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Problem Definition

We use the abstract tile assembly model of Winfree [6], which models the aggregation
of monomers called tiles that attach one at a time to a growing structure, starting from
a single seed tile, in which bonds (“glues”) on the tile are specific (glues only stick to
glues of the same type on other tiles) and cooperative (so that multiple weak glues are
necessary to attach a tile). The general idea of randomized self-assembly is to use the
inherent randomness of self-assembly to help the assembly process. If multiple types
of tiles are able to bind to a single binding site, then we assume that their relative
concentrations determine the probability that each succeeds. With careful design, we
can use the same tile set to create different structures, by changing the concentrations
to affect what is likely to assemble. Another use of randomness is in reducing the
number of different tile types required to assemble a shape.

Definitions

A shape is a finite, connected subset of Z2. A tile type is a unit square with four sides,
each side consisting of a glue label (finite string) and a nonnegative integer strength.
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We assume a finite set T of tile types, but an infinite number of copies of each tile
type, each copy referred to as a tile. An assembly is a positioning of tiles on the integer
lattice Z2; i.e., a partial function α : Z2 99K T . Write α v β to denote that α is a
subassembly of β, which means that dom α ⊆ dom β and α(p) = β(p) for all points
p ∈ dom α. In this case, say that β is a superassembly of α. Two adjacent tiles in an
assembly interact if the glue labels on their abutting sides are equal and have positive
strength. Each assembly induces a binding graph, a grid graph whose vertices are tiles,
with an edge between two tiles if they interact. The assembly is τ -stable if every cut of
its binding graph has strength at least τ , where the weight of an edge is the strength
of the glue it represents (energy τ is required to separate the assembly). The τ -frontier
∂τα ⊂ Z2 \dom α of α (or frontier ∂α when τ is clear from context) is the set of empty
locations adjacent to α at which a single tile could bind stably.

A tile system is a triple T = (T, σ, τ), where T is a finite set of tile types,
σ : Z2 99K T is a seed assembly consisting of a single tile (i.e., |dom σ| = 1), and τ ∈ N
is the temperature. An assembly α is producible if either α = σ or if β is a producible
assembly and α can be obtained from β by the stable binding of a single tile. In this
case write β →1 α (α is producible from β by the attachment of one tile), and write
β → α if β →∗1 α (α is producible from β by the attachment of zero or more tiles). If α
is producible then there is an assembly sequence α = (αi | 1 ≤ i ≤ k) such that α1 = σ,
αk = α, and for each i ∈ {1, . . . , k − 1}, αi →1 αi+1. An assembly is terminal if no tile
can be τ -stably attached to it. Write A[T ] to denote the set of all producible assemblies
of T , and write A�[T ] to denote the set of all producible, terminal assemblies of T .
We also speak of shapes assembled by tile assembly systems, by which we mean dom α
if α ∈ A�[T ], and we consider shapes to be equivalent up to translation.

We now define the semantics of incorporating randomization into self-assembly.
Intuitively, there are two sources of nondeterminism in the model as defined: 1) if
|∂α| > 1 then there are multiple binding sites, one of which is nondeterministically
selected as the next site to receive a tile, and 2) if multiple tile types could bind to a
single binding site, then one of them is nondeterministically selected. Both concepts
are handled by assigning positive real-valued concentrations to each tile type; ref. [3]
gives a full definition that accounts for both of these. However, in the results we discuss,
only the latter source of nondeterminism will actually affect the probabilities of various
terminal assembly being produced; the binding sites themselves can be picked in an
arbitrary order without affecting these probabilities. Thus we state here a simpler
definition based on this assumption.

A tile concentration assignment on T is a function ρ : T → [0,∞). If ρ(t) is
not specified explicitly for some t ∈ T , then ρ(t) = 1. If α is a τ -stable assembly
such that t1, . . . , tj ∈ T are the tiles capable of binding to the same position m ∈ ∂α,

then for 1 ≤ i ≤ j, ti binds at position m with probability ρ(ti)
ρ(t1)+...+ρ(tj)

. ρ induces

a probability measure on A�[T ] in a straightforward way. Formally, let α ∈ A�[T ]
be a producible terminal assembly. Let A(α) be the set of all assembly sequences
α = (αi | 1 ≤ i ≤ k) such that αk = α, with pα,i denoting the probability of attachment
of the tile added to αi−1 to produce αi (noting that pα,i = 1 if the ith tile attached

without contention). Then Pr[α] =
∑

α∈A(α)

k∏
i=2

1
|∂αi|pα,i. Write T (ρ) to denote the random

variable representing the producible, terminal assembly produced by T when using tile
concentration assignment ρ.
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Problems

The general problem is this: given a shape X ⊂ Z2 (a connected, finite set), set the
concentrations of tile types in some tile system T so that T is likely to create a
terminal assembly with shape X, or “close to it.” We now state formal problems that
are variations on this theme. The first four problems use “concentration programming”:
varying the concentrations of tile types in a single tile system T to get it to assemble
different shapes. The last two problems concern a tile system that only does one thing
— assemble a line of a desired expected length — because in this setting we will require
all concentrations to be equal. However, the tile system uses randomized self-assembly
to do this with far fewer tile types than are needed to accomplish the same task in a
deterministic tile system.

The first three problems concern the self-assembly of squares, and the problems
are listed in order of increasing difficulty. The first asks for a square with a desired
expected width, the second for a guarantee that the actual width is likely to be close
to the expected width, and finally, for a guarantee that the actual width is likely to be
exactly the expected width.

Formally, design a tile system T = (T, σ, τ) such that, for any n ∈ Z+, there
exists a tile concentration assignment ρ : T → [0,∞) such that...

Problem 1. ... dom T (ρ) is a square with expected width n.

Problem 2. ... with probability at least 1 − δ, dom T (ρ) is a square whose width is
between (1− ε)n and (1 + ε)n.

Problem 3. ... with probability at least 1− δ, dom T (ρ) is a square of width n.

The next problem generalizes the previous problems to arbitrary shapes, while
making one relaxation: allowing a scaled-up version of a shape to be assembled instead
of the exact shape. Formally, for c ∈ Z+ and shape S ⊂ Z2 (finite and connected),
define Sc = { (x, y) ∈ Z2 | (bx/cc , by/cc) ∈ S } to be S scaled by factor c.

Problem 4. Let δ > 0. Design a tile system T = (T, σ, τ) such that, for any shape
S ⊂ Z2, there exists a tile concentration assignment ρ : T → [0,∞) and c ∈ Z+ so
that, with probability at least 1− δ, dom T (ρ) is Sc.

It is easy to see that for a deterministic tile system to assemble a length n,
height 1 line requires n tile types. The next problem concerns using randomization
to reduce the number of tile types required, subject to the constraint that all tile
type concentrations are equal. (Without this constraint, a solution to Problem 1 would
trivially be a solution to the next problem, with an optimal O(1) tile types, but since
the solution to Problem 1 uses different tile type concentrations to achieve its goal, it
cannot be used directly for this purpose).

Problem 5. Let n ∈ Z+. Design a tile system T = (T, σ, τ) such that, with tile
concentration assignment ρ : T → [0,∞) defined by ρ(t) = 1 for all t ∈ T , dom T (ρ)
is a height 1 line of expected length n.

As with the case of concentration programming, it is desirable for the line to
have length likely to be close to its expected length.

Problem 6. Let n ∈ Z+ and δ, ε > 0. Design a tile system T = (T, σ, τ) such that,
with tile concentration assignment ρ : T → [0,∞) defined by ρ(t) = 1 for all t ∈ T ,
dom T (ρ) is a height 1 line whose length is between (1−ε)n and (1+ε)n with probability
at least 1− δ.
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Key Results
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Fig. 1. A randomized temperature τ = 2 tile
system that can grow a line of any desired ex-
pected length l by setting p = 1

l
. Two tiles com-

pete nondeterministically to bind to the right of
the line (using strength 2 glues, indicated by dou-
ble black lines), one of which stops the growth,
while the other continues, giving the length of the
line (not counting the seed) a geometric distribu-
tion with expected value l.

The solutions to Problems 1–4 use temperature 2
tile systems. The solutions to Problems 5 and 6
use a temperature 1 tile system (there is no need
for cooperative binding in one dimension).

Figure 1 shows a simple tile system with
three tile types that can grow a line of any desired
expected length to the right of the seed tile; this
is the basis for the solutions to Problems 1, 2, 3,
and 4. The length of the line has a geometic dis-
tribution, with expected value controlled by the
ratio of the concentrations of G and S. Figure 2
shows the solution to Problem 1, due to Becker,
Remilá, and Rapaport [1]. It is essentially the tile
system from Figure 1 (tile types A and B are
analogous to G and S in Figure 1) augmented with a constant number of extra tiles
that can assemble the square to be as high as the line is long.

Fig. 2. A tile system that grows a square of any desired expected
width. Figure taken from [4]; strength 2 glues are indicated by two
lines between the tiles. The seed is labeled S, and CA and CB respec-
tively represent the concentrations of A and B. p is used the same
way as in Figure 1, and c represents total concentation of all other
tile types, since [4] assumed that concentrations of all tile types must
sum to 1.

Kao and Schweller [4] showed
a solution to Problem 2, and
Doty [3] improved their construc-
tion to show a solution to Prob-
lem 3. Here, we describe only the
latter construction, since the two
share similar ideas, and the latter
construction solves both problems.

Figure 3 shows an improve-
ment to the tile system of Figure 1,
which will be the starting point for
the solution. It also can grow a
line of any desired expected length.
However, by using multiple inde-

pendent “stages” of growth, each stage having a geometric distribution, the resulting
assembly is more likely to have a length that is close to its expected length. More tile
types are needed for more stages, but only a constant number of stages are required.
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Fig. 3. A tile system that grows a line of a given length with greater precision
than in Figure 1. r stages each have expected length 1/p, making the expected
total length r/p, but more tightly concentrated about that expected length
than in the case of one stage.

In particular, if the
expected length is chosen to
be midway between any two
consecutive powers of two,
i.e., midway in the inter-
val [2a−1, 2a) for arbitrary
a ∈ N, with r = 113
stages, the probability is at
most 0.0025 that the actual
length is outside the interval [2a−1, 2a). So although the length is not controlled with
exact precision, the number of bits needed to represent the length is controlled with
exact precision (with high probability), using a constant number of tile types.

Figure 4 shows a tile system T with the following property: for any bit string
s (equivalently, any natural number m if we assume the most significant bit of s is
1), there is a tile concentration assignment that causes T to grow an assembly of
height O(logm), width O(m2), such that the tile types in the upper-right corner of the



5

assembly encode s. The bottom row is the tile system from Figure 3, with identical
strength 2 glues on the north of the tiles (other than the final stop tile on the right).
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Fig. 4. Computing the binary string 10 (equivalently, the natural number m = 2) from tile concentrations. For brevity,
glue strengths and labels are not shown. Each column increments the primary counter, represented by the bits on the
left of each tile, and each gray tile increments the sampling counter, represented by the bits on the right of each tile.
The number of bits at the end is l+ k, where c is a constant coded into the tile set, and k depends on m, and l = k+ c.
The most significant k bits of the sampling counter encode m. In this example, k = 2 and c = 1.
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Fig. 5. High-level overview of the entire construction solving Problem 3,
not at all to scale. For brevity, glue strengths and labels are not shown. The
double counter number estimator of Figure 4 is embedded with two additional
counters to create a quadruple counter estimating m1, m2, and m3, shown
as a box labeled as “Figure 4” in the above figure. In this example, m1 = 4,
m2 = 3, and m3 = 15, represented vertically in binary in the most significant
4 tiles at the end of the quadruple counter. Concatenating the bits of the tiles
results in the string 001101011011, the binary representation of 859, which
equals n−2k−4 for n = 871, so this example builds an 871 x 871 square. Once
the counter ends, c tiles (c = 3 in this example) are shifted off the bottom, and
the top half of the tiles are isolated (k = 4 in this example). Each remaining
tile represents three bits of n, which are converted into octal digits, rotated to
face upwards, and then used to initialize a base-8 counter that builds the east
wall of the square. Filler tiles cover the remaining area of the square.

Figure 5 shows a
high-level overview of the
entire tile system that as-
sembles an n × n square,
solving Problem 3. Using
similar ideas to Figure 4,
one can encode three differ-
ent numbers m1,m2,m3 ∈
N into the tile concentra-
tions. We choose these num-
bers to be such that each
mi = O(n1/3), and each of
their binary expansions, in-
terwoven into a single bit
string, is the binary expan-
sion of n. Then each tile
at the upper right of Fig-
ure 4 encodes not one but
three bits of n, or equiva-
lently each encodes an oc-
tal digit of n. These bits
are then used to assemble a
counter that counts from n
down to 0 as it grows north,
and a constant set of tiles
(similar to Figure 2 expand
this counter to grow about
as far east as the counter
grows north, creating an n×
n square that surrounds the
assembly of Figure 4. Since
mi = O(n1/3), and the tiles of Figure 4 create a structure of height O(logmi) and width
O(m2

i ) = O(n2/3), the square is sufficiently large to contain the tiles of Figure 4.
Finally, the tiles of Figure 4 are used in a different way to solve Problem 4,

shown in Figure 6. Given a finite shape S, Soloveichik and Winfree [5] use an intricate
construction of a “seed block” that “unpacks,” from a set of tile types that depend
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on S, a single-tape Turing machine program π ∈ {0, 1}∗ that outputs a binary string
bin(S) representing a list of the coordinates of S.

The width of the seed block is then c, chosen to be large enough to do the
unpacking, and also large enough to accommodate the simulation of π by a tile set
that simulates single-tape Turing machines. Once this seed block is in place, a tile set
then assembles the scaled shape by carrying bin(S) through each block. The order in
which blocks are assembled is determined by a spanning tree of S, so that any blocks
with an ancestor relationship have a dependency, in that the ancestor must be (mostly)
assembled before the descendant, whereas blocks without an ancestor relationship can
potentially assemble in parallel.
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Fig. 6. On the left is the seed block used to replace the seed block of [5],
from which the construction of [5] can assemble a scaled version of the shape
S (encoded by a binary string representing the list of coordinates, also labeled
“S” in the figure). S is output by the single-tape Turing machine program π.
π is estimated from tile concentrations as in Figure 4, then four copies of it
are propagated to each side of the block, where it is executed in four rotated,
but otherwise identical, computation regions. When completed, four copies of
the binary representation of S border the seed block, which is sufficient for the
construction of [5] to assemble a scaled version of S using a spanning tree of S
as shown on the right.

We replace the seed
block tiles of [5], which de-
pend on S, with a single
tile system that produces
the program π from tile con-
centrations, and use the re-
mainder of the tile set of
[5] unchanged. This is illus-
trated in Figure 6. Choose c
to be sufficiently large that
π can be simulated within
the trapezoidal region of the
c× c block of Figure 6, and
also sufficiently large that
the construction of Figure 4
has sufficient room to es-
timate the binary string π
from tile concentrations in
the center region (the “dou-
ble counter estimator”) of
Figure 6. Once this is done,

the construction of [5] can take over and assemble the entire scaled shape Sc. The por-
tion of the construction of [5] that achieves this is a constant-size tile set, so combined
with the presented construction remains constant. This solves Problem 4.

Fig. 7. Example of solution to Problem 5 for the case of expected
length 92.

Finally, Problems 5 and 6
have solutions due to Chandran,
Gopalkrishnan, and Reif [2], which
we now explain intuitively (the ac-
tual analysis is a bit trickier but is
close to the following intuitive ar-
gument). Figure 7 shows an exam-
ple of a solution to Problem 5 for
the case of expected length n = 92.
Each TiB tile type has an east glue, gi, that matches two tile types T(i−1)A and R(i−1)A.
There are O(log n) “stages” (5 stages in this case). Each stage has probability 1

2
to

either decrement the stage or reset back to the highest stage. The number n is pro-
grammed into the system by choosing each stage to have either 1 or 2 tiles. Given that
we are in stage i, to make it from stage i to stage 1 without resetting means that i
consecutive unbiased coin flips must come up “heads”, which we expect to take 2i flips
before happening. Thus we expect stage i to appear 2i times; this means that stage i’s
expected contribution to the total length is either 2i or 2 · 2i, depending on whether it
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has 1 or 2 tiles. The reason this works to encode arbitrary natural numbers n is that
every natural number can be expressed as n =

∑≈logn
i=0 bi2

i, where bi ∈ {1, 2}. Since
there are a constant number of tile types per stage, this implies that the number of tile
types required is O(log n).

This solves Problem 5. To solve Problem 6, it suffices to concatenate k indepen-
dent assemblies of the kind shown in Figure 7, where k is a constant that, if chosen
sufficiently large based on δ (the desired error probability), solves Problem 6 since it
increases the number of tile types required. In addition to proving that this works,
Chandran, Gopalkrishnan, and Reif [2] also show a more complex construction with
even sharper bounds on the probability that the length differs very much from its
expected value.

Open problems

The construction resolving Problem 3 shows that for every δ, ε > 0, a tile set exists such
that, for every n ∈ N, appropriately programming the tile concentrations results in the
self-assembly of a structure of size O(nε)×O(log n) whose rightmost tiles represent the
value n with probability at least 1 − δ. (In the tile system described, ε = 2/3, and it
could be made arbitrarily close to 0 by estimating more than 3 numbers at once.) Is
this optimal?

Formally, say that a tile assembly system T = (T, σ, 2) is δ-concentration pro-
grammable (for δ > 0) if there is a (total) computable function r : A�[T ] → N (the
representation function) such that, for each n ∈ N, there is a tile concentration as-
signment ρ : T → [0,∞) such that Pr[r(T (ρ)) = n] ≥ 1 − δ. In other words, T ,
programmed with concentrations ρ, almost certainly self-assembles a structure that
“represents” n, according to the representation function r, and such a ρ can be found
to create a high-probability representation of any natural number.

Question 1. Is the following statement true? For each δ > 0, there is a tile assembly
system T and a representation function r : A�[T ]→ N such that T is δ-concentration
programmable and, for each ε > 0 and all but finitely many n ∈ N, Pr[|dom T (ρ)| <
nε] ≥ 1− δ. If so, what is the smallest bound that can be written in place of nε?
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