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Abstract— Working in Winfree’s abstract tile assembly
model, we show that a constant-size tile assembly system can
be programmed through relative tile concentrations to build
an n × n square with high probability, for any sufficiently
large n. This answers an open question of Kao and Schweller
(Randomized Self-Assembly for Approximate Shapes, ICALP
2008), who showed how to build an approximately n ×
n square using tile concentration programming, and asked
whether the approximation could be made exact with high
probability.

1. INTRODUCTION

Self-assembly is a term used to describe systems in
which a small number of simple components, each fol-
lowing local rules governing their interaction with each
other, automatically assemble to form a target structure.
Winfree [21] introduced the abstract Tile Assembly
Model (aTAM) – based on a constructive version of
Wang tiling [19], [20] – as a simplified mathematical
model of Seeman’s work [15] in utilizing DNA to
physically implement self-assembly at the molecular
level. In the aTAM, the fundamental components are
un-rotatable, translatable square “tile types” whose sides
are labeled with glue “labels” and “strengths.” Two tiles
placed next to each other interact if the glue labels
on their abutting sides match, and a tile binds to an
assembly if the total strength on all of its interacting
sides exceeds the ambient “temperature,” equal to 2 in
this paper. See Section 2 for a formal definition.

Winfree [21] demonstrated the computational uni-
versality of the aTAM by showing how to simulate
an arbitrary cellular automaton with a tile assembly
system. Building on these connections to computability,
Rothemund and Winfree [12] investigated the minimum
number of tile types needed to uniquely assemble an
n × n square. Utilizing the theory of Kolmogorov
complexity, they show that for any algorithmically ran-
dom n, Ω

(
logn

log logn

)
tile types are required to uniquely

assemble an n× n square, and Adleman, Cheng, Goel,
and Huang [1] exhibit a construction showing that this
lower bound is asymptotically tight.

Real-life implementations of the aTAM involve (at
the present time) creating tile types out of DNA double-
crossover molecules [13], copies of which can be cre-
ated at an exponential rate using the polymerase chain
reaction (PCR) [14]. PCR technology has advanced to
the point where it is automated by machines, meaning
that copies of tiles are easy to supply, whereas the num-
ber of distinct tile types is a precious resource, costing
much more lab time to create. Therefore, effort has been
put towards developing methods of “programming” tile
sets through methods other than hard-coding the desired
behavior into the tile types. Such methods include
temperature programming [6], [18], which involves
changing the ambient temperature through the assembly
process in order to alter which bonds are possible to
break or create, and staged assembly [5], which involves
preparing different assemblies in different test tubes,
which are then mixed after reaching a terminal state.
Each of these models allows a single tile set to be reused
for assembling different structures by programming it
with different environmental conditions affecting the
behavior of the tiles.

The model used in this paper is known as tile con-
centration programming. If the tile assembly system is
nondeterministic – if intermediate assemblies exist in
which more than one tile type is capable of binding
to the same position – and if the solution is well-
mixed, then the relative concentrations of these tile
types determine the probability that each tile type will
be the one to bind.

Tile concentrations affect the expected time before
an assembly is completed (such a model is consid-
ered in [1] and [2], for instance), but we ignore such
running time considerations in the present paper. We
instead focus on using the biased randomness of tile
concentrations to guide a probabilistic shape-building
algorithm, subject a certain kind of “geometric space
bound”; namely, that the algorithm must be executed
within the confines of the shape being assembled. This
restriction follows from the monotone nature of the
aTAM: once a tile attaches to an assembly, it never



detaches. Chandran, Gopalkrishnan, and Reif [4] show
that a one-dimensional line of expected length n can
be assembled using Θ (log n) tile types, subject to
the restriction that all tile concentrations are equal.
Furthermore, they show that this bound is tight for all
n. Becker, Rapaport, and Rémila [2] show that there is a
single tile assembly system T such that, for all n ∈ Z+,
setting the tile concentrations appropriately causes T to
assemble an n′ x n′ square, such that n′ has expected
value n. However, n′ will have a large deviation from n
with non-negligible probability. Kao and Schweller [7]
improve this result by constructing, for each δ, ε > 0,
a tile assembly system T such that setting the tile
concentrations appropriately causes T to assemble an
n′ x n′ square, where (1 − ε)n ≤ n′ ≤ (1 + ε)n with
probability at least 1− δ, for sufficiently large n ∈ Z+.

Kao and Schweller asked whether a constant-sized
tile assembly system could be constructed that, through
tile concentration programming, would assemble a
square of dimensions exactly n × n, with high prob-
ability. We answer this question affirmatively, showing
that, for each δ > 0, there is a tile assembly system
T such that, for sufficiently large n ∈ Z+, there is
an assignment of tile concentrations to T such that T
assembles an n×n square with probability at least 1−δ.

Kao and Schweller also asked whether arbitrary finite
connected shapes, possibly scaled by factor c ∈ N
(depending on the shape) by replacing each point in
the shape with a c × c block of points, could be
assembled from a constant tile set through concen-
tration programming. Our construction answering the
first question computes the binary expansion of n with
high probability in a self-assembled rectangle of height
O(log n) and width O(n2/3). By assembling this struc-
ture within the “seed block” of the construction of [17],
our construction can easily be combined with that of
[17] to answer this question affirmatively as well, by
replacing the number n with a program that outputs a
list of points in the shape, and using this as the “seed
block” of the construction of [17]. We omit a detailed
construction in this extended abstract.

This paper is organized as follows. Section 2 provides
background definitions and notation for the aTAM and
tile concentration programming. Section 3 provides the
construction and proof of correctness. Section 4 con-
cludes the paper, discusses practical limitations of the
construction and potential improvements, and suggests
non-square structures that can be assembled with the
same technique.

2. THE TILE ASSEMBLY MODEL AND TILE
CONCENTRATION PROGRAMMING

We give a brief sketch of the Tile Assembly Model
that is adequate for reading this paper. More details and
discussion may be found in [8], [11], [12], [21]. Our
notation is that of [8], which provides a self-contained
introduction to the Tile Assembly Model for the reader
unfamiliar with the model.

All logarithms in this paper are base 2. We work
in the 2-dimensional discrete space Z2. Define the set
U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)} to be the set of
all unit vectors, i.e., vectors of length 1 in Z2. We write
[X]2 for the set of all 2-element subsets of a set X . All
graphs in this paper are undirected graphs, i.e., ordered
pairs G = (V,E), where V is the set of vertices and
E ⊆ [V ]2 is the set of edges.

Intuitively, a tile type t is a unit square that can
be translated, but not rotated, having a well-defined
“side ~u” for each ~u ∈ U2. Each side ~u of t has
a “glue” with “label” labelt(~u) – a string over some
fixed alphabet Σ – and “strength” strt(~u) – a non-
negative integer – specified by its type t. Two tiles
t and t′ that are placed at the points ~a and ~a + ~u
respectively, bind with strength strt (~u) if and only if
(labelt (~u) , strt (~u)) = (labelt′ (−~u) , strt′ (−~u)). In our
figures, we follow Winfree’s convention of representing
strength-0 bonds with dashed lines, strength-1 bonds
with single lines, and strength-2 bonds with double
lines.

Given a set T of tile types, an assembly is a partial
function α : Z2 99K T , with points ~x ∈ Z2 at which
α(~x) is undefined interpreted to be empty space, so
that dom α is the set of points with tiles. α is finite
if |dom α| is finite. For assemblies α and α′, we say
that α is a subassembly of α′, and write α v α′,
if dom α ⊆ dom α′ and α(~x) = α′(~x) for all
x ∈ dom α. α′ is a single-tile extension of α if α v α′
and dom α′−dom α is a singleton set. In this case, we
write α′ = α+(~m 7→ t), where {~m} = dom α′−dom α
and t = α′(~m)

A grid graph is a graph G = (V,E) in which
V ⊆ Z2 and every edge {~a,~b} ∈ E has the property
that ~a −~b ∈ U2. The binding graph of an assembly α
is the grid graph Gα = (V,E), where V = dom α,
and {~m,~n} ∈ E if and only if (1) ~m − ~n ∈ U2,
(2) labelα(~m) (~n− ~m) = labelα(~n) (~m− ~n), and (3)
strα(~m) (~n− ~m) > 0. An assembly is τ -stable, where
τ ∈ N, if it cannot be broken up into smaller assemblies
without breaking bonds of total strength at least τ ; i.e.,
if every cut of Gα has weight at least τ , where the
weight of an edge is the strength of the sides of tiles
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that it connects. In contrast to the model of Wang tiling,
the nonnegativity of the strength function implies that
glue mismatches between adjacent tiles do not prevent
a tile from binding to an assembly, so long as sufficient
binding strength is received from the sides of the tile at
which the glues match.

Self-assembly begins with a seed assembly σ (typ-
ically assumed to be finite and τ -stable) and proceeds
asynchronously and nondeterministically,1 with tiles ad-
sorbing one at a time to the existing assembly in any
manner that preserves stability at all times, formally
modeled as follows.

A tile assembly system (TAS) is an ordered triple T =
(T, σ, τ), where T is a finite set of tile types, σ : Z2 99K
T is the seed assembly, satisfying |dom σ| < ∞, and
τ ∈ N is the temperature, equal to 2 in this paper.2 A
(finite) assembly sequence3 in a TAS T = (T, σ, 2) is a
finite sequence ~α = (αi | 1 ≤ i ≤ k) of assemblies in
which α1 = σ, each αi+1 is a single-tile extension of
αi, and each αi is τ -stable. The result of an assembly
sequence is res(~α) = αk. We write A[T ] to denote the
set of all results of assembly sequences of T , known
as the producible assemblies of T . An assembly α is
terminal, and we write α ∈ A�[T ], if no tile can be
stably added to it.

Let T = (T, σ, τ) be a TAS. A tile concentration
assignment on T is a function ρ : T → [0,∞).4 If
ρ(t) is not specified explicitly for some t ∈ T , then
ρ(t) = 1. If α : Z2 99K T is a τ -stable assembly such
that t1, . . . , tj ∈ T are the tiles capable of binding to

1There are multiple senses in which a tile system can be nonde-
terministic. The trivial sense is that the location of attachment, if
there is more than one candidate, is selected nondeterministically.
Such systems may still be deterministic in a stronger sense that they
will lead to a unique final assembly. We employ a stronger version
of nondeterminism in which the tile capable of binding to a single
position of an assembly is not fixed; the randomized algorithm we
implement relies on this choice being made according to the tile
concentrations.

2A tile set can be “programmed” with different inputs through
selection of an appropriate seed assembly. In this paper, we wish
to model the situation in which, once work has been done once to
create a single tile set, the tile set can be programmed entirely through
adjustment of tile concentrations. Hence, our result is stated in terms
of the existence of a tile assembly system, with a fixed seed assembly
(in fact, a single seed tile), that can be used to construct squares of
any size, solely by adjusting the tile concentrations.

3 [8] gives a treatment of the model that allows for infinite
assembly sequences, and indeed our construction may result in an
infinite assembly sequence, though with probability 0. We simplify
the presentation by considering only finite assembly sequences.

4Note in particular that we do not require ρ to be a probability
measure on T . ρ induces a probability measure as described later
on subsets of tiles in T that contend nondeterministically to bind, but
there may be more than one such subset, and the relative concentration
of a tile from one subset to that of another is irrelevant, since they
do not compete.

the same position ~m of α,5 then for 1 ≤ i ≤ j, ti
binds at position ~m with probability ρ(ti)

ρ(t1)+...+ρ(tj)
.6 ρ

induces a probability measure on A�[T ] in the obvious
way.7 For p ∈ [0, 1] and X ⊆ Z2, we say X strictly
self-assembles in T (ρ) with probability at least p if
Prα∈A�[T ][dom α = X] ≥ p. That is, T self-assembles
into a shape equal to X with probability at least p. Note
that different two assemblies may have the same shape
though they might assign different tile types to the same
position.

3. CONSTRUCTION OF THE TILE SET

This section is devoted to proving the following
theorem, which is the main result of this paper.

For all δ > 0 and n ∈ Z+, define rδ =
⌈

log δ
8

log 0.9421

⌉
,

cδ = 2 +
⌈
log log δ

8
log 0.717

⌉
, and kn =

⌈
blognc+1

3

⌉
, and

define b(n, δ) = max
{
rδ, 22kn+cδ

}
+ cδ + 3kn.

Theorem 3.1. For all δ > 0, there is a tile assem-
bly system Tδ = (T, σ, 2) such that, for all integers
n ≥ b(n, δ), there is a tile concentration assignment
ρn : T → [0,∞) such that a translation of the set
{ (x, y) | x, y ∈ {1, . . . , n} } strictly self-assembles in
Tδ(ρn) with probability at least 1− δ.

Note that for any fixed δ > 0, b(n, δ) = O(n2/3)
(the constant in the O() depending on δ), whence n ≥
b(n, δ) for all sufficiently large n.

3.1. Intuitive Idea of the Construction

Kao and Schweller introduced a basic primitive in
[7] (refining a lower-precision technique described in
[2]), called a sampling line. The sampling line allows
tile concentrations to encode a natural number whose
binary representation can be probably approximately
reproduced. Kao and Schweller utilize the sampling line

5More precisely, if α+(~m 7→ ti) is τ -stable for some ~m 6∈ dom α
and all i ∈ {1, . . . , j}, but α + (~m 7→ t) is not τ -stable for any
t ∈ T − {t1, . . . , tj}.

6This quantity is the conditional probability that ti attaches to
position ~m, given that one of t1, . . . , tj will bind to position ~m at the
current stage of self-assembly. We do not use probabilities to model
the choice of which position ~m receives a tile; any fair assembly
sequence (see [8] for a definition) will suffice.

7Formally, let α ∈ A�[T ] be a producible terminal assembly.
Let A(α) be the set of all assembly sequences ~α = (αi | 1 ≤
i ≤ k) such that res(~α) = α, with p~α,i denoting the probability
of attachment of the tile added to αi−1 to produce αi (noting that
p~α,i = 1 if the ith tile attached without contention). Then Pr[α] =∑
~α∈A(α)

k∏
i=2

1
|∂αi|

p~α,i. Although this definition assigns each frontier

location to be equally probable to receive a tile (that is the source of
the term 1

|∂αi|
), in the constructions of this paper, any fair assembly

sequence will work, even one that biases the choice of frontier location
attachment away from uniform.
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to encode n ∈ N by an approximation n′ ∈ N such that
(1−ε)n ≤ n′ ≤ (1+ε)n with probability at least 1−δ.

The idea of our construction is as follows. We will
“approximate” only numbers m small enough that the
sampling line approximation has sufficient space to be
an exact computation of m with high probability. The
construction of Kao and Schweller can be thought of as
estimating n by, in a sense, probabilistically counting to
n using independent Bernoulli trials with appropriately
fixed success probability; i.e., the probabilities are used
to estimate an approximate unary encoding of n, which
is converted to binary by a counter. Representing n
in unary, of course, takes space n, and recovering
it probabilistically from tiles subject to randomization
requires using much more than space n to overcome the
error introduced by randomization. Kao and Schweller
use an ingenious technique to spread this estimation out
into the center of the n×n square being built, affording
O(n2) space to approximate n closely. However, that
construction lacks the space to compute n exactly,
which requires much more than n2 Bernoulli trials
– applying the standard Chernoff bound to the Kao-
Schweller sampling line achieves an upper bound of
O(n5) trials – to achieve a sufficiently small estimation
error. Hence, attempting to use a sampling line directly
to compute n would result in a line containing many
more tiles than the n2 tiles that compose an n×n square,
and no amount of twisting the line will cause it to fit
inside the boundaries of the square.

We split n’s binary expansion b(n) =
b1b2 . . . bblognc+1 ∈ {0, 1}∗ into three subsequences
b1b4b7 . . ., b2b5b8 . . ., and b3b6b9 . . ., each of length
about 1

3 log n, and interpret these binary strings as
natural numbers m1,m2,m3 ≤ n1/3 to be estimated.
The problem of estimating n is reduced to that of
estimating these three numbers. At the same time,
we introduce a new sampling line technique that can
exactly estimate a number m with high probability
using only O(m2) trials.8 Since m1,m2,m3 ≤ n1/3,
estimating m1,m2, and m3 will require O(n2/3) trials,

8As opposed to the O(m5) trials that would be required by the
Kao-Schweller sampling line. It is possible to use Kao and Schweller’s
original sampling line to estimate seven numbers – blognc+ 1 (the
length of the binary expansion of n), and the six numbers m1 - m6

encoded by length-
⌈
blognc+1

6

⌉
substrings of n’s binary expansion,

each small enough that m5
i = o(n) – and to use these numbers to

reconstruct n and from that, build an n×n square. A straightforward
and tedious analysis of the constants involved reveals that such a
technique can be used to construct n× n squares for n ≥ 1018. We
achieve much more feasible bounds on n (≈ 107 for δ = 0.01) using
the techniques introduced in this paper, and indeed, better bounds
than those required by Kao and Schweller to approximate n, whose
construction achieves, for instance, a (0.01, 0.01)-approximation only
for n ≥ 1013, according to their analysis.

which fits within the width of an n × n square for
sufficiently large n.

Intuitively, the reason that estimating m1, m2, and
m3 creates an improvement over estimating n directly
is that the space needed for the unary encodings of num-
bers whose binary length is one-third that of n’s does
not scale linearly with that length; the unary encoding
of these numbers scales with n1/3, not n/3, whence a
quadratic increase in the space needed for probabilistic
recovery remains sufficiently small (O(n2/3)) that three
such decodings easily fit into space n.

3.2. Probabilistic Decoding of a Natural Number using
a Sampling Line

In this section, we describe how to exactly compute a
positive integer m probabilistically from tile concentra-
tions that are appropriately programmed to represent m.
In our final construction, the sampling line will estimate
not one but three integers m1, m2, and m3, as described
in Section 3.1, by embedding additional bits into the
tiles. However, for the sake of clarity, in this section,
we describe how to estimate a single positive integer
m, and then describe in Section 3.2.2 how to modify
the construction and set the probabilities to allow three
numbers to be estimated simultaneously on a single
sampling line.

G S
go stop

G S
go stop

G
go

G
go

G
go

G
go

G
go

concentration
1 – p

expected length 1/p

concentration
p

seed

seed

Figure 1. The portion of the basic Kao-Schweller sampling
line that controls its length. Two tiles compete nondetermin-
istically to bind to the right of the line, one of which stops
the growth, while the other continues, giving the length of the
line a geometric distribution.

The basic length-controlling portion of the Kao-
Schweller sampling line is shown in Figure 1.9 A
horizontal row of tiles forms to the right of the seed.
Two tiles, G (“go”) and S (“stop”) nondeterministically
connect to the right end of the line; G continues the
growth, while S stops the growth. If S has concentration

9Our description of the Kao-Schweller sampling line is incomplete,
as discussed in the next paragraph.
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p ∈ [0, 1] and G has concentration 1 − p, then the
length L of the line is a geometric random variable with
expected value 1/p. By setting p appropriately, E[L]
can be controlled, but not precisely, since a geometric
random variable may have a deviation from the expected
value that is too large for our purposes.

Kao and Schweller allow a third tile type to bind
within the sampling line, which does the actual sam-
pling for computing a natural number, but our construc-
tion splits this sampling into a separate set of tiles that
forms above the line. The sampling portion is discussed
in Section 3.2.2. For the present time, we restrict our
discussion to controlling the length of the line.

3.2.1. More Precisely Controlling the Sampling Line
Length: Our goal is to control L, the length of the
sampling line, such that, by setting tile concentrations
appropriately, we may ensure that L lies between 2a−1

and 2a with high probability, for an a ∈ Z+ of our
choosing (which will be influenced by the number n we
are estimating). That is, we may ensure that the number
of bits required to represent L is computed precisely,
even if the exact value of L varies widely within the
interval [2a−1, 2a). We then attach a counter – a group
of tiles that measures the length of the line by counting
in binary – to the north of the line that measures L until
the final stopping tile. The stop signal is not intended to
stop the counter immediately, but rather to signal that
the counter should continue until it reaches the next
power of 2 – i.e., the next time a new most significant
bit is required – and then stop. Hence, we may choose
an arbitrary power of 2 and set tile concentrations to
ensure that the counter counts to that value and then
stops.

To increase the precision with which we control L, we
use not one but many stages of “go” and “stop” tiles,
G1, S1, G2, S2, . . . , Gr, Sr. The construction is shown
in Figure 2. Gi and Si each compete to bind to the
right of Si−1 and Gi. Si signals a transition to the next
stage i+1, with Sr stopping the growth of the line after
r stages. Therefore, the sequence of tiles to the right of
the seed is a string described by the regular expression
G∗1S1G

∗
2S2 . . . G

∗
rSr. Each Si has concentration p, and

the remaining Gi tiles each have concentration 1 − p.
The length L of the line is a negative binomial random
variable10 with parameters r, p (see [9]) with expected

10The term negative is misleading; a negative binomial random
variable is better described (informally) as the inverse of a binomial
random variable, if one thinks of a binomial random variable as being
like a function that maps a number of Bernoulli trials to a number
of successes. A negative binomial random variable maps a number of
successes to the number of trials necessary to achieve that number of
successes.

value r/p by linearity of expectation; i.e., its length is
the number of Bernoulli trials required before exactly
r successes, provided each Bernoulli trial has success
probability p.

Let N,R ∈ N and p ∈ [0, 1]. A binomial random
variable B(N, p) (the number of successes after N
Bernoulli trials, each having success probability p) is
related to a negative binomial random variable N (R, p)
(the number of trials before exactly R successes) by the
relationships

Pr[N (R, p) < N ] = Pr[B(N, p) > R], (3.1)
Pr[N (R, p) > N ] = Pr[B(N, p) < R]. (3.2)

Thus, Chernoff bounds that provide tail bounds for bi-
nomial distributions can be applied to negative binomial
distributions via (3.1) and (3.2).

To cause L to fall in the interval [2a−1, 2a), we must
set its expected length L (by setting p = r/L) to be such
that the rth success occurs when the line has length in
the interval [2a−1, 2a). Note that pN is the expected
number of successes in the first N tiles of the line; i.e.,
it is the expected number of successes in exactly N
Bernoulli trials.

We define ε and ε′ so that L = (1 + ε)2a−1 = (1 −
ε′)2a and the two error probabilities derived below are
approximately equal; ε ≈ 0.442695 and ε′ ≈ 0.2786525
suffice. The event that L < 2a−1 is equivalent to the
event that 2a−1 Bernoulli trials are conducted (with
expected number of successes p2a−1) with at least r
successes. By (3.1) and the Chernoff bound [9, Theorem
4.4, part 1],

Pr
[
L < 2a−1

]
= Pr

[
r > (1 + ε)p2a−1

]
≤

(
eε

(1+ε)1+ε

)p2a−1

=
(

eε

(1+ε)1+ε

)r2a−1/L

=
(

eε

(1+ε)1+ε

)r2a−1/((1+ε)2a−1)

=
(

eε

(1+ε)1+ε

)r/(1+ε)
< 0.9421r.

The event that L ≥ 2a is equivalent to the event
that 2a Bernoulli trials are conducted (with expected
number of successes p2a) with fewer than r successes.
To bound the probability that L is too large, we use
(3.2) and the Chernoff bound for deviations below the
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Figure 2. The portion of the sampling line of our construction that controls its length. r stages each have expected length 1/p,
making the expected total length r/p, but more tightly concentrated about that expected length than in the case of one stage.

mean [9, Theorem 4.5, part 1],

Pr [L ≥ 2a] = Pr [r ≤ (1− ε′)p2a]

≤
(

e−ε
′

(1−ε′)1−ε′

)p2a
=

(
e−ε
′

(1−ε′)1−ε′

)r2a/L
=

(
e−ε
′

(1−ε′)1−ε′

)r2a/((1+ε)2a−1)

=
(

e−ε
′

(1−ε′)1−ε′

)2r/(1+ε)

< 0.9421r.

By the union bound,

Pr[L 6∈ [2a−1, 2a)] < 2 · 0.9421r (3.3)

Therefore, by setting r sufficiently large, we can expo-
nentially decrease the probability that L falls outside
the range [2a−1, 2a), independently of a. For example,
letting r = 113 leads to Pr

[
L 6∈ [2a−1, 2a)

]
< 0.0025.

Since r is a constant depending only on δ, it can be
encoded into the tile types as shown in Figure 2.

3.2.2. Computing a Number Exactly using a Sam-
pling Line: As stated previously, our goal is that, with a
sampling line of length O(m2), we can exactly compute
a number m. The idea is shown in Figure 3, and is
inspired by the sampling line of Kao and Schweller
[7] but can estimate a number more precisely using a
given length, as well as having a length that is itself
controlled more precisely by the technique of Section
3.2.1. The length-controlling portion of the sampling
line of length L will control a counter placed above
the sampling line, which counts to the next power of 2
greater than L, 2a. This counter will eventually end up
with a total bits before stopping. Let k be the maximum
number of bits needed to represent m (k will be about
1
3 log n in our application), and let l = a − k. We
form a row above the row described in Section 3.2.1,

which does the sampling. To implement the Bernoulli
trials that estimate m, one of two tiles A (the gray
tile in Figure 3) or B (the white tile in Figure 3)
nondeterministically binds to every position of this row.
Set the concentration of A to be m2l+2l−1

2a and the
concentration of B to be 1 − m2l+2l−1

2a . We embed a
second counter – the sampling counter – within the
primary counter. Whenever A appears, the sampling
counter increments, and when B appears it does not
change. Let M be the random variable representing
the final value of the sampling counter. Then M is a
binomial random variable with E[M ] = m2l + 2l−1.

We will choose k and l so that the most significant
k bits of the sampling counter will almost certainly
represent m. Intuitively, the least significant l bits of
M “absorb” the error. This will occur if m2l ≤ M <
(m + 1)2l. Note that m < 2k. Let ε = 1

2m . Then the
Chernoff bound [9, Theorems 4.4/4.5, part 2] and the
union bound tell us that

Pr
[
M ≥ (m+ 1)2l or M < m2l

]
= Pr [M ≥ (1 + ε)E[M ] or M < (1− ε)E[M ]]

≤ e−E[M ]ε2/3 + e−E[M ]ε2/2

< e−m2l( 1
2m )2

/3 + e−m2l( 1
2m )2

/2

= e−
2l−2
3m + e−

2l−2
2m

< e−2l−k−2/3 + e−2l−k−2/2

Let c ∈ N be a constant. By setting l = k + c, the
probability of error decreases exponentially in c:

Pr
[
M ≥ (m+ 1)2l or M < m2l

]
< e−2c−2/3 + e−2c−2/2 < 2 · 0.7172c−2

. (3.4)

For instance, letting c = 6 bounds the left-hand side of
(3.4) below 0.0052.

The number of samples is 2a = 22k+c = O((2k)2).
Since m < 2k, integers m such that m2 � n can be
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Figure 3. Computing the natural number m = 2 from tile concentrations using a sampling line. For brevity, glue strengths and
labels are not shown. Each column increments the primary counter, represented by the bits on the left of each tile, and each
gray tile increments the sampling counter, represented by the bits on the right of each tile. The number of bits at the end is
l + k, where c is a constant coded into the tile set, and k depends on m, and l = k + c. The most significant k bits of the
sampling counter encode m. In this example, k = 2 and c = 1.

“probably exactly computed” using much fewer than n
Bernoulli trials, and can therefore be computed by a
sampling line without exceeding the boundaries of an
n× n square.

3.3. Computing n Exactly

We have shown how to compute a number m exactly
using a sampling line of length O(m2) and width
O(logm). To compute n, the dimensions of the square,
we must compute m1,m2, and m3, which are the
numbers represented by the bits of the binary expansion
of n at positions congruent to 1 mod 3, 2 mod 3, and
0 mod 3, respectively. To compute all three of these
numbers, we embed two extra sampling counters into
the double counter, in addition to the sampling counter
described in Section 3.2, to create a quadruple counter.
This requires 8 sampling tiles instead of 2, in order to
represent each of the possible outcomes of conducting
three simultaneous Bernoulli trials, each trial used for
estimating one of m1, m2, or m3.

Given i ∈ {1, 2, 3}, let bi ∈ {0, 1} denote the out-
come of the ith of three simultaneous Bernoulli trials,
and let pi(bi) denote the probability we would like to
associate with that outcome. As noted in Section 3.2.2,
the values of the ci’s are given by pi(1) = mi2

l+2l−1

2a ,
and pi(0) = 1− pi(1).

Since each of the three simultaneous Bernoulli trials
is independent, we can calculate the appropriate con-
centration of the tile representing the three outcomes
by multiplying the three outcome probabilities together.
Then the required concentration of the tile representing
outcomes b1, b2, b3 is given by p1(b1) · p2(b2) · p3(b3).

Once the values m1, m2, and m3 are computed, we
must remove the c least significant (bottom) bits from
the bottom of the primary counter. Since c is a constant

depending only on δ, it can be encoded into the tile
types. We must then remove the bottom half of the
remaining bits.11 At this point, the concatenation of the
bits on the tiles represent the binary expansion of n.
Rather than expand them out to use three times as many
tiles, we simply translate each of them to an octal digit,
giving the octal representation of n, with one octal digit
per tile replacing the three bits per tile. Finally, this rep-
resentation of n is rotated 90 degrees counter-clockwise,
used as the initial value for a decrementing, upwards-
growing, base-8 counter, and used to fill in an n × n
square using the standard construction [12]. Rotating n
to face up starts the counter 2k+2 tiles from the bottom
of the construction so far. Furthermore, testing whether
the counter has counted below 0 requires counting once
beyond 0, using 2 more rows than the starting value of
the counter. Therefore, to ensure that exactly an n× n
square is formed, the value n − 2k − 4, rather than
n exactly, is programmed into the tile concentrations to
serve as the start value of the upwards-growing counter.
An outline of this construction is shown in Figure 4.

It is routine to verify that the choice of the parameters
c, k, and r described just before Theorem 3.1 are
sufficient to obtain the bound b(n, δ) of Theorem 3.1.

A simulated implementation of this tile assembly sys-
tem using the ISU TAS Tile Assembly Simulator [10]
is available at http://www.cs.iastate.edu/∼lnsa/software.
html. The tile set uses approximately 4500+9c+4r tile
types, where r and c are calculated from δ as above.

11Isolating the most significant half of the bits can be done using a
tile set similar to the algorithm one might use to program a single-tape
Turing machine to compute the function 02n 7→ 0n.
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Figure 4. High-level overview of the entire construction, not at all to scale. For brevity, glue strengths and labels are not shown.
The double counter number estimator of Figure 3 is embedded with two additional counters to create a quadruple counter
estimating m1, m2, and m3, shown as a box labeled as “Figure 3” in the above figure. In this example, m1 = 4, m2 = 3, and
m3 = 15, represented vertically in binary in the most significant 4 tiles at the end of the quadruple counter. Concatenating the
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exceed length 871, but we choose small numbers to illustrate the idea more clearly.) Once the counter ends, c tiles (c = 3 in
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represents three bits of n, which are converted into octal digits, rotated to face upwards, and then used to initialize a base-8
counter that builds the east wall of the square. Filler tiles cover the remaining area of the square.
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4. CONCLUSION

We have described how a single tile set in Win-
free’s abstract tile assembly model, appropriately “pro-
grammed” by setting tile concentrations, exactly assem-
bles an n × n square with high probability, for any
sufficiently large n.

The focus of the present paper is on conceptual
clarity. We have therefore described the simplest (i.e.,
easiest to understand, but not necessarily smallest) ver-
sion of the tile assembly system that achieves the desired
asymptotic result that an n × n square assembles with
high probability for sufficiently large n. We now observe
that this theoretical result could be improved in practice
by complicating the tile set.

Our implementation of the tile set uses approximately
4500 + 9c+ 4r tile types, where, for example, r = 113
and c = 7 are sufficient to achieve error probability
δ ≤ 0.01. The tiles are so numerous because of the need
to simultaneously represent 4 bits in a tile, in addition
to information such as the significance of the bit (MSB,
LSB, or interior bit), and doing computation such as
addition, which requires tiles that can handle the 28

possible input bit + carry signals. Putting together a
few such modules of tile sets results in thousands of
tiles before too long. The number of tile types could be
reduced by splitting the estimation of m1, m2, and m3

into three distinct geometrical regions, so that each tile
is required to remember less information. This would
complicate the tile set, as it would require more shifting
tricks to ensure sufficient room for all counters, and
would require bringing the bits back together again at
the end, but it would likely reduce the number of tile
types.

A large value of n is required to achieve a probability
of success at least (1− δ) for reasonably small δ; n >
8 · 106 is required to estimate n with 99% chance of
correctness. This shortcoming can be compensated in a
number of ways.

In a similar spirit to the linear speedup theorem, more
than three simultaneous Bernoulli trials may be con-
ducted with each sampling tile. For example, conducting
6 Bernoulli trials with each sampling tile would estimate
two bits of m1, . . . ,m3 with per sampling tile, rather
than one bit, halving the required length of the sampling
line. This would result in a prohibitively large tile set,
however; as the number of tile types increases exponen-
tially with the number of simultaneous Bernoulli trials
per tile type.

A conceptually simpler and practically more feasible
improvement is to use 0/1-valued tile concentrations
to simulate tile type programming (i.e., designing tile

types specially to build a particular size square, as in
[12]) for small values of n, by including tile types
that deterministically construct an n × n square for
each small n, setting concentrations of those tiles to
be 1 and setting concentrations of all other tiles to
be 0. Though this solution lacks the “feel” of tile
concentration programming, it is likely that real-life
implementations of tile concentration programming will
need to use such hard-coding tricks for smaller struc-
tures that lack the space to carry out the amount of
sampling required to reconstruct precise inputs solely
from tile concentrations.

An alternate improvement to the tile set would be to
combine the present technique with the Kao-Schweller
technique of building a sampling line inside of a square,
to more efficiently use the n2 space available to carry
out the estimation. However, square-building is not
necessarily the only application of this technique, as
discussed next.

The primary novel contribution of this paper is a
tile set that, through appropriate tile concentration pro-
gramming, forms a thin structure of length O(n2/3)
and height O(log n),12 whose rightmost tiles encode the
value of n. The number n could be used to assemble
useful structures other than squares. For the task of
building a square, this construction wastes the ≈ n2

space available above the thin rectangle, but for com-
puting other structures, it may be advantageous that
the rectangle is kept thin. For instance, biochemists
routinely use filters (e.g., Millipore Ultrafiltration Mem-
branes) and porous resins [3] to separate proteins based
on size, in order to isolate one particular protein for
study. The ability to precisely control the size of the
filter holes or resin beads would allow for more targeted
filtering of proteins than is possible at the present
time. DNA is likely too reactive with amino acids to
be used as the substrate for such a structure, so an
implementation of the tile assembly model not based
on DNA would be required for such a technique.

Similarly, polyacrylamide gel electrophoresis
[16], another technique for discriminating biological
molecules on the basis of size, requires molecular
mass size markers, which are control molecules of
known molecular mass, in order to compare against the
molecule of interest on the gel. At the present time,

12By partitioning n’s binary representation into t rather than three
subsequences, for t ∈ N a constant, the number of trials needed
to estimate n is O(n2/t). However, the constant factors in the O()
increase, making the technique even less feasible for small values
of n. But if some application requires an asymptotically very short
line, the line can be made length O(nε) for any ε > 0 using this
technique.
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some naturally-occurring molecules of known mass
are used, but their masses are not controllable, and
the ability to quickly and easily assemble molecules
of precisely a desired target mass would be useful in
experiments requiring mass markers that differ from
the standards. Again, DNA is a special case in which
this idea is unnecessary, since precise standards have
been developed for DNA gels (e.g., Novagen DNA
Markers). But the tile assembly model may one day be
implemented using substances that are appropriate for
a protein gel.
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APPENDIX

1. Choice of Parameters

We now derive the settings of various parameters
required to achieve a desired success probability and
derive lower bounds on n necessary to allow the space
required by the construction. To ensure probability of
failure at most δ, we pick r, the number of stages
of stopping tiles that must attach before the primary
counter is sent the stop signal, so that 2 · 0.9421r ≤ δ

4
as in (3.3):

r =

⌈
log δ

8

log 0.9421

⌉
.

For example, choosing r = 113 achieves probability of
error δ/4 (in ensuring the counter stops between the
numbers 2a−1 and 2a) at most 0.0025.

To ensure that each of m1, m2, and m3 are computed
exactly, we set c, the number of extra bits used in
the primary counter beyond 2k, such that e−2c−2/3 +
e−2c−2/2 ≤ δ

4 , as in (3.4), or more simply, such that
2 · 0.7172c−2 ≤ δ

4 ; i.e., set

c = 2 +

⌈
log

log δ
8

log 0.717

⌉
.

For example, choosing c = 7 achieves probability of
error δ/4 (in ensuring that m1 is computed correctly)
at most 0.0025 (in fact, at most 0.000005).

By the union bound, the length of the sampling line
and the values of m1, m2, and m3 are computed with
sufficient precision to compute the exact value of n with
probability at least 1− δ. The example values of r and
c given above achieve δ ≤ 0.01.

The choices of r and c imply a lower bound on the
value of n necessary to allow sufficient space to carry
out the construction. Clearly the counter must reach at
least value r, since there are r different stopping stages.
The more influential factor will be the value c, which
doubles the space necessary to run the counter each
time it is incremented by 1. n requires blog nc + 1
bits to represent, but our estimation will be a string of
length the next highest multiple of 3 above blog nc+ 1.
Therefore, each of m1, m2, and m3 requires

k =
⌈
blog nc+ 1

3

⌉
bits to represent. Recall that the primary counter will
have height 2k + c and count to 22k+c (so long as
r ≤ 22k+c). Then, c columns are required to shift off
the constant c bits from the least significant bits of
the counter, and 2k columns are required to shift off
the least significant half of the bits of the counter to

isolate the k most significant bits. k columns are needed
to translate the groups of three bits into octal and to
rotate this string to face upwards for the square-building
counter.

Hence, the total length required along the bottom of
the square to compute n is max{r, 22k+c} + c + 3k.
Expanding out the definitions of r, k, and c derived
above gives the lower bound b(n, δ) on n described in
Theorem 3.1.

For sufficiently large n and small enough δ, r is much
smaller than 22k+c, so the latter term dominates. For ex-
ample, to achieve probability of error δ ≤ 0.01 requires
n > 8,000,000. According to preliminary experimental
tests, in practice, a smaller value of c is required than
the theoretical bounds we have derived. For example, if
the desired error probability is δ = 0.01, setting c = 7
satisfies the analysis given above, but in experimental
simulation, c = 3 appears to suffice for probability of
error at most 0.01, and reduces the space requirements
by a factor of 27−3 = 16. In this case, n = 9000 can
be computed by a construction that will stay within the
9000 x 9000 square.
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