinetics the reaction rate laws
effectively perform multiplication of the reactant concentra-
tions. In this work, we seek to disentangle the contributions
of these two computational ingredients by focusing on the
computational power of stoichiometry alone.



One reason to focus on stoichiometric computation is that
algorithms that rely on stoichiometry make easier design
targets. The rates of reactions are real-valued quantities
that can fluctuate with reaction conditions and temperature,
while the stoichiometries are immutable whole numbers set
by the nature of the reaction. Methods for physically im-
plementing CRNs naturally yield systems with digital stoi-
chiometry that can be set exactly [7,20]. Further, relying on
specific rate laws can be problematic: many systems do not
follow mass-action rate laws1 and chemists have developed
an array of alternative rate laws such as Michaelis-Menten
and Hill-function kinetics. Indeed, robustness of rate laws is
a recurring motif in systems biology due to much evidence
that biological regulatory networks tend to be robust to the
form of the rate laws and the rate parameters [5]. Thus we
are interested in what computations can be understood or
engineered without regard for the reaction rate laws.

There are two well-studied models of chemical kinetics:
continuous and discrete. In the discrete model, the amount
of a species is a nonnegative integer representing the total
count of molecules of that species in a given reaction vessel.
In the continuous model, the amount of a species is a non-
negative real number representing its average count per unit
volume or concentration. The discrete model is stochastic
and reactions are modeled by a Markov jump process [11],
while the continuous model is deterministic, governed by a
system of ordinary differential equations with a unique so-
lution. When the volume and counts are large, the discrete
model converges to the continuous model [14]. While many
cellular chemical processes operate at single-molecule preci-
sion, a significant amount of regulation is well-understood
by continuous models [1]. Further, because of the difficulty
of working at molecular resolution most experimental im-
plementations of rationally designed chemical computation
have been in bulk solution (e.g. [10,16,18]).

Here we study the continuous setting, and characterize
the class of real-valued functions computable by CRNs when
reaction rates are permitted to vary arbitrarily (and possibly
adversarially) over time. Any computation in this setting
must rely on stoichiometry alone. Our work is related to
the study of deterministic2 computation in stochastic CRNs:
making reaction rates unreliable is the natural analog to
error in the stochastic setting (where error corresponds to
reactions occurring in an undesired order). (See Section 1.1.)

How can rate laws “preserve stoichiometry” while varying
“arbitrarily over time”? Formally, preserving stoichiometry
means that if we reach state d from state c, then d = c+Mu
for stoichiometry matrix M, and some non-negative vector u
of reaction fluxes. Subject to this constraint, the widest class
of trajectories that still satisfies the intuitive meaning of the
reaction semantics can be described informally as follows:
(1) concentrations can’t become negative, (2) all reactants
must be non-zero for a reaction to occur (e.g. if a reaction
uses a catalyst3, it must be present).

1Although it is generally taken for granted that they would
if properly decomposed into truly elementary reactions.
2Deterministic computation in the discrete/stochastic
model should not be confused with the determinism of the
continuous model, where any stochasticity is absent.
3A species acts catalytically in a reaction if it is both a
reactant and product: e.g. C in reaction A + C → B + C.
Note that executing this reaction without C does not by
itself violate condition (1).

a) b)

Figure 1: Examples of (a) direct and (b) dual-rail rate-
independent computation of f(x1, x2) = max(x1, x2).

The example shown in Fig 1(a) illustrates the style of
computation studied here. Let f : R2

≥0 → R≥0 be the
max function f(x1, x2) = max(x1, x2) restricted to non-
negative x1 and x2. The CRN shown computes this func-
tion in the following sense. Inputs x1 and x2 are given as
initial concentrations of input species X1 and X2. Then
the CRN converges to the output value of species Y , un-
der a very wide interpretation of rate laws. Intuitively, the
first two reactions must eventually produce x1 + x2 of Y ,
and x1, x2 of Z1 and Z2, respectively. This is enforced
by the stoichiometric constraint that the amount of Z1 and
Y produced is equal to the amount of X1 consumed (and
analogously for the second reaction). Stoichiometric con-
straints require the third reaction to produce the amount of
K that is the minimum of the amount of Z1 and Z2 even-
tually produced in the first two reactions. Thus min(x1, x2)
of K is eventually produced. Therefore, the fourth reac-
tion eventually consumes min(x1, x2) molecules of Y leaving
x1 + x2 − min(x1, x2) = max(x1, x2) of Y behind. We can
imagine an adversary pushing flux through these four reac-
tions in any devious stratagem, but as long as he cannot take
any concentration negative, the CRN can only converge to
the correct output.

In this paper we further consider the natural extension of
such computation to handle negative real values. The ex-
ample shown in Fig. 1(b) computes f(x1, x2) = max(x1, x2)
(f : R2 → R). In order to handle negative input and output
values, we represent the value of each input and output by
a pair of species (so-called “dual-rail” representation). For
example, in state c, x1 = c(X+

1 ) − c(X−1 ) — i.e. the dif-
ference between the concentrations of species X+

1 and X−1 .
Note that when X−1 and X−2 are initially absent, the CRN
becomes equivalent to the first three reactions of Fig. 1(a)
under relabeling of species. We do not need the last reac-
tion of (a) because the output is represented as the difference
of Y + and Y − by our convention. For the argument that
the computation is correct even if X−1 and X−2 are initially
present, we refer the reader to Section 3.1.

In addition to handling negative values, the dual-rail rep-
resentation has the benefit of allowing composition. Specifi-
cally, the dual-rail representation allows CRNs to never con-
sume their output species (e.g. rather than consuming Y +,
it can produce Y −). This monotonicity in the production
of output allows directly composing CRN computations sim-
ply by mixing CRNs and relabeling species (e.g. to make the
output of one be input to the other). Since the upstream
CRN never consumes its output species, the downstream
CRN is free to consume them without interfering with the
upstream computation.

In order to formally delineate the class of functions (direct
and dual-rail) computable in a rate-independent manner, we
take the following approach. We first define a reachability



relation that captures motion along trajectories satisfying
the two intuitive properties above. Then we define rate-
independent computation using this reachability relation.
Roughly, to say that a function is correctly computed, it
must be the case that from every reachable state, the correct
output can be reached, and once reached the output cannot
change. Our main results are that exactly functions that
are positive-continuous, piecewise linear (direct) or continu-
ous, piecewise linear (dual-rail) can be computed. (Positive-
continuous means that the only discontinuities occur on a
“face” of Rk≥0 — i.e., the function may discontinuously jump
only at a point where some input goes from 0 to positive.)

In the constructive portion of our results, we supply rate-
independent CRNs for computing any function in the above
classes. Further, our constructions have the following prop-
erty: If the same CRNs were simulated under mass-action
kinetics from any reachable state, as the time t → ∞ the
concentration of the output species would approach its in-
tended value. In other words, no matter how an adversary
might have pushed us initially, letting the system evolve by
mass-action will yield the correct answer. Although we prove
that only the correct output is reachable, and mass-action
trajectories converge there, it remains an open problem to
delineate the entire class of rate laws that force our con-
structions to converge.

1.1 Relation to Previous Work
The computational abilities of discrete CRNs have been

investigated more thoroughly than of continuous CRNs, and
have been shown to have a surprisingly rich computational
structure. Of most relevance here is the work in the discrete
setting showing that the class of functions that can be com-
puted depends strongly on whether the computation must
be deterministic (guaranteed to be correct), or just likely to
be correct. While Turing universal computation is possible
with an arbitrarily small, non-zero probability of error over
all time [19], forbidding error altogether limits the computa-
tional power severely: Error-free computation by stochastic
CRNs is limited to semilinear predicates and functions [4,9].
(Intuitively, semilinear functions are expressible as a finite
union of affine functions, with “simple, periodic” domains of
each affine function [9].)

Our paper was motivated by trying to extend the results
on error-free computation to the continuous CRN model. As
mentioned above, our notion of rate-independent computa-
tion is the natural extension of deterministic computation in
the discrete model. However, there are many differences in
the two settings. As broached in ref. [9], many of the CRNs
that work in the discrete setting appear not to work in the
continuous setting. For example, the CRNs computing dis-
continuous functions such as “f(x1, x2) = x2 if x1 > x2 and
0 otherwise” provably fail to work in the continuous setting.
Indeed, discrete CRNs can, for example, distinguish between
even and odd inputs, whereas it does not even make sense to
talk about the “parity” of a real-valued input. Further, the
proof techniques appear to require very different machinery.

The relationship between the discrete and continuous CRN
models is a complex and much studied one in the natural
sciences [17]. While computational differences in the models
are less understood, the distributed computing community
is beginning to investigate the subject as well [6].

Our notion of reachability captures a wide diversity of
possible rate laws. A related idea in the literature, albeit re-

stricted to mass-action, is differential inclusion [12]. Gener-
alized rate laws (extending mass-action, Michaelis-Menten,
etc) have been previously studied, although not in a compu-
tational setting. For example, certain conditions were identi-
fied on global convergence to equilibrium based on properties
intuitively similar to ours [2].

2. PRELIMINARIES
Let N and R denote the set of nonnegative integers and

the set of real numbers, respectively. If x ∈ R, let R≥x =
{ x′ ∈ R | x′ ≥ x }, and similarly for R>x. Given a vector

x ∈ Rk, let ‖x‖ = ‖x‖1 =
∑k
i=1 x(i), where x(i) denotes

the ith coordinate of x. We abuse notation and consider
the sets Rk × Rl and Rk+l to be the same, because it is
sometimes convenient to treat an ordered pair of vectors as
being concatenated into a single longer vector. If Λ is a
finite set (in this paper, of chemical species), we write RΛ

to denote the set of functions f : Λ → R, and similarly for
RΛ
≥0, NΛ, etc. Equivalently, we view an element c ∈ AΛ as

a vector of |Λ| elements of A, each coordinate “labeled” by
an element of Λ.

2.1 Chemical reaction networks
Given S ∈ Λ and c ∈ RΛ

≥0, we refer to c(S) as the concen-

tration of S in c. For any c ∈ RΛ
≥0, let [c] = {S ∈ Λ | c(S) >

0}, the set of species present in c. We write c ≤ c′ to de-
note that c(S) ≤ c′(S) for all S ∈ Λ. Given c, c′ ∈ RΛ

≥0,
we define the vector component-wise operations of addition
c + c′, subtraction c − c′, and scalar multiplication xc for
x ∈ R. If ∆ ⊂ Λ, we view a vector c ∈ R∆

≥0 equivalently as

a vector c ∈ RΛ
≥0 by assuming c(S) = 0 for all S ∈ Λ \ ∆.

For ∆ ⊂ Λ, we write c � ∆ to denote c restricted to ∆; in
particular, c � ∆ = 0 ⇐⇒ (∀S ∈ ∆) c(S) = 0.

Given a finite set of chemical species Λ, a reaction over Λ
is a pair α = 〈r,p〉 ∈ NΛ ×NΛ, specifying the stoichiometry
of the reactants and products, respectively.4 In this paper,
we assume that r 6= 0, i.e., we have no reactions of the
form ∅ → . . ..5 For instance, given Λ = {A,B,C}, the
reaction A + 2B → A + 3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 .
Note that we represent reversible reactions such as A
B
as two irreversible reactions A→ B and B → A. A (finite)
chemical reaction network (CRN) is a pair C = (Λ, R), where
Λ is a finite set of chemical species, and R is a finite set of
reactions over Λ. A state of a CRN C = (Λ, R) is a vector
c ∈ RΛ

≥0. Given a state c and reaction α = 〈r,p〉, we say
that α is applicable in c if [r] ⊆ [c] (i.e., c contains positive
concentration of all of the reactants).

2.2 Reachability
In the previous section we defined the syntax of CRNs.

We wish to define a semantic interpretation of them suit-

4It is customary to define, for each reaction, a rate constant
k ∈ R>0 specifying a constant multiplier on the mass-action
rate (i.e., the product of the reactant concentrations), but
as we are studying CRNs whose output is independent of
the reaction rates, we leave the rate constants out of the
definition.
5We allow high order reactions; i.e., those that consume
more than two reactants. It is not difficult to show that
such a reaction S1 + S2 + . . . + Sn → P1 + . . . + Pm can
be replaced by bimolecular reactions S1 + S2
S12, S12 +
S3
S123, S123 +S4
S1234, . . . , Sn+S12...n−1 → P1 + . . .+
Pm without affecting the correctness of the CRN.



able for defining how they compute functions. In particular,
we want to consider CRNs guaranteed to correctly compute
a function of their inputs, regardless of the rate at which
reactions proceed, calling this stable computation, defined in
Section 2.4. This definition rests on another, which we must
take care in defining, namely what it means for one state to
be reachable from another, which is the focus of this section.
Intuitively, d is reachable from c if applying some amount of
reactions to c results in d, such that no reaction is ever ap-
plied when any of its reactants are concentration 0. Formal-
izing this concept is a bit tricky and constitutes one of the
contributions of this paper. Intuitively, we’ll think of reach-
ability via straight line segments. This may appear overly
limiting; after all mass-action and other rate laws trace out
smooth curves. However we show a number of properties of
our definition that support its reasonableness.

Throughout this section, fix a CRN C = (Λ, R). All states
c, etc., are assumed to be states of C. Let m = |R| be
the number of reactions in CRN C, and let n = |Λ| be the
number of species in C. We define the n ×m reaction stoi-
chiometry matrix M such that M(i, j) is the net amount of
the i’th species that is produced by the j’th reaction (neg-
ative if the species is consumed).6 For example, if we have
the reactions X → Y and X + A → 2X + 3Y , and if the
three rows correspond to X, A, and Y , in that order, then

M =

 −1 1
0 −1
1 3


Definition 2.1. State d is straight-line reachable (aka

1-segment reachable) from c, written c →1 d, if (∃u ∈
Rm≥0) c + Mu = d and u(j) > 0 only if reaction j is ap-

plicable at c. In this case write c→1
u d.

Intuitively, by a single segment we mean running the re-
actions applicable at c at a constant (possibly 0) rate to get
from c to d. In the definition, u(j) represents the flux of
reaction j.

Definition 2.2. State d is l-segment reachable, written
c  l d from c if (∃b1, . . . ,bl+1) c = b1 →1 b2 →1 b3 →1

. . .→1 bl+1 = d.

Definition 2.3. State d is segment-reachable from c, writ-
ten c d, if (∃l ∈ N) c l d.

Suppose the reactions are X → C and C + Y → C +
Z, and we are in state {0C, 1X, 1Y, 0Z}. With straight-
line segments, any state with a positive amount of Z must
be reached in at least two segments: first to produce C,
which allows the second reaction to occur, and then any
combination of the first and second reactions. For example,
{0C, 1X, 1Y , 0Z} →1 {0.1C, 0.9X, 1Y , 0Z} →1 {1C, 0X,
0Y , 1Z}. This is a simple example showing that more states
are reachable with  than →1. Often Definition 2.3 is used
implicitly, when we make statements such as, “Run reaction
1 until its first reactant is 0, then run reaction 2”, which
implicitly defines two straight lines in concentration space.

Given a curve, we can think about approximating it to an
arbitrary accuracy using straight-line segments. But it may

6Note that M does not fully specify C, since catalysts are
not modeled: reactions Z + X → Z + Y and X → Y both
correspond to the column vector (−1, 1, 0)>.

seem that we can never achieve the “full diversity” of states
reachable with curves if we use only a finite number of line
segments. However, the following lemma shows that increas-
ing the number of straight-line segments beyond a certain
point does not make any additional states reachable. Thus
using a few line segments captures all the states reachable
in the limit of infinitely many line segments.

Lemma 2.4. If c d, then c m+1 d, where m = |R| is
the number of reactions.

Proof. The intuitive idea of the proof is as follows. If
c d, then the path could use a huge number of segments,
much greater than m + 1. We don’t care precisely what
these segments are, only that they give us an ordering ≺ on
species that need to become positive to reach d, such that,
calling the species S1 ≺ S2 ≺ . . . ≺ Sp, for each i, there
is a reaction to produce Si that has only reactants in [c] ∪
{S1, . . . , Si−1}. Therefore we can produce a small amount of
each species S1, . . . , Sn, starting only from species in [c], by
running these reactions in order, and running each reaction
a smaller amount than the previous to ensure that nothing
positive goes to 0. Once all these species are produced, a
single straight line can take the CRN to state d. The trick
is that we should not produce every producible species, but
only those needed to run the reactions corresponding to the
final straight line. Otherwise, for example, we could create
a species X 6∈ [c] ∪ [d], and if no reaction consumes X, d
would become unreachable.

If d is reachable from c via fewer than m+ 1 straight line
segments, then this can be re-expressed with precisely m+1
line segments by using length-0 line segments. It remains to
show that at most m+1 straight line segments are necessary.

Suppose that c  d via l > m+ 1 straight line segments
c = b0 →1 b1 →1 . . . →1 bl = d. Let the reactions R be
ordered as α0, α1, . . . . For each bi, there exists ui such that
bi + Mui = bi+1. Let Fj =

∑l−1
i=0 ui(j) be the total flux

through reaction αj to get from c to d along the l straight
line segments defined by the bi’s. Let P = { j | Fj > 0 }
be the indices of reactions that occurred with strictly pos-
itive flux. If αj = (rj ,pj), let vj = pj − rj be the vector
representing the net change in concentrations if reaction αj
experiences unit flux. Then d = c +

∑
j∈P Fjvj . We use

this fact to show that c m+1 d.
Let R(P ) = { αj ∈ R | j ∈ P } be the reactions with in-

dices in P . We first argue that there is an ordering ≺ of
reactions in R(P ), such that for any reaction α = (r,p),
[r] ⊆ [c] ∪

⋃
α′=(r′,p′)≺α[p′]. In other words, if all products

of reactions preceding α have positive concentration, as well
as all species present in c, this guarantees α is applicable.
This in turn allows the reactions to proceed in the given
order, so long as we are careful that no positive concentra-
tion species is allowed to be consumed back to 0. At the
end, all products of all reactions in R(P ) are positive. To
see that this ordering exists, it suffices to observe that the
straight line segments given by the hypothesis c  d give
a partial order that respects the constraints, since any re-
actions with positive flux in the k’th straight line segment,
which were not positive flux in any previous straight line
segments, must consume only species that were either posi-
tive in c, or that were produced by a reaction with positive
flux in the l’th straight line segment, where l < k. Given
all reactions having positive flux for the first time in the
k’th straight line segment, they can be ordered arbitrarily



relative to each other while obeying the constraint ≺. For
the sake of brevity, assume without loss of generality that
P = {0, 1, . . . , |P | − 1}, and that α0 ≺ α1 ≺ . . . ≺ α|P |−1.

Let K = maxS∈Λ maxα=(r,p)∈R(P ) r(S) be the maximum
stoichiometry coefficient of any possible reactant. In the
worst case, running a reaction by δ flux will decrease the
concentration of any species by at most δK. Let

ε = min

{
min
S∈[c]

c(S),min
j∈P

Fj

}
.

The significance of ε is that if we allow all reactions in R(P )
to go forward from c by strictly less than ε of flux, this
will be less than the total flux experienced by each reac-
tion, and also each species present in c will remain in posi-
tive concentration. Formally, define the following basis vec-
tors (representing individual reaction vectors) wj ∈ Rm≥0

for 0 ≤ j < |P |. Let wj(j) = ε
(2K)j+1 and wi(j) = 0 if

i 6= j. Then Mwj is the j’th line segment to define. Let

a = c +
∑|P |−1
j=0 Mwj be the point reached after following

these line segments. For each j, let aj = c +
∑j−1
i=0 Mwi

be the state reached after following the first j straight line
segments, letting a0 = c.

We prove by induction on j that each Mwj satisfies Def-
inition 2.1 by showing that for all j, S ∈ [aj ] =⇒ aj(S) ≥

ε
(2K)j+1 . I.e., all species are nonnegative at the start and

end of the line (hence along the entire line), and the reac-
tions experiencing positive flux along the line are applicable
at the starting state.

We first establish the base case, where w0(0) = ε
2K

. By
the definition of ≺, which ensures that for α0 = (r0,p0),
[r0] ⊆ [c], α0 is applicable at c. Note that ε ≤ c(S) for all
S ∈ [c], i.e., running α0 with flux ε

2K
can cut the concentra-

tion of any species S ∈ [c] at most in half, so that in state
a1 = c + Mw0, a1(S) ≥ ε

2
≥ ε

2K
, satisfying the base case

for species in [c]. Because α0 experiences ε
2K

of flux, each
species produced S ∈ [p0] \ [c] initially absent in c but pro-
duced in a1 has increased in concentration by at least ε

2K
.

Therefore all species in [a1] \ [c] have concentration at least
ε

2K
, satisfying the base case for these species.

For the inductive case, inductively assume each species
S ∈ [aj ] satisfies aj(S) ≥ ε

(2K)j+1 . Then by the definition of

αj and ≺, αj is applicable in aj . Similarly to the base case,
by running αj by flux ε

(2K)j+2 , the most any such species

is consumed is ε
(2K)j+2 , and since all such species S started

with concentration aj(S) ≥ ε
(2K)j+1 , their concentrations

are at most cut in half, i.e. aj+1(S) ≥ ε
(2K)j+2 . Therefore

the inductive hypothesis for case j+ 1 is satisfied for species
in aj . To show that the inductive hypothsis is satisfied for
the rest of the species (i.e., those in [aj+1]\[aj ]), observe that
all products S ∈ [aj+1]\ [aj ] have increased in concentration
by at least ε

(2K)j+2 .

The final line segment is a straight line from a to d. By
our choice of P , all reactions in R(P ) are applicable at a. By
our choice of wj ’s, the total flux experienced by reaction αj
to get from c to a is strictly less than Fj , the total flux αj
experienced in the original straight line segments defining
c  d. Therefore the final straight line from a can be
defined by the vector w(j) = Fj −wj(j), so that a+Mw =
d. This shows that c m+1 d.

2.3 Relation to mass-action
For understanding the results of this paper, it is not nec-

essary to be familiar with mass-action kinetics. However, as
mass-action is the most commonly used model of chemical
kinetics, we want to be satisfied that our notion of reacha-
bility at least considers states that can be reached by mass-
action trajectories. Indeed, Lemma 2.8 shows that our no-
tion of reachability is more general than mass-action.

While a thorough discussion of mass-action kinetics is be-
yond the scope of this paper, we remind the reader that
a CRN with rate constants assigned to each reaction de-
fines a mass-action ODE system with a variable for each
species. Each reaction contributes a term to the ODEs for
all the species participating in it (except catalysts that are
unchanged in the reaction). The term from reaction α ap-
pearing in the ODE for x is the product of: the rate constant,
the reactant concentrations, and the net stoichiometry of x
in α. For example, the CRN

X +X → C

C +X → C + Y

corresponds to ODEs:

ẋ = −2k1x
2 − k2cx

ċ = k1x
2

ẏ = k2cx

where k1, k2 are the rate constants of the two reactions. We
restrict our attention to CRNs whose mass-action trajecto-
ries are well-defined at all times t ≥ 0, and where concen-
trations remain finite for all finite t.7

Definition 2.5. A state d is mass-action reachable from
c if there are non-zero rate constants such that the corre-
sponding mass-action trajectory starting in c passes through
d, or approaches d as t→∞.

In order to prove Lemma 2.8 we need to introduce the
notion of a siphon from the Petri net literature. This no-
tion will be used, as well, to prove negative results in later
sections. Let C = (Λ, R) be a CRN. A siphon is a set of
species Ω ⊆ Λ such that, for all reactions α = (r,p) ∈ R,
[p] ∩ Ω 6= ∅ =⇒ [r] ∩ Ω 6= ∅, i.e., every reaction that pro-
duces an element of Ω requires a positive concentration of
an element of Ω to be applicable. The following lemma,
due to Angeli, De Leenheer, and Sontag [3], shows that
this is equivalent to the notion that “the absence of Ω is
forward-invariant” under mass-action: if all species in Ω are
absent, then they can never again be produced (under mass-
action).8

7Although mass-action systems are free of many patholo-
gies of more general dynamical systems, there are mass-
action CRNs that reach infinite concentration in finite time:
e.g. 2X → 3X
8It may appear obvious that if the rates of all reactions pro-
ducing a particular species are zero, the species cannot be
produced. However, this is a rather deep fact about mass-
action ODEs. Consider the CRN 2X → 3X. The corre-
sponding mass-action ODE is ẋ = x2, and has the property
that if you start with x(0) = 0, it cannot become positive.

However, the very similar non-mass-action ODE ẋ = x1/2

has a perfectly valid solution x(t) = t2/4 which starts at 0
but becomes positive, despite the fact that at t = 0, ẋ = 0.



Lemma 2.6 ( [3]). Let Ω ⊆ Λ be a set of species. Then
Ω is a siphon if and only if, for any state c such that Ω∩[c] =
∅ and any state d that is mass-action reachable from c,
Ω ∩ [d] = ∅.

We show that the same holds true for segment-reachability.

Lemma 2.7. Let Ω ⊆ Λ be a set of species. Then Ω is a
siphon if and only if, for any state c such that Ω ∩ [c] = ∅
and any state d such that c d, Ω ∩ [d] = ∅.

Proof. Suppose Ω is a siphon, let c be a state such that
[c] ∩ Ω = ∅, and let d be such that c  d. Every straight
line with end points bi and bi+1 in the path from c to d
is expressible as a sum of reaction vectors for reactions ap-
plicable in bi. Assuming inductively that [bi] ∩ Ω = ∅,
the definition of siphon gives that [bi+1] ∩ Ω = ∅ as well.
Therefore d ∩ Ω = ∅.

To show the reverse direction, suppose that Ω is not a
siphon. Then there is a reaction α = (r,p) such that [p]
contains an element S ∈ Ω, but [r] ∩ Ω = ∅. Then from
any state c such that [c] = Λ \ Ω (i.e., all species not in Ω
are present), α is applicable. Running α produces S, hence
results in a state d such that c d with Ω∩ [d] 6= ∅, since
S ∈ Ω.

Lemma 2.8. If d is mass-action reachable from c, then
c d.

Proof. This proof is similar to the proof of Lemma 2.4;
the main difference is that we need to define the “reaction
fluxes” each reaction experiences on the mass-action trajec-
tory from c to d, and that we need to find an ordering on
those reactions with positive flux that allows us to apply
them one-by-one in order to show c m+1 d.

First, suppose d is reached in finite time tf . The tra-
jectory followed by mass-action kinetics to get from c to d
defines a differentiable curve ρ : [0, tf ] → Rn≥0. Let ρ′ = dρ

dt
be the corresponding mass-action differential equations. Let
the reactions R be α0, α1, . . . . Let fj : [0, tf ] → R≥0 be the
“instantaneous flux” through the j’th reaction at time t. In
other words, ρ′(t) =

∑
j fj(t)vj , where index j ranges over

all reactions, vj represents the j’th reaction vector (p− r if
αj = (r,p), i.e., the j’th column of M).

By the fundamental theorem of calculus,

d− c = ρ(tf )− ρ(0) =

∫ tf

0

ρ′(t)dt

=

∫ tf

0

∑
j

fj(t)vjdt =
∑
j

vj

∫ tf

0

fj(t)dt,

Let Fj =
∫ tf

0
fj(t)dt be the total flux through the j’th reac-

tion. Then d = c +
∑
j∈P Fjvj .

If d is not reached in finite time, then by the definition
of mass-action reachability, d = limtf→∞ ρ(tf ). Now, if we

define Fj =
∫∞

0
fj(t)dt as above, the flux Fj could be infinite

(consider X −⇀↽−Y , which approaches the point with equal
concentrations of X and Y but has infinite flux through
each reaction in the limit). Instead, we observe that for
each species S being produced by one reaction whose flux
is going to infinity, there must be a corresponding reaction
consuming S whose flux is also going to infinity, for d(S)
to be finite. Therefore we can find finite, positive values for
each Fj such that d = c +

∑
j∈P Fjvj as above.

Let Rρ = { αj ∈ R | Fj > 0 } be the reactions that oc-
curred with strictly positive flux along the curve ρ. We claim
that there is an ordering ≺ of reactions in Rρ, such that for
any reaction α = (r,p), [r] ⊆ [c] ∪

⋃
α′=(r′,p′)≺α[p′].

Let S0, . . . ,Sl ⊆ Λ be a finite sequence of sets of species,
and β1, . . . , βl ∈ Rρ be a finite sequence of reactions which
are generated as follows. Let S0 = [c]. Given S0, . . . ,Si−1

and β1, . . . , βi−1, let βi be a new reaction in Rρ whose reac-
tants are in Si−1, and then form Si by adding the products
of βi to Si−1. Let S be the final Sl such that we can no
longer extend the sequence. Call the reactions appearing in
the list of β’s processed. If all of the reactions in Rρ are pro-
cessed, then the order in which they are processed can define
the ordering ≺. We now claim that indeed all reactions in
Rρ will be processed.

We proceed by contradiction: we argue that the existence
of an unprocessed reaction in Rρ contradicts Lemma 2.6.
Let S = Λ \ S. For all unprocessed reactions in Rρ, at least
one reactant is in S. We also know that for all processed
reactions in Rρ, their products are not in S. Thus S is a
siphon for the CRN consisting of reactions in Rρ. Let S∗

be a reactant of the unprocessed reaction in Rρ, and let F ∗

be its total flux. We know that F ∗ > 0, and thus there
must be a point in the mass-action trajectory where S∗ has
positive concentration. However, c is zero on the siphon S,
and S∗ ∈ S. This violates Lemma 2.6.

The sequence β1, . . . , βl gives an ordering ≺ on reactions
in Rρ. Using this ordering, the remainder of the proof is
identical to the proof of Lemma 2.4.

Lemma 2.8 shows that our definition of reachability is at
least as general as mass-action kinetics. In the other direc-
tion, ultimately we must appeal to intuition to justify that
our definition does not reach too far. Our intuition says that
the following properties are required of any reasonable no-
tion of reachability: (1) concentrations must be nonnegative
in all reachable states, (2) a reaction cannot execute in any
state in which some reactant is 0,9 (3) the relation should
be reflexive, transitive, and “respect addition” (if x → y,
then for all c, x+c→ y+c, since the presence of additional
chemicals should not prevent reactions from being possible).
Our definition was the most general one we could conceive
that satisfied these properties.

Segment-reachability will serve as our main notion of reach-
ability. Hence, throughout the rest of the paper, we say d
is reachable from c, written c→ d, if c d.

2.4 Stable computation
In this section, we use our notion of reachability intro-

duced above to formally define our notion of rate-independent
computation. Intuitively, devious rate laws might take the
system along trajectories anywhere in the reachable space.
For the computation to be correct despite the rate laws, it
must be able to reach a state with the final correct output
from any reachable state. Further, in this setting an output
can reasonably be called final only if no rate law can falsify
it.

First, to formally define what it means for such a CRN to
compute a function, we must first single out some aspects of

9In particular, we want siphons to behave reasonably in that
their absence is forward-invariant; i.e., that Lemmas 2.6
and 2.7 should apply to any reasonable notion of reacha-
bility.



the CRN as semantically meaningful. Formally, a chemical
reaction computer (CRC) is a tuple C = (Λ, R,Σ, Y ), where
(Λ, R) is a CRN, Σ ⊂ Λ, written as Σ = {X1, . . . , Xk},10 is
the set of input species, and Y ∈ Λ \Σ is the output species.

Definition 2.9. A state o ∈ RΛ
≥0 is output stable if,

for all o′ such that o → o′, o(Y ) = o′(Y ), i.e., once o is
reached, no reactions can change the concentration of the
output species Y .

Definition 2.10. Let f : Rk≥0 → R≥0 be a function11 and
let C be a CRC. We say that C stably computes f if, for all
x ∈ Rk≥0, for all c such that x → c, there exists an output
stable state o such that c→ o and o(Y ) = f(x).

2.5 Dual-rail representations
In general, the output species of an upstream CRN may

be used as the inputs to a downstream CRN if the upstream
CRN only produces but never consumes the output species.
We say that such a CRN computes its output monotonically.
This is impossible for general stable CRNs. For example,
any CRN computing the function f(x1, x2) = x1 − x2 must
necessarily be able to consume its output species in order to
account for some amount of species X2 that has not yet re-
acted. Therefore, some of our CRNs represent their output
Y in a “dual-rail” fashion as the difference of two species Y +

and Y −, both of which are only produced but never con-
sumed by the CRN. Since these outputs are given as input
to a downstream subroutine CRN, the downstream CRN
must also be designed to accept inputs in this same dual-
rail representation. Furthermore, representing values in this
way allows us to take negative inputs and produce negative
outputs, using only nonnegative concentrations, represent-
ing for example a negative output by a higher concentration
of Y − than Y +.

Formally, let f : Rk → R be a function. A function
f̂ : R2k → R2 is a dual-rail representation of f if, for all
x+,x− ∈ Rk, if (y+, y−) = f̂(x+,x−), then f(x+ − x−) =

y+ − y−. In other words, f̂ represents f as the difference
of its two outputs y+ and y−, and it works for any input
pair (x+,x−) whose difference is the input value to f . We
can define a CRC to stably compute such a function in the
same manner as in Section 3.2, but having input species
X+

1 , X
−
1 , X

+
2 , X

−
2 , . . . , X

+
k , X

−
k , . . . , and two output species

Y + and Y −.

10We assume a canonical ordering of Σ = {X1, . . . , Xk} so
that a vector x ∈ Rk≥0 (i.e., an input to f) can be viewed

equivalently as a state x ∈ RΣ
≥0 of C (i.e., an input to C).

Also, we have defined valid initial states to contain only the
input species Σ; other species must have initial concentra-
tion 0. Our results would change slightly if we relaxed this
assumption; however, considering any species S 6∈ Σ as an
“auxiliary input”, the result would remain that what is com-
puted is a (piecewise) linear function of those species present
initially. Since the initial value of non-input species would
be constant across all valid initial states, rather than linear
functions f(x) =

∑k
i=1 aix(i), we would instead deal with

affine functions f(x) = c+
∑k
i=1 aix(i), where the constant

c would depend only on the initial concentrations of non-
input species.

11Our results extend easily to functions f : Rk → Rl, i.e.,
whose output is a vector of l real numbers. This is because
such a function is equivalently l separate functions fi : Rk →
R.

Definition 2.11. We say that a CRC stably dual-computes
f : Rk → R if it stably computes a dual-rail representation
f̂ : Rk × Rk → R× R of f .

Note that if a CRC monotonically outputs Y + and Y − ac-
cording to the dual-rail convention, and the output value is
never negative, then it can be trivially modified to produce
its output according to the direct computation convention
(Def. 2.10) by adding the reaction Y + +Y − → ∅. Note that
a single function has an infinite number of dual-rail represen-
tations. We require only that a CRN exists to compute one
of them to say that the function is stably dual-computable
by a CRN.

3. FUNCTIONS OVER REALS USING DUAL-
RAIL REPRESENTATION

A function f : Rk → R is rational linear if there exist
a1, . . . , ak ∈ Q such that f(x) =

∑k
i=1 aix(i). A function

f : Rk → R is piecewise rational linear if there is a finite
set of partial rational linear functions f1, . . . , fp : Rk 99K R,
with

⋃p
j=1 dom fj = Rk, such that, for all j ∈ {1, . . . , p}

and all x ∈ dom fj , f(x) = fj(x). In this case, we say that
f1, . . . , fp are the components of f .

The following is the main theorem of this paper.

Theorem 3.1. A function f : Rk → R is stably dual-
computed by a CRN if and only if it is continuous and piece-
wise rational linear.

We prove each direction of Theorem 3.1 separately via
Lemmas 3.3 and 3.13.

3.1 Continuous piecewise rational linear func-
tions are computable

We require the following theorem, due to Ovchinnikov [15],
which characterizes continuous piecewise linear functions in
a way that is conducive to computation by CRNs.

Theorem 3.2 ( [15]). Let D ⊆ Rk be convex. For ev-
ery continuous piecewise linear function f : D → R with
components f1, . . . , fp, there exists a family S1, . . . , Sq ⊆
{1, . . . , p} with Si 6⊆ Sj if i 6= j, such that, for all x ∈ D,
f(x) = maxi∈{1,...,q}minj∈Si fj(x).

The following lemma shows that any continuous piecewise
rational linear function is stably computable by a CRN (in
fact, with monotonic production of outputs in a dual-rail
representation).

Lemma 3.3. Let D ⊆ Rk be convex, and let f : D → R
be a continuous piecewise rational linear function. Then f
is monotonically stably dual-computed by a CRN.

Proof. By Theorem 3.2, it suffices to show how to com-
pute a dual-rail representation of any rational linear func-
tion, a dual-rail representation of the minimum function
with two inputs, and a dual-rail representation of the maxi-
mum function with two inputs. The latter two can be com-
posed in a tree of depth log l to compute the minimum or
maximum functions with input arity l.

Let g : Rk → R be a rational linear function g(x) =∑k
i=1 aix(i). By appropriate integer arithmetic, there exist

n1, . . . , nk ∈ Z and d ∈ Z+ such that g(x) = 1
d

∑k
i=1 nix(i).



The following reactions compute a dual-rail representation
of g with input species X+

1 , . . . , X
+
k , X

−
1 , . . . , X

−
k and out-

put species Y +, Y −. For each i such that ni > 0, add the
reactions

X+
i → niW

+

X−i → niW
−

For each i such that ni < 0, add the reactions

X+
i → |ni|W−

X−i → |ni|W+

To divide the values of W− and W+ by d, add the reactions

dW+ → Y +

dW− → Y −

To see that this works, for all states c, define xi(c) = c(X+
i )−

c(X−i ), w(c) = c(W+)−c(W−), and y(c) = c(Y +)−c(Y −).
Let i be the initial state. It is routine to check that the re-
actions enforce that for any state c reachable from i,

y(c) +
1

d
w(c) +

1

d

k∑
i=1

nixi(c) =
1

d

k∑
i=1

nixi(i). (3.1)

(The right side is a constant depending only on the initial
state, and each reaction increases one term on the left side
by the same amount it decreases another term.)

If c is output stable, then c(X+
i ) = c(X−i ) = c(W+) =

c(W−) = 0, whence by (3.1) y(c) = 1
d

∑k
i=1 nixi(i), i.e,

the output value of the CRN is the desired rational linear
function of the inputs. Furthermore, observe that from any
reachable state, it is always possible to reach an output sta-
ble state by executing the reactions above to completion
in the order in which they are listed. This shows that a
dual-rail representation of any rational linear function can
be monotonically stably dual-computed by a CRN.

The following reactions monotonically stably compute a
dual-rail representation of min with input species X+

1 , X+
2 ,

X−1 , X−2 and output species Y +, Y −. Add the reactions

X+
1 +X+

2 → Y + (3.2)

X−1 → X+
2 + Y − (3.3)

X−2 → X+
1 + Y − (3.4)

To see that this works, for all states c, define x1(c) =
c(X+

1 )−c(X−1 ), x2(c) = c(X+
2 )−c(X−2 ), and y(c) = c(Y +)−

c(Y −). Let i be the initial state, and let c be a state reach-
able from i. Let c1, c2, and c3 be the amount of reactions
(3.2), (3.3) and (3.4), respectively, that have executed to get
from state i to state c. Then we have x1(i)− c1 + c2 + c3 =
x1(c), x2(i)− c1 + c2 + c3 = x2(c), c1− c2− c3 = y(c), which
implies that x1(i) = x1(c) + y(c), x2(i) = x2(c) + y(c). In
a stable state c, either c(X+

1 ) = 0 or c(X+
2 ) = 0, other-

wise reaction (3.2) is applicable. Further, in a stable state
c, x1(c) = c(X+

1 ) and x2(c) = c(X+
2 ), because c(X−1 ) =

c(X−2 ) = 0 for reactions (3.3) and (3.4) not to be applica-
ble. Thus, x1(c) = 0 or x2(c) = 0.

Thus, x1(i) = y(c) and x2(i) = x2(c) + y(c), or x2(i) =
y(c) and x1(i) = x1(c) + y(c). So if x1(i) < x2(i), then
it must be the first case (since x2(c) > 0). Otherwise, the
second case holds. This shows that if stable state is reached,
then computation is correct. Finally, observe that from any
reachable state, by executing to completion the last appli-
cable reaction among (3.3) and (3.4), followed by executing

to completion (3.2), we obtain concentration zero of X−1 ,
X−2 , and one of X+

1 or X+
2 , which implies that no reaction

is applicable and the state is output stable.
To monotonically stably compute a dual-rail representa-

tion of max, observe that it is equivalent to computing the
min function with the roles of the “plus” and “minus” species
reversed (which negates the value represented in dual-rail),
since max(x1, x2) = −min(−x1,−x2). In other words, add
the reactions

X−1 +X−2 → Y −

X+
1 → X−2 + Y +

X+
2 → X−1 + Y +

By appropriate renaming of input and output species of the
three types of CRNs described above, they can be composed
to compute f(x) = maxi∈{1,...,q}minj∈Si fj(x) as in Theo-
rem 3.2.

Although not essential to understanding the results of this
paper, we now discuss the behavior of our construction with
regards to mass-action kinetics. The following lemma shows
that our construction actually converges to the correct out-
put value under mass-action no matter how an adversary
might have pushed us initially:

Lemma 3.4. For any input state x, for any state z reach-
able from x, the mass-action trajectory of the CRN of Lemma 3.3
with any non-zero rate constants starting at z converges to
the output stable state in the limit t→∞.

Proof sketch. Our proof strategy is as follows. Using
a Lyapunov function, we show that starting in any state z
(not necessarily even reachable from x), the CRN following
mass-action kinetics converges to a steady-state as t → ∞.
Further, the CRN has the property that for every input
state x, there is exactly one mass-action steady-state that is
segment-reachable from x, and this state happens to be the
output stable state. Since mass-action reachability (even
in the limit) implies segment-reachability by Lemma 2.8,
the convergence to steady-state implies convergence to the
correct output.

We now show how to construct the appropriate Lyapunov
function. The trajectory followed by mass-action kinetics
starting from any state z defines a differentiable curve ρz :
[0,∞) → Rn≥0. Let ρ′z = dρz

dt
be the corresponding mass-

action differential equations. Let fz
j : [0,∞) → R≥0 be

the “instantaneous flux” through the j’th reaction at time t.
(In other words, ρ′z(t) =

∑
j f

z
j (t)vj , where index j ranges

over all reactions, and vj is the j’th column of stoichiom-
etry matrix M.) Our construction has the property that
F z
j =

∫∞
0
fz
j (t)dt (i.e. the total flux through the j’th re-

action) is finite for any starting state z. This follows be-
cause the CRN conserves mass up to multiplicative constants
(due to stoichiometry) and our CRN is “feedforward” in the
sense that there is an ordering on reactions according to
which mass can flow, but it cannot flow back. Thus we
can construct the Lyapunov function L(z) : Rn≥0 → R≥0 as
L(z) =

∑
j F

z
j .

To apply the standard Lyapunov machinery [13], we need
to show three properties of the Lyapunov function: (1) L > 0
everywhere except at a steady-state where L = 0, (2) L
gets arbitrarily large with increasing z, (3) d

dt
L(ρz(t)) ≤

0, and strictly negative everywhere except when ρz(t) is a



steady state. This would guarantee that no matter where
we start, the CRN converges to a steady-state under mass-
action. The first two properties of the Lyapunov function are
easily checked. To show the last property, we observe that
d
dt
L(ρz(t)) =

∑
j
d
dt

∫∞
0
f
ρz(t)
j (t′)dt′ =

∑
j
d
dt

∫∞
t
fz
j (t′)dt′ =∑

j
d
dt

(∫∞
0
fz
j (t′)dt′ −

∫ t
0
fz
j (t′)dt′

)
= −

∑
j f

z
j (t) ≤ 0 and

equal to zero at exactly a steady state.

3.2 Computable functions are continuous piece-
wise rational linear

Let C = (Λ, R,Σ, Y ) be a CRC. We call any siphon Ω
such that (c � Ω = 0) =⇒ (c is output stable) an output
stable siphon. Lemma 3.5 shows the underlying relationship
between output stability and siphons.

Lemma 3.5. Either every state is output stable, or every
state is output unstable, or there is a set of output stable
siphons S such that a state c is output stable if and only if
∃Ω ∈ S such that c � Ω = 0.

We prove some facts about siphons first that will help us
characterize output stability in terms of them.

Lemma 3.6. Let c,d1, . . . ,dl be states such that c→ d1,
. . ., c → dl. Then there exists d such that c → d and
[d] =

⋃l
i=1[di].

Proof. Since c → d1, . . . , c → dl, we have that for all
i ∈ {1, . . . , l}, 1

l
c → 1

l
di. Hence c → 1

l

∑l
i=1 di. Letting

d = 1
l

∑l
i=1 di completes the proof.

The next lemma shows that if a set of species has even a
single state from which none of the species can be produced,
then it is a siphon.

Lemma 3.7. If c is a state and Ω′ is a set of species such
that for all d reachable from c, d � Ω′ = 0, then there exists
a siphon Ω ⊇ Ω′ such that c � Ω = 0.

Proof. There is a unique largest set of species Ω such
that ∀S ∈ Ω, ∃d reachable from c and d(S) > 0, i.e., Ω
is the set of species producible from c. Let d be a state
reachable from c such that, for all S ∈ Ω, d(S) > 0; such a
state exists by Lemma 3.6. Let Ω = Λ \Ω; we must show Ω
is a siphon.

Suppose for the sake of contradiction that Ω is not a
siphon. Then there exists some state c′ with c′ � Ω = 0
(implying [c′] ⊆ [d]), some state d′ reachable from c′, and
S ∈ Ω, such that d′(S) > 0. Let ε > 0 be sufficiently small
that ε ·c′ ≤ d; such an ε exists because [c′] ⊆ [d]. Then ε ·d′
is reachable from ε · c′, and ε · d′(S) > 0. Since ε · c′ ≤ d
and reachability respects addition, this implies that S is pro-
ducible from d (hence from c) as well, implying S ∈ Ω, a
contradiction since we chose S ∈ Ω and Ω ∩ Ω = ∅.

We are now ready to prove Lemma 3.5.

Proof. (of Lemma 3.5) We create the set of siphons as
follows. Let {rj = (rj ,pj)}j be the set of all reactions that
change Y (consume or produce; i.e., rj(Y ) 6= pj(Y )). We
construct sets of species {Ω′k}k by taking one reactant from
each reaction in every possible way (i.e., the set of subsets of
species { Ω′k ⊆ Λ | (∀j) Ω′k ∩ rj 6= ∅ }). For each possible
siphon Ω such that Ω ⊇ Ω′k, add Ω to S. It is easy to see

that if c is zero on some siphon Ω ∈ S then it is output
stable.

For the other direction: Let O(c) = { Ω′k | c � Ω′k = 0 }.
If in some state c, we have O(c) = ∅, then there is a reaction
rj that changes Y and is applicable in c. Then Y can change
by this reaction and c cannot be output stable. So for output
stable c, O(c) is non-empty. Now let d1, . . . ,dl be some
states reachable from c such that if c→ d then ∃i, O(di) =
O(d) (i.e. these states cover the whole variety of O(di)’s).
Lemma 3.6 implies that if ∩li=1O(di) = ∅ then c→ d such
that O(d) = ∅. Thus, for an output stable c, at least one of
the original sets Ω′k ∈ O(c) stays zero on all states reachable
from c. This implies that there is some siphon Ω ∈ S that
includes Ω′k and c � Ω = 0 (by Lemma 3.7).

Recall that we write the set of reactions as R = {α1, α2,
. . ., αm}.

Definition 3.8. Let s = (R1, . . . , Rl) ∈ P(R)l denote a
sequence of subsets of reactions. Say that c →s d if c =
b0 →1

u1
b1 →1

u2
b2 →1

u3
. . . →1

ul
bl = d, where, for each

i ∈ {1, . . . , l} and j ∈ {1, . . . ,m}, ui(j) > 0 ⇐⇒ αj ∈ Ri.

In other words, d is reachable from c via l straight lines, in
which the i’th straight line is defined by a strictly positive
weighted sum of reactions in Ri.

Let Xs(Ω) = {x ∈ RΛ
≥0

∣∣ (∃o) x →s o and o � Ω = 0}
denote those states from which Ω is drainable (thus the
reached state is output stable since Ω is an output siphon)
via straight lines respecting s.

Note that the following lemma concerns direct stable com-
putability.

Lemma 3.9. Let f : Rk≥0 → R≥0 be stably computed by
a CRC C = (Λ, R,Σ, Y ). Let Ω be an output stable siphon
and let s = (R1, . . . , Rl) ∈ P(R)l for some l ∈ N. Then f
restricted to inputs in Xs(Ω) is rational linear.

Proof. By the definition of output stable siphon, every
state o such that o � Ω = 0 is output-stable. By the stability
of C, every such state o reachable from a particular initial
state x must have the same value of y = o(Y ) = f(x).

By the definition of Xs(Ω), an output stable state o is
reachable from x, with o � Ω = 0, via straight-line seg-
ments respecting s. Then by Definition 3.8, there are states
b0,b1, . . . ,bl ∈ Rn≥0 such that x = b0 →1

u1
b1 →1

u2
b2 →1

u3

. . . →1
ul

bl = o, where, for each i ∈ {1, . . . , l} and j ∈ Ri,
ui(j) > 0 ⇐⇒ αj ∈ Ri.

We claim that the condition“x ∈ Xs(Ω)” is equivalent to a
conjunction of linear inequalities (some strict and some non-
strict). The fact that each bi →1

ui+1
bi+1 is captured by the

inequalities bi(S) > 0 for each species S that appears as a
reactant of some reaction in Ri, and to the linear equations
bi = bi−1 + Mui (where M is the reaction stoichiometry
matrix from Definition 2.1). The fact that all concentrations
must be nonnegative corresponds to the linear inequalities
bi ≥ 0. The fact that all reactions must happen in the for-
ward direction (recall we represent reversible reactions such
as A
B as two irreversible reactions A→ B and B → A)
corresponds to the linear inequalities ui ≥ 0. The fact that
the siphon Ω is drained corresponds to the linear inequal-
ity o(S) ≤ 0 for each S ∈ Ω, together with the existing
constraint o ≥ 0.

These equations and inequalities can be expressed as a
single system of linear inequalities Az ≥ / > 0, (i.e.,



some strict and some non-strict inequalities) where A is a
constant rational matrix depending only on the constants M
and Ω, and z is a single vector of unknowns corresponding
to all the unknowns above, namely x (the initial species
concentrations subject to the constraint that all non-input
species start at 0), o (the final species concentrations subject
to the constraint that all siphon species end up at 0), and
the various ui’s (the fluxes through each reaction to get from
bi to bi+1), and the bi’s.

These inequalities define a convex subset S of Rd for some
constant d. Let G ⊆ Rk+1 be the projection of S to the
(k + 1)-dimensional subspace corresponding to x and y =
o(Y ). G is the graph of the function y = f(x) restricted to
inputs x ∈ Xs(Ω). Since S is convex, G is also convex. We
claim that G must be a subset of a k-dimensional rational
hyperplane. For the sake of contradiction, suppose not. The
matrix defining the set S was rational, so G cannot be a
subset of a k-dimensional irrational hyperplane. Then there
are k + 1 non-coplanar points in G. Since G is convex, it
contains the entire (k+1)-dimensional convex hullH of these
points. Since H is a (k + 1)-dimensional convex polytope,
it contains two different values of y corresponding to the
same value of x, contradicting the fact that only a single
y value exists in all output-stable states reachable from x.
This establishes the claim that G must be a subset of a k-
dimensional rational hyperplane.

Since the graph of f is a subset of a k-dimensional rational
hyperplane, it is a rational affine function. Since there are
no reactions of the form ∅ → . . ., Y cannot be produced
from the initial state x = 0 (nor can any other species),
so f(0) = 0. Therefore this hyperplane passes through the
origin, so it defines a rational linear function.

In Lemma 3.9, the reason that we restrict attention to a
single output siphon Ω and a single sequence s of subsets
of reactions is as follows. If different output siphons are
drained, then different linear functions may be computed by
the CRC. For example, X1 +X2 → Y computes f(x1, x2) =
x1 if siphon {X2} is drained and f(x1, x2) = x2 if siphon
{X1} is drained. Further our proof technique relies on fixing
s to obtain convexity. If we do not force a particular set of
reactions to occur with positive flux on each line segment,
then to logically express the condition that Ω is drainable
from state x would require that we specify, for each each
line segment and each species S, that either S has positive
concentration at the start, or S is not a reactant used in
that line segment. This would imply that the condition of
Ω being drainable from x is expressible as a conjunction of
disjunctions of linear inequalities, which is not necessarily a
convex set as required in the proof.

Lemma 3.10. Let f : Rk → R be stably dual computed
by a CRC. Let Ω be an output stable siphon and let s =
(R1, . . . , Rl) ∈ P(R)l for some l ∈ N. Then f restricted
to inputs that have a dual rail representation in Xs(Ω) is
rational linear.

Proof. A dual-rail computing CRC can be thought to di-
rectly compute two separate functions f̂+, f̂− : R2k

≥0 → R≥0

such that f̂ = f̂+− f̂− where f̂ is a dual rail representation
of f . By Lemma 3.9 we know that f̂+ and f̂− are rational
linear when restricted to Xs(Ω). The lemma then follows
because rational linearity is closed under subtraction.

Lemma 3.11. Let Ω be an output siphon and R′ ⊆ R be
a subset of reactions. Let a1,a2, . . . ,∈ X(R′)(Ω) be a con-
vergent sequence of states, where a = limi→∞ ai, i.e., Ω
is drainable from every ai, via a single straight line segment
that uses precisely reactions from R′. Suppose [a] = Λ. Then
a ∈ X(R′)(Ω).

Proof. As in the proof of Lemma 3.9, the condition ai ∈
X(R′)(Ω) is equivalent to the condition that ai satisfies a set
of linear inequalities. Some inequalities may be strict; our
goal is to show we can remove the strict inequalities so that
the remainder define a closed set.

Unlike Lemma 3.9, because [a] = Λ, every reaction in R
(including those in R′) is applicable to a. Thus all states
reachable from a are reachable via a single straight line. For
all ε > 0, let Bε(a) = {x ∈ Rn≥0 | (∀S ∈ Λ) |x(S)−a(S)| ≤ ε}
be the ball of (L∞) radius ε around a. For any 0 < ε <
minS∈Λ a(S), x ∈ Bε(a) =⇒ [x] = Λ, since being within ε
of a implies that all species are present. Furthermore, note
that this condition is expressible using non-strict inequali-
ties.

Thus the condition that x ∈ X(R′)(Ω) ∩ Bε(a) is express-
ible as a conjunction of linear inequalities, without using the
strict inequality bi(k) > 0 enforcing that reactants of reac-
tions in R′ are present. Hence we are left with only nonstrict
inequalities, which define a closed set. Thus X(R′)(Ω)∩Bε(a)
is a closed set. Since a = limi→∞ ai, for all but finitely many
i, ai ∈ X(R′)(Ω)∩Bε(a). Since this set is closed, it contains
all its limit points, whence a ∈ X(R′)(Ω).

Note that the hypothesis [a] = Λ is necessary. Otherwise,
consider the reactions A→ C, A+B → ∅, and F +C → C,
with ai(C) = 0, ai(F ) = 1, ai(B) = 1, and ai(A) approach-
ing 1 from above as i → ∞ (whence C 6∈ [a]). Then the
siphon Ω = {A,B, F} is drainable from each ai by running
A → C until A and B have the same concentration, then
running the other two reactions to completion. However,
a(A) = a(B), so running any amount of reaction A → C
prevents reaction A + B → ∅ from draining B. Therefore
a 6∈ X(R′)(Ω) but ai ∈ X(R′)(Ω) for all i.

The following lemma concerns direct computability and
will be useful for both direct and dual computation by CRCs.
A function f : Rk≥0 → R≥0 is positive-continuous if, for
all U ⊆ {1, . . . , k}, f is continuous on the domain DU ={

x ∈ Rk≥0

∣∣ (∀i ∈ {1, . . . , k}) x(i) > 0 ⇐⇒ i ∈ U
}
. In other

words, f is continuous on any subset D ⊂ Rk≥0 that does not
have any coordinate i ∈ {1, . . . , k} that takes both zero and
positive values in D.

Lemma 3.12. Let f : Rk≥0 → R≥0 be stably computed by
a CRC. Then f is positive-continuous.

Proof. Let U ⊆ {1, . . . , k}, let x ∈ DU , and let x1,
x2, . . . ∈ DU be an infinite sequence of points such that
limi→∞ xi = x. It suffices to show that limi→∞ f(xi) =
f(x) — i.e. that f is continuous on DU . We take xi and
x equivalently to be the initial state of the CRC giving the
concentrations of species in Σ = {X1, . . . , Xk}.

In analyzing the behavior of the CRC on states in DU ,
it will help us to consider the functionally equivalent CRC
in which we remove species that are not producible from
states in DU . For the purposes of this proof we consider
this reduced CRC, and let Λ be the corresponding reduced
set of species.



Let δ = mini∈U x(i) be the smallest concentration of an
initially positive species. Let d ∈ Rk≥0 be the state d(Xi) =
δ for all i ∈ U and d(S) = 0 for all other species S. By
an argument similar to the proof of Lemma 2.4, we can
reach from d by at most m straight line segments to a state
e such that [e] = Λ. Because of the way we defined d,
xi ≥ d and x ≥ d. Thus, letting ai = xi + e − d, we
have that xi →s ai for some fixed s, and [ai] = Λ. Further,
a = limi→∞ ai = (limi→∞ xi) + e − d = x + e − d. Thus,
x→s a and [a] = Λ.

Since there are a finite number of output siphons, by the
pigeonhole principle, one such output siphon Ω must be
drainable from infinitely many such states ai (via a straight
line as observed previously since [ai] = Λ). Let oi be an
output-stable state such that ai →1 oi.

There is a finite number of subsets of reactions that may
occur in the final straight line segment from ai to oi with
strictly positive flux, so one (call it R′) must repeat infinitely
often. We used an identical prefix of straight line segments s
for all i to reach from xi to ai. Letting s′ be s concatenated
with R′, we have that s′ is infinitely often the sequence of
subsets of reactions with strictly positive flux, i.e., for in-
finitely many i, xi →s ai →1

(R′) oi and the same siphon Ω
is drained in all these oi.

Let this infinite subsequence of ai states agreeing on Ω
and R′ (and thus s′) be denoted a′1,a

′
2, . . . ∈ Rn≥0. Let

x′1,x
′
2, . . . ∈ Rk be the initial states corresponding to the

subsequence (a′i) (i.e., x′i →s a
′
i as described before).

Clearly, x′i ∈ Xs′(Ω). Further, observe that the limit
limi→∞ a′i = limi→∞ ai = a, and recall [a] = Λ. Since
a′i ∈ X(R′)(Ω) and [a] = Λ, this implies by Lemma 3.11,
a ∈ X(R′)(Ω). Since (x′i) is a infinite subsequence of a se-
quence converging to x, x = limi→∞ x′i. Since x →s a and
a ∈ X(R′)(Ω), it follows that x ∈ Xs′(Ω).

By Lemma 3.9, f is rational linear – hence continuous – on
inputs in Xs′(Ω). Because x,x′1,x

′
2, . . . ∈ Xs′(Ω), the conti-

nuity on inputs in Xs′(Ω) implies that f(x) = limi→∞ f(x′i),
which equals limi→∞ f(xi) since x′i is a subsequence of xi.
Since x was arbitrary and x1,x2, . . . was an arbitrary se-
quence converging to x, it follows that f is continuous.

Lemma 3.13. Let f : Rk → R be stably dual-computable
by a CRC. Then f is continuous and piecewise rational lin-
ear.

Proof. Let C be the CRC stably computing a dual-rail
representation f̂ of f , with input species X+

1 , . . ., X+
k , X−1 ,

. . ., X−k and output species Y +, Y −.
Similarly to the proof of Lemma 3.10, a dual-rail comput-

ing CRC can be thought to directly compute two separate
functions f̂+, f̂− : R2k

≥0 → R≥0 such that f̂ = f̂+− f̂− where

f̂ is a dual rail representation of f . Let δ > 0. Then for any
input x′ ∈ Rk to f , there is an initial state x ∈ RΣ

≥δ repre-

senting x′. Any sequences inputs x′1,x
′
2, . . . ∈ Rk to f such

that limi→∞ x′i = x′ are similarly represented by a sequence
x1,x2, . . . ∈ RΣ

≥0 of initial states of the CRC such that
limi→∞ xi = x has the property that all but finitely many xi
obey [xi] = Σ. By Lemma 3.12, f is continuous on the do-
main in which all input species are positive, which includes
the input represented by x and the inputs represented by all
but finitely many of xi. Therefore, f(x′) = limi→∞ f(x′i),
so f is continuous.

It remains to show that f is piecewise rational linear. If
x is an initial state and x → o where o is output stable,

then by Lemma 2.4, x m+1 o. Let Ω be an output siphon
such that o � Ω = 0, which exists by Lemma 3.5. Let s =
(R1, . . . , Rl) ∈ P(R)l, where x →s o, where by Lemma 2.4
we may assume l ≤ m + 1. By Lemma 3.10, this value of
y is a rational linear function of x. Since there are a finite
number of output siphons and sequences in P(R)≤m+1, this
establishes the piecewise rational linearity of f .

4. FUNCTIONS OVER NONNEGATIVE RE-
ALS USING DIRECT REPRESENTATION

In this section, we show an analogous result to Theo-
rem 3.1 for CRNs that compute functions directly, instead of
computing a dual-rail representation. As a result, since con-
centrations are nonnegative, we may only compute functions
f : Rk≥0 → R≥0. Interestingly, the class of computable func-
tions expands slightly to include some discontinuous func-
tions, specifically the positive-continuous functions defined
in Section 3.

Theorem 4.1. A function f : Rk≥0 → R≥0 is stably com-
putable by a CRN if and only if f is positive-continuous and
piecewise rational linear.

We prove each direction of Theorem 4.1 separately via
Lemmas 4.2 and 4.4.

4.1 Positive-continuous piecewise rational lin-
ear functions are computable

Lemma 4.2. Every positive-continuous piecewise linear func-
tion f : Rk≥0 → R≥0 is stably computable by a CRN.

Proof. The CRN will have input species X1, . . . , Xk and
output species Y +. (While it will be helpful to think of a
Y + and Y − species, and during the computation the output
will be encoded in their difference, the output of the CRC
is only the Y + species as per direct computability.)

Let f : Rk≥0 → R≥0 be a positive-continuous piecewise
linear function. Since it is positive-continuous, there exist
2k domains

DU = {x ∈ Rk≥0 | (∀i ∈ {1, . . . , k}) x(i) > 0 ⇐⇒ i ∈ U},

one for each subset U ⊆ {1, . . . , k}, such that f � DU is
continuous on DU . Define fU = f � DU .

Since each DU is convex, by Lemma 3.3, there is a CRN
CU monotonically computing a dual-rail representation f̂U :
Rk≥0 × Rk≥0 → R × R of fU . By letting the initial concen-

tration of the “minus” version of the i’th input species X−i
be 0, we convert CU into a CRN that directly computes an
output dual-rail representation of fU .

The intuition of the proof is as follows. The case U = ∅
is trivial, as we will have no reactions of the form ∅ → A
for any species A, so if no species are initially present, no
species (including Y +) will ever be produced. For each non-
empty U , we compute fU independently in parallel by CRN
CU , modifying each reaction producing Y + to produce an
equivalent amount of species YU , which is specific to U . For
each such U there are inactive and active “indicator” species
JU and IU . In parallel, there are reactions that will activate
indicator species IU (i.e. convert JU to IU ) if and only if
all species Xi are present initially for each i ∈ U . These IU
species will then counteract the effect of any CRN computing
fU′ for U ′ ⊂ U by catalytically converting all YU′ to Y −. If



U is the complete set of indices of non-zero inputs, then only
CRNs computing fU′ for subsets U ′ ⊂ U have produced any
amount of Y +, so eventually all of these will be counteracted
by IU .

Formally, construct the CRN as follows. For each i ∈
{1, . . . , k}, add the reaction Xi → I{i}+J{i}+JU1 +XU1

i +

JU2 +XU2
i +. . .+JUl +X

Ul
i , where U1, U2, . . . , Ul are all sub-

sets of {1, . . . , k} that are strict supersets of {i}. The extra
versions of Xi are used as inputs to the parallel computation
of each fU . We generate the inactive indicator species from
the input species in this manner, because the CRN is not
allowed to start with anything other than the input.

The indicator species are activated as follows. For each
nonempty U,U ′ ⊆ {1, . . . , k} such that U 6= U ′, add the
reaction IU + IU′ + JU∪U′ → IU + IU′ + IU∪U′ .

For each nonempty U ⊆ {1, . . . , k}, let CU be the CRN
computing an output dual-rail representation of fU (i.e. dual
rail on the output). Modify CU as follows. Rename the out-
put species of CU to Y + and Y −, i.e., all parallel CRNs share
the same output species. For each reaction producing the
output species Y +, add the product Y +

U (which is a species
specific to CU ) with the same net stoichimetry. Similarly,
for each reaction producing the output species Y −, add the
product Y −U with the same net stoichimetry. For instance,
replace the reaction A+B → Y + by the reaction A+B →
Y ++Y +

U , and replace the reaction A+Y + → B+4Y + by the
reaction A+Y + → B+4Y + +3Y +

U . Therefore the eventual
amount of Y +

U is equal to the total amount of Y + produced
by CU , and similarly for Y −U and Y −. For each U ′ ⊂ U , add
the reactions IU + Y +

U′ → IU + Y −, IU + Y −U′ → IU + Y +.
Also, for each reaction in CU , add IU as a catalyst. This
ensures that CU cannot execute any reactions (and there-
fore cannot produce any amount of Y + or Y −) unless all
species Xi for i ∈ U are present. Finally, add the reaction
Y + + Y − → ∅.

The following lemma shows that our construction actually
converges to the correct output value under mass-action ki-
netics; it follows similarly to Lemma 3.4.

Lemma 4.3. For any input state x, for any state z reach-
able from x, the mass-action trajectory of the CRN of Lemma 4.2
with any non-zero rate constants starting at z converges to
the output stable state in the limit t→∞.

4.2 Computable functions are positive-continuous
piecewise rational linear

In this section we prove that stable CRNs can compute
only the positive-continuous piecewise linear functions.

Lemma 4.4. Let f : Rk≥0 → R≥0 be stably computable by
a CRC. Then f is positive-continuous and piecewise rational
linear.

Proof. Let C be the CRC stably computing f , with input
species X1, . . . , Xk and output species Y . By Lemma 3.12,
f is positive-continuous.

It remains to show that f is piecewise rational linear. If
x is an initial state and x → o where o is output stable,
then by Lemma 2.4, x m+1 o. Let Ω be an output siphon
such that o � Ω = 0, which exists by Lemma 3.5. Let s =
(R1, . . . , Rl) ∈ P(R)l, where x →s o, where by Lemma 2.4
we may assume l ≤ m + 1. By Lemma 3.9, this value of
y is a rational linear function of x. Since there are a finite
number of output siphons and sequences in P(R)≤m+1, this
establishes the piecewise rational linearity of f .
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