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Abstract

Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. As-
suming a fixed molecular population size and bimolecular reactions, CRNs are formally equiva-
lent to population protocols, a model of distributed computing introduced by Angluin, Aspnes,
Diamadi, Fischer, and Peralta (PODC 2004). The challenge of fast computation by CRNs (or
population protocols) is to not rely on a bottleneck “slow” reaction that requires two molecules
(agent states) to react (communicate), both of which are present in low (O(1)) counts. It is
known that CRNs can be fast in expectation by avoiding slow reactions with high probability.
However, states may be reachable from which the correct answer may only be computed by
executing a slow reaction. We deem such an event a speed fault. We show that the predicates
stably decidable by CRNs guaranteed to avoid speed faults are precisely the detection predi-
cates: Boolean combinations of questions of the form “is a certain species present or not?”.
This implies, for instance, that no speed fault free CRN decides whether there are at least two
molecules of a certain species — i.e., speed fault free CRNs “can’t count.”

1 Introduction

Background. Understanding the principles of molecular computation is essential to making sense
of information processing in biological cellular regulatory networks. Further, we are rapidly ap-
proaching the limit of our conceptual understanding in engineering of artificial regulatory networks,
whether to be inserted into biology to rewire behavior, or for completely synthetic life-like systems.
The theory of computation has proven invaluable in realizing information processing in electronic
systems, and much-studied algorithms underly the behavior of everything from the internet to
video games. However, a deep understanding of the computational principles underlying much of
chemical regulation is still lacking. How molecular networks can be programmed to process infor-
mation and carry out computation subject to the natural constraints of aqueous chemistry is not
well-understood.

A foundational model of chemistry commonly used in natural sciences is that of chemical re-
action networks (CRNs), i.e., (finite) sets of chemical reactions such as A + B → A + C. Subject
to discrete semantics (integer number of molecules) the model corresponds to a continuous time,
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discrete state, Markov process [20]. A state of the system is a vector of non-negative integers spec-
ifying the molecular counts of the species (e.g., A, B, C), a reaction can occur only when all its
reactants are present, and transitions between states correspond to reactions (i.e., when the above
reaction occurs the count of B is decreased by 1 and the count of C increased by 1). The transi-
tion rate is proportional to the product of the counts of the reactants. CRNs are widely used to
describe natural biochemical systems such as the intricate cellular regulatory networks responsible
for the information processing within cells. With recent advances in synthetic biology, CRNs are
a promising language for the design of artificial biochemical networks. For example, the physical
primitive of nucleic-acid strand displacement cascades provides concrete chemical implementations
of arbitrary CRNs [6, 12, 26]. Thus, since in principle any CRN can be built, hypothetical CRNs
with interesting behaviors are becoming of more than theoretical interest.

The importance of the CRN model is underscored by the observation that intimately related
models repeatedly arise in theoretical computer science under different guises: e.g., vector addition
systems [22], Petri nets [24], population protocols [1]. The connection to distributed computing
models, in turn, resulted in novel insights regarding natural cellular regulatory networks. For
example the “approximate majority” population protocol [4] has been connected to a number of
biological networks [7, 8].

Motivation: parallelism in chemical computation. Parallelism is a basic attribute of chem-
istry, and one that is of central importance in understanding molecular information processing.
Intuitively, the more molecules are concentrated in a fixed volume, the more interactions per unit
time can occur. This kind of parallelism is both a blessing and a curse: it can be used to speed
up computation, but we must be careful to avoid “race conditions” (reactions happening in an
unintended order) that may lead to error.

As motivation consider a few very basic tasks in which a chemical system (e.g., cell) responds to
molecular signals present in very small quantities. Fig 1 contains a number of examples of chemical
computation of a predicate over the initial molecular counts of the input species A (or A1, . . . , Ak
for multiple inputs). The truth value of the predicate is output by the species Y : if the predicate is
true (YES) the system eventually reaches a state with Y permanently present, while if the predicate
is false (NO) the system eventually reaches a state with Y permanently absent. In all cases in the
figure, the initial state contains exactly the input molecules and n molecules of fuel species F .1

Chemically the fuel species can be thought of as receptors that mediate the interactions. In order
to ascertain whether the computation speeds up with greater “parallelism”, we look at how the
expected time of the computation scales with n.

Consider the CRN shown in Fig 1(b) for the predicate “there is at least 1 molecule of species
A1 and at least 1 molecule of species A2”. Intuitively, this strategy corresponds to having receptors
F that in order to activate need to bind both A1 and A2. By having n receptors F we can increase
the rate of the first reaction, but if there is only one molecule of A1, there will be at most one
molecule of G and thus the second reaction occurs at a rate independent of the amount of receptor.
This “bottleneck” reaction makes this scheme not parallelizeable.

A better strategy is to amplify the signal before taking the conjunction: e.g., Fig 1(c). Here the
receptors release A1 back upon interacting with it, and a single A1 can interact with many receptors
(converting them from F to G). Intuitively, the more receptors F we have, the faster we’ll get a
large number of G’s, and the faster Y will get produced via the second reaction. More specifically,
observe that starting with n > 0 molecules of F , and one molecule of A1 and A2 each, the reachable

1Some CRNs in Figure 1 require n to exceed a positive constant lower bound for correctness: 1 in cases
(b),(c),(f),(g), 2 in cases (d),(h), and 3 in case (i).
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a) e)

b) f)

c) g)
i)

h)
d)

speed fault free

speed fault free

error prone

Y iff [at least 1 molecule of A1 
and at least 1 molecule of A2]

Y iff [at least 2 molecules of A] Y iff [(at least 1 molecule of A1 
or at least 1 molecule of A2) 

and no molecules of A3]

Figure 1: Motivating examples of computation and parallelism with chemical reaction networks. The CRNs
in each column compute a different predicate, which is shown on top. The initial state contains exactly the
input molecules and n molecules of fuel species F . The CRN outputs YES (respectively NO) when it reaches
a state in which Y is present (resp. absent) and every reachable state has Y present (resp. absent). (Note
that the formal definitions in this paper adhere to a different output convention that is symmetric with
respect to NO and YES outputs; see Remark 3.1.) a. A1 and A2 directly interact. b. F acts as a receptor
that needs to react with A1 and A2 to activate and produce Y . c. Same as (b) but receptors F release A1

back upon interacting. d. Same as (b) but receptors F upon reacting with A1 autocatalytically amplify
the signal. e. The natural analog of (a) for the second predicate. f. An analog of (b) for the second
predicate. Note that the first reaction is made reversible (a reversible reaction is simply syntactic sugar for
two irreversible reactions) to avoid error if both A molecules react with F . g. The natural analog of (d) for
the second predicate. However this CRN is error prone: if both A molecules react with F then Y will not be
produced. h. We can eliminate the error possibility in (g) by adding species H that is a “backup copy” of A,
and the fourth reaction that produces Y in case both A react with F . i. In the previous examples, once Y is
produced it can never be consumed and thus the system has stabilized to an output. For “non-monotonic”
predicates, such as that in the third column, it is necessary to consume Y as well as to produce it.

states without Y are: for 0 ≤ m ≤ n, ((n −m) F, m G, 1 A1, 1 A2). From any reachable state
without Y , we can reach a state with a Y through a sequence of reaction executions where one
of the reactants is present in at least b

√
nc count,2 and under stochastic chemical kinetics, the

expected time to produce a Y is O(1/
√
n) — decreasing with n.3 Scheme Fig 1(d) is even faster: it

can be shown that from any reachable state, the expected time to produce Y scales as O(log(n)/n).

2If m < b
√
nc, execute the first reaction b

√
nc −m times (resulting in b

√
nc molecules of G), and then execute

the second reaction. If m ≥ b
√
nc, execute the second reaction.

3Section 4.1 gives the formal model required to derive this expected time; here we briefly justify the claimed
expected time. To simplify the analysis we assume the second reaction does not happen until the first reaction has
produced at least

√
n copies of G; otherwise the expected time is even lower than that derived below. The rate of

a bimolecular reaction is proportional to the product of the counts of the reactants. After i instances of the first
reaction have occurred, there are n− i copies of F , so the expected time for the next occurrence of the first reaction
is 1

n−i
, so by linearity of expectation the expected time from the state with m < b

√
nc molecules of G to reach the

state with b
√
nc molecules of G is proportional to

∑b√nc
i=m 1/(n− i) ≤

√
n · 1/(n−

√
n) = O(1/

√
n). Finally the rate

of the second reaction when there are b
√
nc molecules of G is proportional to

√
n and thus the expected time for it to

fire is O(1/
√
n) for a total expected time of O(1/

√
n). The threshold

√
n used in the analysis was chosen to ensure

the optimal tradeoff between the rates of individual reaction executions and the total number of reaction executions.
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Thus both (c) and (d) are parallelizeable.
Now consider a slightly different predicate: “there are at least 2 molecules of species A”. Con-

sider the CRN in Fig 1(g) based on (d). While it is parallelizeable in the sense that with increasing
n is more quickly converges to an answer, the answer might be wrong. Indeed, it suffers from a race
condition: if both A’s react with F , Y will never be produced. We can fix this system by adding
species H that “backup” A as shown in Fig. 1(h). Then if both A happen to react with F , the last
reaction H + H→Y can still produce Y . Although the last reaction corrects the error, it acts as
a bottleneck if both A happen to react with F .

When a CRN reaches a state from which output can never change again, we say that the CRN
has stabilized ; stabilization is a well-established notion of output for population protocols [2] and
naturally extends to CRNs [11]. Note that systems (c), (d), and (i) have the property that the
expected time to stabilize to the correct answer from any reachable state decreases with n. This
property can be thought of as a certain kind of “self-stabilization” (note the different use of the
word stabilization), in which a distributed system is expected to work as desired even after worst-
case transient faults [5]. Is it possible to construct a CRN for the predicate “there are at least 2
molecules of species A” that has this property? (Our negative result shows that this is impossible.)

Speed faults. We formalize the notion of unavoidable bottleneck reactions by defining speed
faults. A speed fault occurs if a state is reached such that to stabilize to the correct output from
that state requires using a reaction where the counts of all reactants are bounded by a constant
independent of n. Thus in Fig. 1(h), a speed fault occurs if both A molecules react with F in the
first reaction and we have to rely on the last reaction.4

Note that the utility of the notion of speed faults is strongest for proving negative results.
Although the occurrence of a speed fault in a particular execution sequence implies that it will
take a long time to stabilize to the correct output, the absence of a speed fault does not imply fast
stabilization. This is because an execution sequence might take a long time if it consists of a lot of
reaction executions, whose number may increase with n.5 Thus for our positive result we compute
the expected time from any reachable state and show that it indeed decreases with n (Lemma 4.4).

We also emphasize that the possibility of a speed fault does not imply the CRN requires a large
expected time from the initial state, because the speed fault may only be encountered with very
low probability (that may decrease with n).

Our definition of speed fault free CRNs considers the paths to stabilization and not convergence.
We say that an execution sequence converged to a particular output value at the time point when
the output is produced and never changes again, although a different output might be reachable
for a while longer (because the CRN has not yet stabilized). For example, consider the CRN in
Fig. 1(i), and suppose that we start with 1 molecule of A1, A2 and A3 each (and n fuel molecules
F ). Further suppose that the following (unlikely) sequence of events happens: Y is produced in
the first reaction, G is produced in the third reaction, Y is consumed in the fifth reaction, and then
the fourth reaction converts all of F to G before reaction 2 has a chance to occur. Note that in
this case, the CRN quickly converged to the correct output (NO) and never changed the answer

4By “speed fault” we do not mean the event “a reaction between two low count species” (a slow reaction), but
rather the event “enter a state from which a slow reaction is necessary to reach the correct output.” Some CRNs
experience the fault immediately, such as A1 +A2 → Y , which suffers from “original sin”: even from the initial state,
a slow reaction is required to produce the output.

5We observe that in the literature on computation in CRNs and population protocols it is almost never the case
that computation is slow because the necessary sequence of reactions is too long – rather, slowdown is dominated by
reaction bottlenecks where two low count species must react. Thus in this work we focus on this essential type of
delay, captured in our notion of speed faults.
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again, but it takes many more reaction executions before the second reaction became impossible
(all F was consumed) and the system stabilized.

Results. To discuss the generality of our results, we need to consider the input convention more
carefully. In the examples above, the initial state contains only input species and F . In general
starting with fixed amounts of other species as an initial context (for example a single leader
molecule L) allows for a greater variety of CRNs.6 Unless otherwise specified, we allow an arbitrary
initial context. Our main result (Theorem 4.3) says that the predicates decidable by speed fault
free CRNs are precisely the detection predicates: Boolean combinations of questions of the form “is
a certain species present or not?”. Thus speed fault free CRNs “can’t count.”

A simpler-to-prove version of the negative direction (Lemma 4.13) shows that speed fault free
CRNs without an initial context (so-called leaderless CRNs [18]) cannot compute a predicate ψ
unless it is closed under doubling: ψ(x) = ψ(2x) for all inputs x. The “2A predicate” in Fig. 1
is not closed under doubling (ψ(1) = 0 but ψ(2) = 1), thus this result immediately implies that
it is not computable by any speed fault free leaderless CRN. As Remark 4.3 indicates, the proof’s
conclusion is actually stronger than the negative direction of Theorem 4.3, because it excludes fast
convergence, not just fast stabilization.

High level intuition for the negative results. Disallowing speed-faults, the O(1)-count
species must initiate cascades through intermediary large count species in order to “communicate.”
Consider the above “2A predicate.” We can imagine isolating the two copies of A in “separate test
tubes” and then use the symmetry between the two A molecules to make the system think that it’s
communicating with just one A (and thereby fail to detect the second A). To make this argument
precise we develop a pumping technique that formally distinguishes species that can get arbitrarily
large with increasing n from species whose counts are bounded by a constant.7 We show that all
large count species that can be encountered along a trajectory can be pumped to be simultaneously
large. We then show that in the context of large counts of all pumpable species, reaction sequences
can be decomposed into separate test tubes (parallel decomposition). A key part of extending the
argument to allow an initial context involves showing that the speed fault free CRN cannot detect
small changes to pumpable species; for this we develop a new technique for performing surgery on
reaction sequences.

Finite density constraint. It is physically impossible to fit arbitrarily many molecules in a
fixed physical volume. While for large enough molecular counts we will run into this finite density
constraint [25], we study the scaling of speed with molecular count before that point is reached. A
complementary perspective is that our task is to compute as quickly as possible in volume Ω(n)
with O(n) total molecules, where the n molecules of F represent the “other” molecules. The more of
these other molecules there are, the slower our computation will be (since the volume scales with n),
unless we involve F in the computation. In this perspective, a speed fault corresponds to reaching
a state from which we require an Ω(n) time (“slow”) reaction, while our positive result implies that
all detection predicates can be computed in O(log n) time (“fast”) from any reachable state. In the
context of time complexity of population protocols [3], these respectively correspond to the notion
of Ω(n) versus O(log n) “parallel time,” or equivalently, Ω(n2) versus O(n log n) expected pairwise
interactions between agents (on the assumption that ≈ n interactions happen per “unit time”).

6 For example, the simplest CRN computing the predicate “there is an odd count of A” may be: A + L→Y ,
A + Y →L, which starts with 1 copy of L as the leader. (Of course, this CRN is not parallelizeable.)

7Note that our pumping lemma is very different from a similarly named “pumping lemma” of ref. [2], which shows
how input can be increased without changing the output (thus pumping input).
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2 Previous work and future directions

Much related work in the distributed computing community is phrased in the language of population
protocols rather than CRNs (e.g., [2]). While population protocols are equivalent to CRNs with
exactly two reactants and two products, and thus a fixed population size, CRNs can naturally
describe reactions that consume or produce net molecules. As a result CRNs can potentially explore
an unbounded state space, and certain questions that are not natural for population protocols
become germane for CRNs (for example: Turing universality).

CRNs have a surprisingly rich computational structure. If we allow the number of species
and reactions to scale with the size of the input (i.e., view CRNs as a non-uniform model of
computation), then there is a certain sense in which log s species can deterministically simulate
space s-bounded Turing machines, albeit the simulation is grossly inefficient [9]. These results are
presented in a model called vector addition systems [22], but carry over. On the other hand, we
can ask — as we do here — what functions can be computed by a fixed CRN (i.e., fixed number
of species and reactions), with input encoded in the initial molecular counts (i.e., view CRNs as a
uniform model of computation). In this setting, CRNs are not Turing universal, unless we allow for
some probability of error [3, 25] (but see [15]). In attempting Turing universal computation, there
will provably always be “race conditions” that lead to error if certain reactions occur in a (maybe
unlikely but possible) malicious order. The fact that even such Turing universal computation is
possible, and indeed can be made “fast” is surprising since finite CRNs necessarily must represent
binary data strings in a unary encoding, since they lack positional information to tell the difference
between two molecules of the same species.

Deterministic computation of both predicates and functions8 has been exactly characterized,
and corresponds to semilinear sets and functions [2,11].9 Angluin, Aspnes, and Eisenstat [2] define
the formal notion of determinism that we use here (“stable” computation, see Section 3.3). The
authors also showed that all semilinear predicates can be deterministically computed in expected
O(n polylog n) “interactions” (molecules bumping into each other) from the initial state. In a
volume of fixed size, with n molecules, there are an expected Θ(n2) such interactions per unit time,
which yields expected time O((1/n)polylog n) in our setting. Since semilinear predicates are a
much larger class than detection predicates, their construction is necessarily susceptible to speed
faults. Indeed, the overall expected time to complete the computation starting from the initial
state decreases with n only because it becomes less and less likely that a speed fault occurs.

A number of fundamental questions related to the speed of deterministic computation in CRNs
remain unanswered. The first concerns the gap between two key time points in stable computation.
A stably computing CRN must eventually reach a state with the correct output such that no
sequence of reactions can change the output (stabilization). However, as we’ve seen, there might
be a delay between when the output changes for the last time (convergence), and states with a
different output become unreachable (stabilization). Indeed, in the construction of ref. [2], there is
a factor of n difference between the expected times to convergence and stabilization from the initial
state. Our result implies that for all non-detection predicates, there is a reachable state from which
the expected time to stabilize doesn’t decrease with n. But we conjecture a stronger statement:
for all non-detection predicates, there is a reachable state such that the expected time to converge
is bounded below by a constant independent of n. Here, we prove a special case of this conjecture
for leaderless CRNs stably computing predicates not closed under doubling (see Remark 4.3).

8In function computation, unlike predicate computation, the exact count of output species represents the output
value.

9However, the computational power of predicates with asymmetric output remains to be shown, although it is
likely to be semilinear as well.
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We also conjecture that there isn’t a way to make stabilization fast, even in expectation from
the initial state: for all non-detection predicates, the expected time to reach an output stable state
from the initial state is bounded below by a constant independent of n. This does not contradict
the above-mentioned result [2] that all semilinear predicates can be deterministically computed in
expected time O((1/n)polylog n), since this was shown for convergence rather than stabilization.

In our definition of speed fault free CRNs, we have introduced an auxiliary “fuel” species,
primarily to avoid conflating the questions “What is the input to the computation?” and “How
many molecules are available to help parallelize the computation?” For each fixed input x, the
amount of fuel n is allowed to be arbitrarily large compared to ‖x‖, so the input molecules contribute
negligibly to the parallelization. However, it is also natural to define speed fault free CRNs without
the fuel species, so that the molecular count is potentially dominated by the size of the input. The
resulting characterization may be more aligned with the expected time results from the literature
on population protocols and CRNs [1,3, 4, 11,14,17–19,25].

While in this work we focus on parallelizeable predicates, it remains to explore the class of
parallelizeable functions. For example, if the initial amount of A is the input and the final amount
of Y is the output, then we can think of the reaction F + A→ 2Y as deterministically computing
f(x) = 2x. Clearly as the amount of F increases, the computation converges and stabilizes faster.
On the other hand, we believe that computing the function f(x) = bx/2c is not possible without
speed faults, although that remains to be shown. (It is computable by the reaction A + A → Y ,
but this does not speed up with F .)

The current work stems from an effort to develop lower bounds for computation time for CRNs
and population protocols. We hope that the techniques that we have developed will also prove
useful in showing lower bounds on the computation time for other tasks than those considered
here. For example, recent work adapts the techniques herein to prove an expected time lower
bound on leader election [19]. The conclusion is that the näıve leader elimination CRN (L+L→L)
has optimal expected time to stabilize to a single leader from a “uniform” initial state.

Other work showing the challenges in parallelizing CRNs include the investigation of running
multiple copies of networks in parallel [13], and the inability of networks starting with only large
count species to delay the production of any species [17]. Although using more molecules in the same
volume can increase the number of interactions per unit time, our results and these citations indicate
that it can be sometimes nontrivial or impossible to exploit these interactions for computation.

3 Preliminaries

3.1 Chemical reaction networks

For k ∈ Z+, we write Nk to denote the set of all vectors of k nonnegative integers. A predicate
is a Boolean-valued function ψ : Nk → {0, 1}; for notational convenience we identify a predicate
ψ equivalently with the set ψ−1(1) =

{
x ∈ Nk | ψ(x) = 1

}
. If Λ is a finite set (in this paper,

of chemical species), we write NΛ to denote the set of functions f : Λ → N. Equivalently, we
view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each coordinate “labeled”
by an element of Λ. Given S ∈ Λ and c ∈ NΛ, we refer to c(S) as the count of S in c. Let
|c| = ‖c‖∞ = maxS∈Λ c(S). We write c ≤ c′ to denote that c(S) ≤ c′(S) for all S ∈ Λ, and c < c′

if c ≤ c′ and c 6= c′. Since we view vectors c ∈ NΛ equivalently as multisets of elements from Λ, if
c ≤ c′ we say c is a subset of c′. Given c, c′ ∈ NΛ, we define the vector component-wise operations
of addition c + c′, subtraction c − c′ (which can have negative entries), and scalar multiplication
nc for n ∈ N. For a set ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by
assuming c(S) = 0 for all S ∈ Λ \∆. Given S1, . . . , Sk ∈ Λ, c ∈ NΛ, and n1, . . . , nk ∈ Z, we write
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c+{n1S1, . . . , nkSk} to denote vector addition of c with the vector v ∈ Z{S1,...,Sk} with v(Si) = ni.
(Note that we will sometimes use negative coefficients in the notation {n1S1, . . . , nkSk}.)

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈ NΛ×NΛ×R+,
specifying the stoichiometry (amount consumed/produced) of the reactants and products, respec-
tively, and the rate constant k. A reaction is unimolecular if it has one reactant and bimolecular
if it has two reactants. We use no higher-order reactions in this paper.10 Since the results of this
paper hold no matter the rate constants, without loss of generality, in this paper we use k = 1 and
the rate constant is omitted from the notation. For instance, given Λ = {A,B,C}, the reaction
A + B → A + 3C is the pair 〈(1, 1, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a
pair N = (Λ, R), where Λ is a finite set of chemical species, and R is a finite set of reactions over
Λ. A state of a CRN N = (Λ, R) is a vector c ∈ NΛ.

Given a state c and reaction α = 〈r,p〉, we say that α is applicable to c if r ≤ c (i.e., c contains
enough of each of the reactants for the reaction to occur). If α is applicable to c, then write α(c)
to denote the state c + p− r (i.e., the state that results from applying reaction α to c). A finite or
infinite sequence of reactions (αi), where each αi ∈ R, is a reaction sequence. Given an initial state
c0 and a reaction sequence (αi), the induced execution sequence (or path) q is a finite or infinite
sequence of states q = (c0, c1, c2, . . .) such that, for all ci ∈ q (i ≥ 1), ci = αi(ci−1).11 If a finite
execution sequence q starts with c and ends with c′, we write c =⇒q c′. We write c =⇒ c′ if such
an execution sequence exists and we say that c′ is reachable from c.

3.2 Algebra

A few concepts from vector algebra have proven useful in describing the reachable states of CRNs,
as well as characterizing their computational power (see Section 3.3). A set A ⊆ Nk is linear
if A = { b +

∑p
i=1 niui | n1, . . . , np ∈ N } for some constant vectors b,u1, . . . ,up ∈ Nk. A is

semilinear if it is a finite union of linear sets. A is a monoid if 0 ∈ A and A + A ⊆ A, i.e., A is
closed under addition. A is a monoid coset (a.k.a. monoid offset) if A = b +M for some constant
vector b ∈ Nk and monoid M ⊆ Nk.

A linear set is a natural generalization of the notion of a periodic subset of N to higher dimen-
sions. For example, the “slope 1 line”

{
(x1, x2) ∈ N2 | x1 = x2

}
is a linear set. All linear sets

are monoid cosets (and they are monoids if b = 0 in the definition of linear), but the converse does
not hold. For example, the set { (x1, x2) ∈ N2 | x2 ≤ x1 ≤ 2x2 − 1} is a monoid, but it is not linear
(or even semilinear).

A powerful result due to Leroux [23] helps to restrict the complexity of the set of reachable
states. It has long been known that the set of states reachable by a CRN from a given initial state
is not necessarily semilinear [21], but recently Leroux showed that it is representable as a finite
union of monoid cosets. (Leroux actually proves a more powerful result involving the first-order
definability of certain sets, but the following implication is sufficient for our purposes.) For any
CRN C = (Λ, R) and set X ⊆ NΛ, let postC(X) =

{
y ∈ NΛ

∣∣ (∃x ∈ X) x =⇒y
}

be the set of
states reachable from some state in X.

Theorem 3.1 ( [23]). If X ⊆ NΛ is semilinear, then postC(X) is a finite union of monoid cosets.

10Sometimes the CRN model is extended to higher order reactions, but the kinetic model is hard to justify as
more than two molecules are not likely to directly interact. Usually, higher order reactions are used simply as an
approximation of a sequence of unimolecular and bimolecular elementary reactions.

11When the initial state to which a reaction sequence is applied is clear from context, we often overload terminology
and refer to a reaction sequence and an execution sequence interchangeably as paths. The possibility that different
reactions could result in identical state change (e.g., A → B and A + C → B + C when C is present) is immaterial
to the arguments in this paper.
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We will find ourselves frequently dealing with infinite sequences of states. The following tech-
nical lemma elucidates a convenient property of any such sequence and will be used repeatedly.

Lemma 3.2 (Dickson’s Lemma [16]). Every infinite sequence x0,x1, . . . ∈ NΛ has an infinite
nondecreasing subsequence xi0 ≤ xi1 ≤ . . ., where i0 < i1 < ... ∈ N.

3.3 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced by Angluin, Aspnes,
and Eisenstat [2]. Intuitively, some species “vote” for a YES/NO answer, and a CRN is a stable
decider if it is guaranteed to reach a consensus vote.

A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ, φ, s), where (Λ, R) is a CRN, Σ ⊆
Λ is the set of input species, Υ ⊆ Λ is the set of voters, φ : Υ→ {NO,YES} is the (Boolean) output
function, and s ∈ NΛ\Σ is the initial context. For the input vector x = (x1, . . . , xk) ∈ Nk, where
k = |Σ|, we write the initial state as n(x) = {x1A1, . . . , xkAk}+s ∈ NΛ where Σ = {A1, . . . , Ak} are
the input species, and s ∈ NΛ\Σ is the initial context. The initial context represents the molecules
(such as a “leader”) that can be assumed to be initially present independent of the input — which
may assist in the computation. We extend φ to a partial function on states Φ : NΛ → {NO,YES}
as follows. Φ(c) is undefined if either c(X) = 0 for all X ∈ Υ, or if there exist X0, X1 ∈ Υ such that
c(X0) > 0, c(X1) > 0, φ(X0) = NO and φ(X1) = Y ES. Otherwise, there exists b ∈ {NO,Y ES}
such that (∀X ∈ Υ)(c(X) > 0 implies φ(X) = b); in this case, the output Φ(c) of state c is b.

A state y is output stable if Φ(y) is defined and, for all c such that y =⇒ c, Φ(c) = Φ(y). We
say that D stably decides the set X ⊆ Nk, or that D stably decides the predicate ψX : Nk → {0, 1}
defined by ψX(x) = 1 iff x ∈ X, if, for all x ∈ X, for all c ∈ NΛ such that n(x) =⇒ c, there exists
an output stable y ∈ NΛ such that c =⇒y and Φ(y) = ψX(x).

Remark 3.1. For simplicity, the examples presented in Fig. 1 adhere to a different, asymmetric
output convention wherein stabilization to a NO output occurs when every reachable state has no
Y (i.e., no YES voter). It is trivial to convert most of those examples to the symmetric output
convention defined above and used elsewhere in this paper: e.g., in Fig. 1(a)-(h), let all species
S ∈ Λ \ {Y } vote NO and add the reactions Y + S → 2Y . In general, less is known about the
asymmetric output convention than the symmetric one. For example, it is still not clear whether
Theorem 3.3 applies. Remark 4.2 shows that we can nonetheless prove the impossibility of speed
fault free computation of the “2A predicate,” without an initial context, in the asymmetric case.

Remark 3.2. The above definition of stable decidability may seem weak since it does not actually
require that the CRD will reach the output stable state, merely that it could from any reachable
state. However, the definition is sufficient for a negative result: if a CRD does not satisfy it,
then there is a reachable state from which the correct output stable state cannot be reached, and
thus computation is not “deterministic”. Further, our positive result (Section 4.1) is shown in the
stochastic model of chemical kinetics where this weak definition of stable decidability implies that
with probability 1 a correct output stable state will be reached (since in our construction there are
finitely many distinct states that are reachable from any initial state). (The examples in Fig. 1,
the examples below, as well as the construction for our positive result, actually satisfy a stronger
combinatorial criterion: any sufficiently long reaction sequence will reach an output stable state.)

The following theorem due to Angluin, Aspnes, and Eisenstat [2] delineates the computational
power of stable decidability. Recall the definition of semilinearity from Section 3.2.

Theorem 3.3 ( [2]). A set is stably decidable by a CRD if and only if it is semilinear.
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Example. The following CRD D = (Λ, R,Σ,Υ, φ, s) where Λ = {A1, A2, Y,N}, Σ = {A1, A2},
Υ = {Y,N}, φ(Y ) = YES, φ(N) = NO, s = {1Y }, and R is the set of reactions below, stably
decides the semilinear predicate ψ(x1, x2) = 1 iff x1 = x2 (recall that the set (x1, x2) ∈ N2 where
ψ(x1, x2) = 1 is linear, and therefore semilinear):

A1 +A2 → Y

Y +N → Y

A1 + Y → A1 +N

A2 + Y → A2 +N

The intuition is that the input species A1 and A2 cancel each other, and once either of them runs
out Y can no longer be produced. If any A1 or A2 is left over, all Y will eventually be converted
to N . The second reaction ensures that if x1 = x2, and we are left with a mixture of Y and N , all
N degrades. (Note that this CRD satisfies a strong definition of stable decidability in that every
sufficiently long reaction sequence eventually reaches the correct output stable state.)

4 Speed fault free CRDs

We first formally define speed fault free CRDs and then show our main result that speed fault free
CRDs decide exactly the “detection predicates,” i.e., detecting the presence or absence of a species,
but not distinguishing between two different positive counts of it.

To allow for “parallelization” of the computation, we introduce a “fuel” species F , whose count
is allowed to start arbitrarily large.12 Increasing the amount of fuel species is analogous to increasing
the amount of “receptor” in the introduction. We now formalize the concept of “speed fault free”
discussed informally in the introduction. Briefly, a CRN experiences a speed fault if it reaches a
state from which all paths to a correct output state execute some reaction when the counts of all
of its reactants are bounded by a constant (a “slow” reaction). Note that in the stochastic model,
the expected time for such a reaction to occur is bounded below by a constant (independent of the
amount of fuel).

Let f ∈ N, let c ∈ NΛ be a state, and let α ∈ R be a reaction applicable to c. We say that
α occurring in state c is f -fast if at least one reactant has count at least f in c. An execution
sequence is called f -fast if all reactions in it are f -fast. It is worth noting that f -fast reaction
sequences are not necessarily fast in the standard sense of stochastic kinetics (Section 4.1): even if
each reaction occurs quickly, it could be that there are a huge number of reactions in the sequence.
Also it is possible that an f -fast reaction is actually slower than one that is not f -fast: e.g., reaction
X + Y → . . . with f copies of X and 1 copy of Y is much slower than reaction U + V → . . . with
f −1 copies of U and f −1 copies of V . However, the expected time of a reaction that is not f -fast
is bounded as a function of f (unimolecular: at least 1/(f −1), bimolecular: at least v/(f −1)2; see
Section 4.1) — and that is all that our negative result relies on. Our positive result shows not only
the existence of desired f -fast paths, but also that the CRNs stabilize quickly under the standard
stochastic model from any reachable state.

Definition 4.1. A fueled CRD is a 7-tuple D = (Λ, R,Σ,Υ, F, φ, s), where F ∈ Λ \ Σ is the fuel
species, and (Λ, R,Σ,Υ, φ, s) is a CRD with input alphabet Σ = (A1, . . . , Ak). For all n, x1, . . . , xk ∈
N let nn(x1, . . . , xk) denote the initial state {nF, x1A1, . . . , xkAk} + s. We say D stably computes
the predicate ψ : Nk → {0, 1} if, for all x1, . . . , xk ∈ N and all n ∈ N, for any state c such that

12Allowing multiple fuel species F1, F2, . . . does not affect our results since one reaction could be F →F1 + F2 . . . .
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nn(x1, . . . , xk) =⇒ c, there is an output stable state y with φ(y) = ψ(x1, . . . , xk) such that c =⇒y.
We say D is speed fault free if, for all x1, . . . , xk ∈ N and all f ∈ N, for all sufficiently large n, for any
state c such that nn(x1, . . . , xk) =⇒ c, there is an output stable state y with φ(y) = ψ(x1, . . . , xk)
such that c =⇒y by an f -fast execution sequence.

In other words, from any reachable state, there is always a sequence of fast reactions that reaches
the correct answer. Note that our definition of speed fault free decidability naturally parallels the
form of the definition of stable decidability: from any reachable state, there is always a sequence
of reactions that reaches the correct answer.

Remark 4.1. The definition of speed-fault free requires the CRD to maintain an f -fast execution
sequence to the output from any reachable state, even those reached through a non-f -fast execution
sequence. Our definition is meant to capture the intuitive notion of “fast even in the worst case,”
and thus we do not limit the “adversary” to stay on fast paths. (It is open whether Lemma 4.15
holds in the case that the definition of speed-fault free is modified to disallow the adversary from
executing reactions that are not f -fast.)

Definition 4.2. A set S ⊆ Nk is a simple detection set if there is a 1 ≤ i ≤ k such that S ={
(x1, . . . , xk) ∈ Nk

∣∣ xi > 0
}
. A set (predicate) is a detection set (predicate) if it is expressible as

a combination of finite unions, intersections, and complements of simple detection sets.

In other words, a detection predicate is a finite Boolean combination of questions of the form
“is a certain species present?”. The following theorem is the main result of this paper. We show
each direction in two separate lemmas, Lemma 4.4 and Lemma 4.15.

Theorem 4.3. A predicate is stably decidable by a speed fault free CRD if and only if it is a
detection predicate.

Example. The following CRD D = (Λ, R,Σ,Υ, φ, s) where Λ = {A1, A2, F,G}, Σ = {A1, A2},
Υ = {A1, A2, F,X}, φ(A1) = YES, φ(A2) = NO, φ(F ) = NO, φ(X) = NO, s = {}, and R is the
set of reactions below, stably decides the detection predicate ψ(x1, x2) = 1 iff x1 > 0 and x2 = 0.
Further it is speed fault free.

F +A2 → 2A2

F +A1 → 2A1

F +X → 2X

A2 +A1 → 2X

A2 +X → 2X

A1 +X → 2X

To see that this CRD stably decides ψ, it can be shown that from any state reachable from
the initial state {x1A1, x2A2, nF}, we can reach one of four output stable states, depending on
which of A1, A2 were present initially. Indeed, for this CRD any sufficiently long sequence of
reactions reaches one of these output stable states. These four output stable states are y0 = {n′F},
y1 = {n′A1}, y2 = {n′A2}, y3 = {n′X}, where n′ = n + x1 + x2 (i.e., n′ is the total molecular
count).13 If x1 > 0 and x2 = 0 then y1 is reachable (output YES) and the others are not. Otherwise,

13There are other output stable states, for example {n1F, n2A2} for n1 + n2 = n + x2, but for the purpose of
showing the CRN is speed fault free, it is sufficient to show that some output stable state is reachable by a fast path.
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if x1 = x2 = 0 then the only reachable state is y0 (output NO), if x1 = 0 and x2 > 0 then only y2

is reachable (output NO), if x1 > 1 and x2 > 1 then only y3 is reachable (output NO).
To see that this CRD is speed fault free, note that in any reachable state there are n′ molecules

(i.e., total count is preserved). Since there are 4 species, at least one of them must be present in
count n′/4. Note that any two species can react. Thus, unless we are in one of the above output
stable states, some n′/4-fast reaction can happen.

4.1 Positive results: detection predicates are stably decidable by speed fault
free CRDs

In this section we show by construction that any detection predicate can be stably decided by a
speed fault free CRD. We will also argue that the CRD is fast under the standard stochastic time
model of chemical kinetics [20]. First, we define this model (since all rate constants in this paper
are 1, we present a simplified model without rate constants).

Let volume v ∈ R+ represent the size of the physical system in which the reactions are occurring.
Intuitively, the rates of the reactions scale as the number of ways in which the reacting combination
of molecules can be chosen in the current state. Further, bimolecular reactions become slower
when diluted in a larger volume. Formally, suppose the CRD is in state c. The propensity of a
unimolecular reaction α : X → . . . in state c is ρ(c, α) = c(X). The propensity of a bimolecular

reaction α : X + Y → . . ., where X 6= Y , is ρ(c, α) = c(X)c(Y )
v . The propensity of a bimolecular

reaction α : X + X → . . . is ρ(c, α) = 1
2
c(X)(c(X)−1)

v . The propensity function determines the
kinetics of the CRD as follows. The time until the next reaction occurs is an exponential random
variable with rate ρ(c) =

∑
α∈R ρ(c, α) (therefore expected value 1/ρ(c)). The probability that

next reaction will be a particular αnext is ρ(c,αnext)
ρ(c) . In other words, the system is a continuous-

time, discrete-state Markov process in which transitions between states correspond to reactions,
with transition rate equal to the reaction propensity.

Lemma 4.4. Every detection predicate is stably decidable by a speed fault free CRD. This CRD
takes expected time O(log(n)/n) expected time to reach an output stable state under the standard
model of stochastic chemical kinetics with constant volume.

Proof. Let A1, . . . , Ak be the input species. For each a ∈ {0, 1}k, let there be species Xa, which will
represent a particular combination of inputs that has been detected. Then for each a, b ∈ {0, 1}k
such that a 6= b, we have reactions

Xa +Xb → 2Xc

where c is the bit-wise OR of a and b. We identify X0k with the fuel species F (recall its initial
count is n), and input species Ai with Xa(i) where a(i) is a vector of all zeros except in the ith

position. Further, letting f : {0, 1}k → {0, 1} describe the detection predicate, species Xa vote YES
if f(a) = 1 and vote NO otherwise. The CRD starts in the state with exactly the input species
and n fuel species X0k .

To analyze this CRD, note that for no further reactions to be possible, there can be exactly one
species present. The only reachable state where there is only one species present is y = {n′Xa},
where a is the bitwise OR of all the input a(i)’s, and n′ is the sum of n and the counts of the
input molecules (i.e., n′ is the total molecular count). Note that by construction this state has the
correct output. Since every reaction instance increases the count of 1’s of a in some Xa, at most n′k
reaction instances can occur until all n′ molecules become of identical species. This implies that
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the CRD stably computes the detection predicate, and indeed satisfies a stronger combinatorial
criterion that all sufficiently long reaction sequences eventually reach a correct output stable state.

Further, it is easy to see that from any reachable state, there is an n′/2k = Ω(n)-fast path to y,
and thus the CRD is speed fault free (k is a constant). In any reachable state, for some a ∈ {0, 1}k,
the molecular count of Xa is at least n′/2k (since there are always n′ total molecules). So as long
as not all molecules are of the same species, an (n′/2k)-fast reaction is possible.

Finally we analyze the expected time to reach y from any reachable state. If none of the
input species is present then the output is correct at the start. Otherwise, for any bit i present
in the initial state, let ni(t) be the total count of molecules with bit i set to 1 at time t. This
function is monotone non-decreasing. In any state with ni(t) = l, the sum of the propensities of
reactions that increase ni(t) is (n′ − l)l/v regardless of the other bits. Therefore, the expected
time for ni(t) to increase from l to l + 1 is less than 2v

n′l if l < n′/2, and at most 2v
(n′−l)n′ if

l ≥ n′/2. By linearity of expectation, the total expected time for ni(t) to go from 1 to n′ is at most:

2v

(∑n′
2
−1

l=1
1
n′l +

∑n′−1

l=n′
2

1
(n′−l)n′

)
= 2v

n′ O(log (n′)). For constant volume v, and since n′ = O(n)

(we consider increasing the amount of fuel n for fixed input), this is O(log(n)/n). Finally, because
there is a constant number of bits, the overall time to reach an output stable state is O(log(n)/n)
and we obtain the statement of the lemma.

4.2 Negative results: speed fault free CRDs stably decide only detection pred-
icates

In this subsection we prove our main negative result, that speed fault free CRDs can decide only
detection predicates. Subsection 4.2.1 develops a notion of pumping that allows us to reason about
“large count” species (those that can increase with more fuel) versus “small count” species (those
that are bounded no matter the amount of fuel). Subsection 4.2.2 shows a way in which reaction se-
quences could be decomposed into separate “test-tubes” (parallel decomposition). Subsection 4.2.3
uses this machinery to show a simpler result, Lemma 4.13, that leaderless speed fault free CRDs
(those with initial context 0) stably decide only a limited class of predicates (those closed under dou-
bling, which contain the detection predicates but also others such as ψ(x1, x2) = 1 ⇐⇒ x1 = x2).
In fact, for this class of predicates and CRDs, our proof shows the stronger conclusion that, when
the answer is (w.l.o.g.) YES, there is a reachable state x such that every path from x to any state
with positive count of a YES voter is slow.14 To prove our main theorem, we develop additional
technical machinery in Subsection 4.2.4 showing that certain fast paths that reduce the count of
some species from “large” to “small” implies that the reactions obey a certain structure that will
be useful for doing “surgery” on paths to slightly alter the count of those species in a controllable
way. Finally, Subsection 4.2.5 proves our main result, Theorem 4.3.

4.2.1 Pumpable sets of species and Π-friendly paths

This subsection defines “pumpable” sets of species: species whose counts can be made arbitrarily
large by increasing the amount of fuel (species F , see Definition 4.1) and proves some basic prop-
erties about them. For example, the fuel species {F} is trivially pumpable. If there is a reaction
F + A→F ′ + A, then if there is an A, {F ′} is pumpable, because F ′ can be arbitrarily large by
executing the reaction sufficiently many times. From state {1A,nF}, the set {F, F ′} is pumpable

14Our main result, applied to general CRDs deciding a non-detection predicate, concludes only that every path
from x to a stable YES state is slow.
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since one can execute the reaction n/2 times to obtain counts n/2 of F and n/2 of F ′, and n/2
grows unboundedly with n.

This subsection also introduces the notion of Π-friendly paths for a subset of species Π ⊆ Λ,
which is essentially (for careful choices of Π) a proxy for f -fast paths that is easier to work with.
Intuitively, a path is Π-friendly if every reaction in it has at least one reactant in Π, and thus if Π
are the only pumpable species (i.e., the only species that can get “large”), then f -fast paths must
be Π-friendly. This notion will feature prominently in our arguments, in particular as a result of
the parallel decomposition lemma on Π-friendly paths (shown in the next subsection). First we
use it in this subsection to enforce a self-consistency of pumping: you can pump without requiring
a reaction where no reactant is pumpable. This self-consistency will be necessary to ensure that
the entire path we consider is Π-friendly and that the parallel decomposition lemma of the next
subsection applies.

For a condition φ : N × N → {0, 1}, we write for all u ∈ N, there exists n ∈ N such that
φ(n, u) = 1 and n→∞ as u→∞ to mean that for all u ∈ N, there exists n(u) ∈ N depending on
u such that φ(n(u), u) = 1 and lim

u→∞
n(u) =∞.

Let N = (nn)n∈N and U = (uu)u∈N be two infinite sequences of states, i.e., each nn,uu ∈ NΛ.
(From now on the index specification will be implicit and we will simply write (nn) instead of
(nn)n∈N.) We write N =⇒U if, for all u ∈ N, there exists n such that nn =⇒uu, and n → ∞ as
u→∞.1516

Let Π ⊆ Λ. If a reaction has at least one reactant in Π, say the reaction is Π-friendly. If n =⇒u
via a reaction sequence in which all reactions are Π-friendly, then we write n =⇒Π u. We write
N =⇒Π U if, for all u ∈ N, there exists n such that nn =⇒Π uu and n→∞ as u→∞.

Let N = (n0 ≤ n1 ≤ . . .) be an infinite nondecreasing sequence of states. A set of species
Π ⊆ Λ is N -pumpable if there exists a non-decreasing sequence of states U = (u0 ≤ u1 ≤ . . . ) such
that for all P ∈ Π and u ∈ N, uu(P ) ≥ u, and N =⇒Π U . Call U a pumping sequence for Π. Π is
maximal N -pumpable if it is N -pumpable and no strict superset of Π is N -pumpable.

Example. Consider the sequence N = (nn) defined by nn = {1A,nF} for each n ∈ N, and
reactions A → B,A → C,B + F → 2B,C + F → 2C. The sets of species {B} and {C} are
individually N -pumpable. Since the presence of B is mutually exclusive with that of C, the set
{B,C} is not N -pumpable. (However, for initial states N ′ defined by n′n = {2A,nF}, the set
{B,C} is N ′-pumpable.) Neither {B} nor {C} is maximal N -pumpable, however, since the states
{n2B,

n
2F} and {n2C,

n
2F} are also reachable from nn: the maximal N -pumpable sets are thus

{B,F} and {C,F}.
First, we observe that any species unbounded in N (such as F in the previous example) is not

only trivially N -pumpable, but is contained in any maximal N -pumpable set.

Proposition 4.5. Let N be an infinite nondecreasing sequence of states, let Π be maximal N -
pumpable with pumping sequence U , and let Γ ⊆ Λ be the unbounded species in N , i.e., for each
S ∈ Γ, lim

n→∞
nn(S) =∞.17 Then Γ ⊆ Π.

Proof. Since U is a pumping sequence for Π, for each u ∈ N, there is an n ∈ N such that nn =⇒Π uu
and uu(S) ≥ u for all S ∈ Π. Define U ′ = (u′u′) as follows. For each u′, let n′(u′) be the smallest

15 The requirement that n → ∞ as u → ∞ ensures that if we consider larger and larger states uu, we can start
from larger and larger states nn to get there.

16 Note that this relation is transitive; in particular, if N =⇒U =⇒Y for sequences N = (nn), U = (uu), Y = (yy),
then for each y, there is an n such that nn =⇒yy and n→∞ as y →∞.

17Note that since the nn’s are nondecreasing, this implies that lim
n→∞

min
S∈Γ

nn(S) =∞, i.e., all S ∈ Γ are simultane-

ously growing with n.
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integer such that for some n < n′(u′), writing p = nn′(u′)−nn (note p ≥ 0 since N is nondecreasing),

1) nn =⇒Π uu such that u ≥ u′, and 2) p(S) ≥ u′ for all S ∈ Γ. Then nn′(u′) = nn+p =⇒Π uu+p.
Define u′u′ = uu + p. For all S ∈ Γ, u′u′(S) ≥ p(S) ≥ u′ by (2), and for all S ∈ Π, u′u′(S) ≥
uu ≥ u ≥ u′ by (1); i.e., u′u′(S) ≥ u′ for all S ∈ Γ ∪ Π. Let Ū = (ūū) be an infinite nondecreasing
subsequence of U ′ (by Lemma 3.2). (Note that reindexing due to taking a subsequence can only
decrease the index of an element, and thus we still have that for all S ∈ Γ ∪ Π, ūū(S) ≥ ū.) Then
Γ∪Π is N -pumpable with pumping sequence Ū . Since Π is a maximal N -pumpable set, this implies
Γ ⊆ Π.

The previous proposition showed that species already large before pumping a maximal pumpable
set are necessarily contained in it; the next proposition, in a sense, goes in the other direction,
showing this for species that can be made large after pumping. One way to think of this is that
pumpable sets can be naturally “chained.” Suppose Π is maximal N -pumpable with pumping
sequence U , and Ω is U -pumpable. Then Ω ⊆ Π by the maximality of Π. Intuitively, this is
because by “withholding” sufficiently many copies of species in Π, we can reach a state in which
all species in Π ∪ Ω are “large,” hence N -pumpable. The following lemma captures chaining of
pumpable sets more generally, allowing for intervening Π-fast reactions (i.e., the paths U =⇒Π Y
below).

Proposition 4.6. Let N,U, Y be infinite nondecreasing sequences of states. Let Π be maximal N -
pumpable with pumping sequence U , and suppose U =⇒Π Y . Let Ω be Y -pumpable. Then Ω ⊆ Π.

Proof. We argue that if Ω 6⊆ Π, Π is not maximal N -pumpable. Let W be a corresponding pumping
sequence for Ω, and let U = (uu) and W = (ww). By assumption, N =⇒Π U =⇒Π Y =⇒ΩW . This
implies that for all w ∈ N, there is uw ∈ N (such that uw →∞ as w →∞) and path pw such that
uuw =⇒Π∪Ω

pw ww. Since U is a pumping sequence for Π, for any u, for all S ∈ Π, uu(S) ≥ u. Also
recall U is nondecreasing. Thus by starting with a sufficiently larger ûw ≥ uw and then taking the
same path pw, we can get uûw =⇒Π∪Ω

pw ŵw, where ŵw ≥ ww, and for all S ∈ Π, ŵw(S) ≥ w. In
other words, by the fact that W is a pumping sequence for Ω, we had that for all S ∈ Ω, ww(S) ≥ w,
but now we ensure that for all S ∈ Π ∪ Ω, ŵw(S) ≥ w. Let Ŵ be the sequence of ŵw constructed
in this manner for each w, and let W̄ = (w̄w) be an infinite nondecreasing subsequence of Ŵ (by
Lemma 3.2). (Note that reindexing due to taking a subsequence can only decrease the index of an
element, and thus we still have that for all S ∈ Π ∪ Ω, w̄w(S) ≥ w.) Finally, observe that since
we chose ûw ≥ uw and uw →∞ as w →∞, we can conclude that Y =⇒Π∪Ω W̄ . This implies that
overall N =⇒Π∪Ω W̄ . Thus, Π ∪ Ω is N -pumpable with pumping sequence W̄ . If Ω 6⊆ Π, then this
shows that Π is not maximal N -pumpable.

The consequence of pumping a maximal set Π is that we know that the counts of all other
species (not in Π) are bounded no matter which path we take, as long as it is Π-friendly or c-fast
(for large enough c). This is captured in following two propositions, first for Π-friendly, and second
for c-fast paths.

Proposition 4.7. Let N be an infinite nondecreasing sequence of states and let Π be maximal
N -pumpable, with pumping sequence U = (uu). Then there is a bound cU (depending only on U
and the CRN) such that, for all S ∈ Λ \Π, c ∈ NΛ, and u ∈ N such that uu =⇒Π c, c(S) < cU .

Proof. Fix N as in the statement of the Proposition. It suffices to consider only one maximal
pumpable set since there are a finite number of them, so fix a maximal pumpable Π. Let U = (uu)
be a pumping sequence for Π, so that N =⇒Π U . Let S ∈ Λ be any species that can grow arbitrarily
large from U , i.e., (∀c ∈ N)(∃cc ∈ NΛ)(∃u ∈ N) uu =⇒Π cc and cc(S) ≥ c. Let Y be an infinite
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nondecreasing subsequence of (cc), and let Ω = {S}. Then Ω is Y -pumpable (trivially, with Y as
the pumping sequence). Since U =⇒Π Y , Proposition 4.6 then implies Ω ⊆ Π, so S ∈ Π.

Proposition 4.8. Let N be an infinite nondecreasing sequence of states, and let Π be maximal
N -pumpable, with pumping sequence U = (uu). Let cU be the bound from Proposition 4.7. For
all c ∈ NΛ, if uu =⇒ c by a cU -fast path p then: (1) p is Π-friendly, and (2) ∀S ∈ Λ, c(S) ≥ cU
implies S ∈ Π.

Proof. Conclusion (1) follows by contradiction as follows. Let α be the first reaction along p that
is not Π-friendly. Since the state immediately preceding this reaction is reachable by a Π-friendly
path, Proposition 4.7 tells us that all species S ∈ Λ\Π have count less than cU . Therefore α occurs
when the count of all its reactants is less than cU , hence it is not cU -fast, a contradiction. Finally,
conclusion (2) follows from (1) by Proposition 4.7 applied on the entire path p.

Note that the above proposition means that the only way to get a species outside of Π “large”
is by executing a “slow” reaction (between two reactants not in Π).

Finally, products of reactions whose reactants are both maximal pumpable must also be pumpable,
since we can use these reactions to produce a “large” amount of the product species.

Proposition 4.9. Let N be an infinite nondecreasing sequence of states, and let Π be maximal
N -pumpable. If the CRN contains a reaction with all reactants in Π, then all products are in Π.

Proof. Let α be a reaction with all reactants in Π. For each u ∈ N, let uu be reachable from
some nn such that uu(S) ≥ u for all S ∈ Π. From state uu execute α u/2 times (that may be
the maximum number of times the reaction can execute if it is of the form X + X→ . . . ). This
results in a state in which all products of the reaction α have count at least u/2. Since u/2 grows
unboundedly, and α is Π-friendly, Proposition 4.7 establishes that the products are in Π.

We observe that, due to Theorem 3.1, if N is specially structured to have a constant difference
between adjacent states, there is pumping sequence U for N that is similarly structured to have
constant difference between adjacent states. This additional structure on the pumping sequence
will prove essential for proving the Π perturbation claim (Claim 1) in the main argument.

Lemma 4.10. Let h ∈ NΛ and let N = (nn) be such that nn+1 = nn + h for all n ∈ N. Let Π be
maximal N -pumpable. Then there is a pumping sequence U = (uu) for Π, and d ∈ NΠ where for
all S ∈ Π, d(S) > 0, such that for all u ∈ N, uu + d = uu+1.

Proof. Let X = { nn | n ∈ N }. Note that X is semilinear (in fact linear). Since Π is N -pumpable,
let U ′ = (u′0 ≤ u′1 ≤ . . .) be any pumping sequence for Π, so that for each u ∈ N, there is an n
such that nn =⇒Π u′u and u′u(S) ≥ u for all S ∈ Π. Remove all reactions from our original CRN
that are not Π-friendly to obtain a new CRN CΠ. We then apply Theorem 3.1 to the new CRN
CΠ to obtain the following. There exist b1, . . . ,bl ∈ NΛ and monoids M1, . . . ,Ml ⊆ NΛ such that
postCΠ(X) =

⋃l
j=1(bj + Mj). Let u0 > max

1≤j≤l
|bj |. Since u′u0

∈ postCΠ(X), there is a j such that

u′u0
∈ bj +Mj .
Let d = u′u0

− bj ; then d ∈ Mj . Note d > 0 by our choice of u0. Define u0 = u′u0
, and for all

u ∈ N, define uu+1 = uu + d. For all u ∈ N, uu ∈ bj + Mj because Mj is closed under addition.
Thus by the definition of postCΠ(X), for all u ∈ N, there is an n ∈ N such that nn =⇒Π uu. Since
u′u0

(S) > bj(S) for all S ∈ Π, d(S) = u′u0
(S)− bj(S) > 0.

For (uu) to be a pumping sequence for Π, we additionally need n → ∞ as u → ∞. We
can ensure this without loss of generality as follows: For all u, let n(u) be an index of N such
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that nn(u) =⇒Π uu. Note that for all u ∈ N, nn(u)+u = nn(u) + uh =⇒Π uu + uh. Thus if n(u)

is bounded, we can define d̂ = d + h, and define a new sequence (ûu) by û0 = u0 and, for all
u ∈ N, ûu+1 = ûu + d̂, so ûu = u0 + ud̂. For all u ∈ N, defining n̂(u) = n(u) + u, we have
nn̂(u) = nn(u)+u =⇒Π uu + uh = u0 + ud + uh = ûu; note that n̂(u)→∞ as u→∞.

The requirement that d̂ ∈ NΠ (i.e., that d does not contain species outside of Π) follows by
the maximality of Π. We then let d and (uu) in the statement of the lemma be d̂ and (ûu),
respectively.

4.2.2 Parallel decomposition

Intuitively, the following lemma shows that CRNs reacting by Π-friendly reactions can be effec-
tively decomposed into separate non-interacting “test tubes” (in the context of a large excess of
species in Π). Note that in this way Π-friendly bimolecular reactions act somewhat analogously to
unimolecular reactions: if x + y =⇒ z by a sequence of unimolecular reactions, then x =⇒ z′ and
y =⇒ z′′ such that z′ + z′′ = z. Using this parallel decomposition lemma we will repeatedly argue
that if something can happen from the whole test tube then it could happen from one of the halves
— often arriving at a contradiction.

Lemma 4.11. Suppose x1 + x2 =⇒Π y. Then there are p,p′,p′′ ∈ NΠ, and y′,y′′ ∈ NΛ such that
p + x1 =⇒Π p′ + y′ and p + x2 =⇒Π p′′ + y′′, where y′ + y′′ = y and p′ + p′′ = 2p.

Proof. First we define two concepts that will be used in the proof: parallel decomposition and
longest parallel prefix. For a reaction sequence q applied to a state x to give x =⇒q y, where x is
written as a sum of two states x1 +x2 = x, we say that q has a parallel decomposition from (x1,x2)
if there exists a partition of q into two disjoint subsequences of reactions (l, r) such that x1 =⇒l y1,
x2 =⇒r y2, and y = y1 + y2. In other words, if we imagine splitting x into two “tubes” x1 and x2,
then the evolution determined by the reaction sequence q can be interpreted as happening entirely
within the tubes.

Suppose a reaction sequence p is applicable to x = x1 + x2, but p does not have a parallel
decomposition from (x1,x2). Then there is a longest prefix q of p (possibly q is empty) such that
q has a parallel decomposition (l, r) from (x1,x2). We call q the longest parallel prefix of p from
(x1,x2). Let (l, r) be such that x1 =⇒l l and x2 =⇒r r. In other words, q is the furthest that x1 and
x2 can evolve on their own before the next reaction in p requires a molecule from l and a molecule
from the other r. Therefore the next reaction must be bimolecular L + R → . . ., and it must be
the case that, without loss of generality, l(R) = 0, l(L) > 0 and r(L) = 0, r(R) > 0; otherwise
one of the reaction sequences l or r could be extended by that reaction while remaining a parallel
decomposition, and q would not be the longest prefix of p with a parallel decomposition.

Now we proceed with the proof of the lemma. Let p be the Π-friendly reaction sequence such
that x1 + x2 =⇒p y. Let pn ∈ NΠ consist of exactly n molecules of every species in Π. For any pn
we can apply the path p in the context of pn: 2pn + x1 + x2=⇒p 2pn + y. Let qn be the longest
parallel prefix of p from (pn + x1,pn + x2) and let (ln, rn) be the parallel decomposition of qn from
(pn + x1,pn + x2). Let ln and rn be such that pn + x1=⇒rn ln and pn + x2=⇒ln rn.

In the remainder of the proof we will show that for large enough n, qn = p. Showing qn = p
completes the proof: pn + x1 =⇒ ln by a Π-friendly reaction sequence and pn + x2 =⇒ rn by a
Π-friendly reaction sequence where ln + rn = y + 2p.

If qn is not all of p then the next reaction in p after qn must be of the form L+R→ . . . where,
without loss of generality, ln(R) = 0, ln(L) > 0 and rn(L) = 0, rn(R) > 0. Since p is Π-friendly, at
least one reactant L or R is in Π. Now, for the same p, consider qn+1, the longest parallel prefix of
p from (pn+1 + x1,pn+1 + x2). The following argument shows that qn+1 must be longer than qn by
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at least 1 reaction. Suppose qn+1 = qn. If L ∈ Π then rn+1(L) = 1, and if R ∈ Π then ln+1(R) = 1.
Since we still have rn+1(R) > 0 and ln+1(L) > 0, the above reaction from p can occur in either
ln+1 or rn+1, contradicting that qn+1 is the longest parallel prefix. Using the base case |q0| ≥ 0, we
conclude that for all n ≥ |p|, qn = p.

The following lemma is a key consequence of the parallel decomposition lemma above. In
general, a YES voter cannot be produced from an output stable NO state (by definition), while
combining two output stable NO states could lead to the production of a YES voter.18 The
following, however, establishes that this path to producing a YES voter cannot be fast if the
output stable NO states come from a pumping sequence for a maximal pumpable set.

Lemma 4.12. Let Y be an infinite nondecreasing sequence of states, and let Ω be maximal Y -
pumpable, with pumping sequence W = (ww), where all ww are output stable NO states. Let cW
be the bound from Proposition 4.7 applied to pumping sequence W . Then for all ww, ww′, states z
and paths p such that ww + ww′ =⇒p z and z contains a YES voter, path p is not 2cW -fast.

Proof. We consider two possibilities — that p is Ω-friendly, and that p is not Ω-friendly — and
argue that the first is impossible and that the second implies that p is not 2cW -fast.

If p is Ω-friendly, then by the parallel decomposition lemma (Lemma 4.11) applied to ww +
ww′ =⇒Ω

p z there are p,p′,p′′ ∈ NΩ, z′, z′′ ∈ NΛ such that p+ww =⇒p′+z′ and p+ww′ =⇒p′′+z′′

and z′ + z′′ = z. Since z contains a YES voter, z′ or z′′ must contain a YES voter. Note that for
large enough ŵ, wŵ ≥ p + ww and wŵ ≥ p + ww′ since species in Ω have count at least ŵ in wŵ.
Thus for large enough ŵ, we can produce a YES voter from wŵ. Since wŵ is output stable NO by
assumption, this is a contradiction.

Thus we conclude that p is not Ω-friendly. Assume p is 2cW -fast. Path p must begin with a
(possibly empty) Ω-friendly portion, followed by a reaction α that is not Ω-friendly. Let x be the
state immediately before this reaction occurs in p. Since p is 2cW -fast, it must be that x contains
count 2cW of some species S that is not in Ω (otherwise α would be Ω-friendly). Since the initial
portion of p that leads to x is Ω-friendly, we have ww + ww′ =⇒Ω x and the parallel decomposition
lemma (Lemma 4.11) applies: there are p,p′,p′′ ∈ NΩ, x′,x′′ ∈ NΛ such that p + ww =⇒Ω p′ + x′

and p+ww′ =⇒Ω p′′+x′′ and x′+x′′ = x. Thus either x′ or x′′ must contain at least 2cW /2 = cW
of S. Since for large enough ŵ, wŵ ≥ p + ww and wŵ ≥ p + ww′ , starting from wŵ we can reach a
state containing at least cW of S ∈ Λ \ Ω by an Ω-friendly path. In this we obtain a contradiction
of Proposition 4.7.

4.2.3 Simplified proof for leaderless CRDs

In this section, we show a simplified version of our main negative result that speed fault free CRDs
stably decide only detection predicates. Its proof illustrates how the tools developed in previous
subsections can be used to show that certain CRDs are not speed fault free, without requiring the
full technical detail required for our main negative result. The lemma below shows that leaderless
CRDs (those with initial context 0) that are speed fault free decide only predicates ψ : Nk → {0, 1}
that are closed under doubling, i.e., for all x ∈ Nk, ψ(x) = ψ(2x) (note all detection predicates are
closed under doubling). The lemma immediately implies that any leaderless CRD stably deciding
the “2A predicate” of Figure 1 (ψ(x) = 1 ⇐⇒ x ≥ 2) is not speed fault free.

Intuitively, the proof of the lemma below involves splitting the initial state representing 2x into
two equal tubes each representing x such that each tube reaches an output stable state with no

18For example, consider the reaction A + A → Y , with A voting NO and Y voting YES, and consider the states
{1A} and {2A}.
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ψ(2x) voters. Then if the CRD were speed fault free, once the two tubes are allowed to interact,
there should be an f -fast path to producing a ψ(2x) voter. By initially choosing more fuel molecules,
we should be able to find such a path for arbitrarily large f . Then we use Lemma 4.12 which gives
an upper bound on how large f can be, a contradiction.

Lemma 4.13. Let D = (Λ, R,Σ,Υ, F, φ, s) be a fueled CRD with s = 0 stably deciding a predicate
ψ : Nk → {0, 1} such that for some x ∈ Nk, ψ(x) 6= ψ(2x). Then D is not speed fault free.

Proof. Suppose D stably decides ψ. Let x = (x1, . . . , xk) be as in the statement of the lemma.
Define N = (nn) for all n ∈ N by nn = nn(x) as in Definition 4.1; i.e., counts x1, . . . , xk of
A1, . . . , Ak, count n of F , and count 0 of all other species. Since D stably decides ψ, for each
n ∈ N, there is an output stable state yn such that nn =⇒yn and Φ(yn) = ψ(x); assume without
loss of generality that ψ(x) = 0. Define sequence Y = (yn). Let Ω ⊆ Λ be a maximal Y -pumpable
set of species with pumping sequence W = (ww).

For each n ∈ N, consider the initial state 2nn = n2n(2x); this is a valid initial state representing
input 2x, for which ψ(2x) 6= ψ(x). By the above argument, for each w ∈ N, there is an n ∈ N
such that 2nn =⇒ 2ww. By the fact that ψ(x) 6= ψ(2x) and the fact that D stably decides ψ, for
each w there is an output stable state zw such that 2ww =⇒qw zw and zw contains a YES voter
(since each ww is output stable NO, the state 2ww has no YES voters, and the CRD must produce
one before it can reach an output stable YES state). By Lemma 4.12, no such path qw can be
2cW -fast. Recall that N =⇒Y =⇒W implies that n → ∞ (index of N and Y ) as w → ∞ (index
of W ). Thus, there are infinitely many n such that from initial state 2nn the CRD can reach to a
state 2ww, from which every path to a correct output stable state is not 2cW -fast, implying D is
not speed fault free.

Remark 4.2. Recall that we have defined CRDs to use the symmetric output convention with both
NO and YES voters, while the examples in the introduction (Fig. 1) adhere to an asymmetric output
convention where YES output is represented by the presence of Y and NO output is represented
by its absence. In the asymmetric output convention, the proof above shows that if ψ(x) = 0 while
ψ(2x) = 1, then the CRD is not speed fault free. Thus the above lemma is sufficient to prove that
no speed fault free CRD, without an initial context, can compute the “2A predicate” as described
in the introduction.

Remark 4.3. Although, Lemma 4.13 states merely that the CRD is not speed fault free, the proof
actually shows a stronger conclusion. That the CRD is not speed fault free means that for some
input there are reachable states such that every path to an output stable state is “slow” — i.e.,
that stabilization is “slow”. However, the proof shows that there are reachable states such that
every path to the correct output, stable or not, is “slow” — i.e., convergence must be slow as well.

In the following sections we work to remove the restriction to leaderless CRDs and to extend
the above lemma to a larger variety of predicates. Note that the proof of Lemma 4.13 appeals to
Lemma 4.12, which requires the two states uu,uu′ to be from the same pumping sequence. This
highlights a central difficulty of extending the above proof to cover a non-zero initial context. If the
initial context contains, for example, a leader (a single copy of a certain species L), then it must
go into one or the other tube but not both, and the set of pumpable species might be different
depending on the presence or absence of the leader.

Even without a leader, consider the non-detection predicate ψ(x1, x2) = 1 ⇐⇒ x1 = x2, which
is closed under doubling since x1 = x2 ⇐⇒ 2x1 = 2x2; we cannot apply the above proof on ψ
since the it requires that ψ not to be closed under doubling.
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The remainder of the paper develops the technical tools needed to handle these difficulties.
Though we still make heavy use of the parallel decomposition lemma, we apply it to more carefully
chosen states.

4.2.4 Reaction ordering lemma

Intuitively, the next lemma states that a “fast” reaction sequence that decreases certain species
from large counts to small counts must contain reactions of a certain restricted form. In particular
the form is as follows: if ∆ is the set of species whose counts decrease from large to small, then
we can write the species in ∆ in some order D1, D2, . . . , Dl, such that for each 1 ≤ i ≤ l, there
is a reaction αi that consumes Di, and every other species involved in αi is either not in ∆, or
comes later in the ordering. These reactions will be used in the proof of the main result to do
controlled “surgery” on fast reaction sequences, because they give a way to alter the count of Di by
inserting or removing the reactions αi, knowing that this will not affect the counts of D1, . . . , Di−1.
Specifically, the reaction ordering lemma is key to proving the Π perturbation claim (Claim 1) in
the main argument.

Lemma 4.14. Let c1, c2 ∈ N such that c2 > |Λ| · c1, let x,y ∈ NΛ such that x =⇒y via c2-fast
reaction sequence q. Define ∆ = { D ∈ Λ | x(D) ≥ c2 and y(D) ≤ c1 } . Then there is an order
on ∆, so that we may write ∆ = {D1, D2, . . . , Dl}, such that, for all i ∈ {1, . . . , l}, there is a
reaction αi of the form Di + S → P1 + . . . + Pk, such that S, P1, . . . , Pk 6∈ {D1, . . . , Di}, and αi
occurs at least c2−|Λ|·c1

|R| times in q in states c in which c(S) ≥ c2.

Proof. We define the ordering based on increasing sets ∅ = ∆0 ⊂ ∆1 ⊂ ∆2 ⊂ . . .∆l−1 ⊂ ∆l = ∆,
where for each 1 ≤ i ≤ l, ∆i \∆i−1 = {Di}.

We define the ordering inductively “in reverse,” by first defining Dl, then Dl−1, etc. For all
1 ≤ i ≤ l, define Θi : NΛ → N for all states c by Θi(c) =

∑
D∈∆i

c(D). Θl is well-defined since
∆l = ∆, and Θi is well-defined once we have defined Di+1, . . . , Dl, because ∆i = ∆\{Di+1, . . . , Dl}.

Because y(D) ≤ c1 for all D ∈ ∆, it follows that Θi(y) ≤ i · c1 ≤ |Λ| · c1. Recall that x(D) ≥ c2

for all D ∈ ∆. Let r be the suffix of q after the last state c′ along q such that Θi(c
′) ≥ c2. Then

in all states c in r (not including c′ itself), c(D) < c2 for all D ∈ ∆i. Because Θi(c
′) ≥ c2, while

Θi(y) ≤ |Λ| ·c1, and c2 > |Λ| ·c1, r must contain a subsequence s of reactions, each of which strictly
decreases Θi, and the total decrease in Θi over all of s is at least (c2 − |Λ| · c1) between states c′

and y.
We now examine the form of any reaction in s. Since every reaction in s strictly decreases Θi,

the reaction must have a reactant in ∆i. Since s is c2-fast, and all states c along s have c(D) < c2

for D ∈ ∆i, the reaction cannot be unimolecular since the count of D is too low for the reaction
to be c2-fast. So the reaction must be bimolecular with the other reactant S having count at least
c2. This implies S 6∈ ∆i (since all D ∈ ∆i have count < c2 between c′ and y). For the reaction
to strictly decrease Θi, all products P 6∈ ∆i (otherwise Θi would either stay equal or increase after
applying the reaction). In fact, this implies every reaction in s decreases Θi by exactly 1. Since
there are at least c2− |Λ| · c1 instances of such reactions in s, and there are at most |R| total types

of reactions, by the pigeonhole principle at least one reaction type must repeat in s at least c2−|Λ|·c1
|R|

times. We call Di the reactant of this reaction that is in ∆i, and continue in the same manner to
define ∆i−1, Di−1, etc.

4.2.5 Proof of the full negative result

Throughout this subsection, let D = (Λ, R,Σ,Υ, F, φ, s) be an arbitrary speed fault free fueled CRD
with Σ = {A1, . . . , Ak}. Supposing for the sake of contradiction that D decides some non-detection
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predicate ψ : Nk → {0, 1}, then there must exist some index i (assume without loss of generality
that i = 1), and an input value (x1, x2, . . . , xk) ∈ Nk, where x1 ≥ 1, such that ψ(x1, x2, . . . , xk) 6=
ψ(x1 + 1, x2, . . . , xk). Assume without loss of generality that ψ(x1, x2, . . . , xk) = 0.

Definition of sequence N . For each n ∈ N, write the initial state of D with answer NO and n
copies of F as nn (= {x1A1, x2A2, . . . , xkAk, nF} + s (where s is a fixed initial context)). Let
N = (n0,n1, . . .) be the (increasing) sequence of these initial states.

The high level intuition behind our proof is as follows. First we start with x1 copies of A1 (i.e.,
infinite sequence N = (nn) for all n) and pump a maximal set of species Π (pumping sequence
U). Recall that the input defining all of these has answer NO, but that a single extra copy of A1

implies that the answer should be YES. By the speed fault free assumption there is an f -fast path,
and thus a Π-friendly path, to output stable NO states Y . Thus the A1 “communicates” with the
rest of the CRD only via perturbations to these high count species Π. The Π-perturbation claim
(Claim 1, proven in Subsection 4.2.6) relies on the reaction ordering lemma on fast paths to show
that a perturbation on Π can be effectively “neutralized”. We force an additional copy of A1 to
undergo the same path as a previous copy, and then neutralize its effect on Π. Then we force the
CRD to go to a state that is contained in the sum of two output stable NO states from the same
pumping sequence W (for a maximal Y -pumpable set Ω). Then by Lemma 4.12 we conclude that
the path to producing a YES voter from this state cannot be fast, a contradiction.

We now formally define these and other infinite sequences of states and sets of species. For
clarity of exposition we first define U and Y in a more unconstrained way, but then refine the
construction to satisfy additional constraints in the subsection to follow.

Definition of sequences U , Y , W , and sets Π, Γ, Ω. Let Π be maximal N -pumpable with
pumping sequence U = (uu). Recall that by definition nn contains n molecules of the fuel species
F . Because every uu is reachable from some nn where n→∞ as u→∞, if the CRD is speed fault
free then each uu must be able to reach some output stable NO state by an f -fast path, where
f → ∞ as u → ∞. Consider only the output stable NO states with f ≥ cU , the bound from
Proposition 4.7, and let Y = (yy) be an infinite non-decreasing subsequence of these states (using
Lemma 3.2). Let Γ be the species unbounded in Y (i.e., S ∈ Γ iff (∀c∃y) yy(S) > c). Note by
Proposition 4.8, U =⇒Π Y . Let Ω be maximal Y -pumpable with pumping sequence W = (ww). By
Proposition 4.6, Ω ⊆ Π.

By the above definition for all w, there are y, u, and n such that nn =⇒Π uu =⇒Π yy =⇒Ω ww,
where y depends on w, u depends on y, and n depends on u, where n → ∞ as u, y, or w → ∞.
Letting n0 be the index of N corresponding to w0, and recalling that Ω ⊆ Π, we can write
the complete path as nn0 =⇒Π w0. We can equivalently rewrite this path as: (nn0 \ {A1}) +
{A1}=⇒Π w0. Now by the parallel decomposition lemma (Lemma 4.11), there are p,p′ ∈ NΠ

and a reaction sequence p such that p + {A1}=⇒p p′ + w where w ≤ w0 (letting x1 = {A1}
and x2 = nn0 \ {A1}). Since U is a pumping sequence for Π, for all large enough u, uu ≥ p,
and so uu + {A1} ≥ p + {A1}. Thus for all large enough u, uu + {A1}=⇒p uu + e + w, where
e = p′ −p ∈ ZΠ (because uu + {A1} = (uu −p) + p + {A1}=⇒p(uu −p) + p′ + w = uu + e + w).

In the subsection to follow we will show that U and Y can be chosen to satisfy the following “Π-
perturbation” claim. The additional constraints that must be imposed upon U and Y , and how to
satisfy them, are postponed until the next subsection for clarity of exposition. The Π-perturbation
claim intuitively says that we can absorb a perturbation over Π, into a perturbation over Γ. Then,
the perturbed yy is still bounded above by some other output stable NO state yy′ , and thus a YES
voter cannot be reached. We will use this claim to drive the CRD from uu + e + w to a state from
which a YES voter cannot be reached, a contradiction.
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Claim 1 (Π Perturbation Claim). For all e ∈ ZΠ, there is a y0 ∈ N, such that for all y ≥ y0,
there are infinitely many u ∈ N and gu ∈ NΓ such that uu + e =⇒yy + gu.

The claim implies that for all large enough y, there are infinitely many u ∈ N and corresponding
gu ∈ NΓ, such that uu+{A1}=⇒yy +gu+w. Choose y ≥ y0 (constant from Claim 1) and w0 ∈ N
such that yy =⇒ww0 (i.e., find a large enough y that has a corresponding ww, whose index we will
call w0). Then, for infinitely many u ∈ N, uu + {A1}=⇒ww0 + gu + w.

Recall that for all u, uu is reachable from some nn such that n → ∞ as u → ∞. Recall nn
contains n fuel molecules F , and that initial state nn + {A1} should result in answer YES. Thus,
assuming the CRD is speed fault free, there must be an f -fast path ww0 +gu+w =⇒qu zu where zu
contains a YES voter, and f →∞ as u→∞. Choose u large enough that f ≥ 2cW , where cW is the
bound from Proposition 4.7 applied on the maximal Y -pumpable set Ω with pumping sequence W .
Next, observe that Γ ⊆ Ω; this follows by Proposition 4.5 taking (left side variables referring to the
statement of the proposition and right side variables referring to definitions in the present context)
Π = Ω, N = Y , and W = U . Thus gu ∈ NΩ. To summarize the above, ww0 + gu + w =⇒qu zu
where zu contains a YES voter and qu is 2cW -fast, and gu ∈ NΩ.

Recall that W = (ww) is a pumping sequence for Ω and thus it is nondecreasing, and ww

contains at least count w of all species in Ω. Then, since gu ∈ NΩ, we can find a large enough ŵ
such that wŵ ≥ ww0 + gu. Further recall that w0 ≥ w. Thus applying path qu to wŵ + w0 leads
to a superset of zu. In other words, we can produce a YES voter from wŵ + w0 via a 2cW -fast
path. Recall that all states in W are output stable NO (since they are reachable from Y ). Thus we
obtain a contradiction by Lemma 4.12 with the maximal Y -pumpable set Ω and pumping sequence
W .

Since we assumed at the start of the subsection that D was an arbitrary speed fault free CRD
deciding a non-detection predicate, this contradiction implies the main technical result of this paper,
which together with Lemma 4.4 implies our main theorem, Theorem 4.3.

Lemma 4.15. Speed-fault free CRDs decide only detection predicates.

4.2.6 Proving the Π perturbation claim (Claim 1)

First we prove an intermediate lemma that will be useful in proving Claim 1. Intuitively, it shows
that the path uu =⇒yy can be modified to convert a positive or negative “perturbation” of the
large count species in U (e ∈ ZΠ) to a perturbation of the large count species in Y (eΓ ∈ ZΓ).
However, the modified path is only valid in the “context” of an excess amount of species in Π (i.e.,
p ∈ NΠ).

Lemma 4.16. Let N be an infinite nondecreasing sequence of states, and let Π be maximal N -
pumpable, with pumping sequence U = (uu). Let Y be an infinite sequence of states such that for
all y ∈ N, uu =⇒yy by an f -fast path, and u, f → ∞ as y → ∞. Let Γ be the set of species
unbounded in Y . Then for any e ∈ ZΠ, there is p ∈ NΠ, eΓ ∈ ZΓ and there is a y0 ∈ N, such that
for all y ≥ y0, p + uu + e =⇒p + yy + eΓ.

Proof. For any y, there is u and an f -fast path p such that uu =⇒p yy and u, f → ∞ as y → ∞.
Let c1 be the largest count of any species not in Γ in the sequence Y . Apply the reaction ordering
lemma (Lemma 4.14) on path p for large enough y such that c2 = min{u, f} satisfies c2 > |Λ| · c1

and c2 ≥ cU , where cU is the bound from Proposition 4.7.
Recall (uu) is a pumping sequence for maximal Π and thus for all S ∈ Π, uu(S) ≥ u, while

all other species are bounded (by Proposition 4.7). So for large enough c2 (obtained from a large
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enough y), since c2 ≤ u, ∀S ∈ Π, uu(S) ≥ c2 while ∀S ∈ Λ \ Π, uu(S) < c2. This implies that
Π \ Γ = { D ∈ Λ | uu(D) ≥ c2 and yy(D) ≤ c1 }. Define ∆ = Π \ Γ.

Using the reaction ordering lemma, we can write ∆ = {D1, . . . , Dl}, such that for each 1 ≤ i ≤ l,
there is a bimolecular reaction αi with the following properties. (That properties (2) and (3) follow
from the reaction ordering lemma is shown below.) (1) Di is a reactant. (2) All products are either
elements of Γ, or are Dj for j > i. (3) The other reactant (S) is either an element of Γ, or is Dj

for j > i. (4) αi occurs at least (c2 − |Λ| · c1)/|R| times in p.
Property (3) can be shown as follows. By Proposition 4.8, the other reactant S must be in Π

because Π is maximal pumpable and the count of S is at least c2 (by the reaction ordering lemma)
which is at least cU (the bound of Proposition 4.7, by construction of c2). Since S is not one of
D1, . . . , Di by the reaction ordering lemma, it must be either in Γ or Dj for j > i. Property (2)
follows using Proposition 4.9 since both reactants are in Π as just established.

We now describe how to modify the reaction sequence p by inserting or removing the above
reactions to get rid of the ∆ component of e. However, as a result of the modification, if we simply
start in un + e, we may not be able to complete the modified path p because some species in Π
might go negative. However, for large enough p ∈ NΠ, p + uu + e =⇒p + yy + eΓ where eΓ ∈ ZΓ.

We iteratively fix the counts of species in ∆ one by one, in the ordering given, i.e., we first
adjust p to fix D1, then we fix D2 (while showing that the fixing of D2 cannot affect the count
of D1 in any state, so it remains fixed), etc. We start with e0 = e. Having fixed D1, . . . , Di−1,
and obtaining new ei−1 ∈ ZΠ such that ei−1 is zero on D1, . . . , Di−1, we process Di as follows. If
δi = ei−1(Di) > 0: add δi instances of reaction αi at the end of the reaction sequence. If δi < 0:
remove δi instances of αi where they occur in the reaction sequence; property (4) ensures that p
contains enough instances of αi (see below). In this way we obtain ei. By property (2) and (3),
adding or removing instances of αi affects only the counts of species in Γ and Di+1, . . . , Dl. Since
we fix these counts in the prescribed order, when we are done, the counts of each Di is zero in
eΓ = ek, while the counts of elements of Γ may have been altered (upward or downward). Note
that as we fix Di by adding or removing αi, we are affecting the counts of Dj for j > i and Γ.
Although the counts of Dj for j > i are compensated later, they may temporarily dip below zero
had we not added a large enough p ∈ NΠ. Further, counts of Γ are never fixed, and thus p must
be large enough that p + yy + eΓ is non-negative on Γ.

Finally, we derive a bound on the number of reaction instances that we may need to remove,
which places a bound on c2 to ensure that there are enough instances by property (4) above.

Bound on the amount of fixing: Let cb = |e|, and let cs be the maximum stoichiometric
coefficient (which bounds the amount that species can change each time the reaction is added
or removed). We add or remove at most |δ1| ≤ cb instances of α1, which affects the count of
D2, . . . , Dl and species in Γ by at most cbcs. Thus, |δ2| ≤ cb + |δ1|cs ≤ cb(1 + cs) (the original
cb error plus the additional error from altering the number of α1 reactions). In general, |δi| ≤
cb + (|δ1| + · · · + |δi−1|)cs ≤ (1 + cs)

i−1cb. Thus if we let c2 ≥ |Λ| · c1 + (1 + cs)
l−1cb|R| (where

l = |∆| is the upper bound on i), we will have enough reaction instances by property (4) to remove
(since (c2 − |Λ| · c1)/|R| ≥ (1 + cs)

l−1cb). Note that this bound, and thus the values of p and eΓ,
depend only on e. Since c2 = min{u, f} and u, f are arbitrarily large, we can achieve a sufficiently
large value of c2.

In order to prove Claim 1, we need to be more deliberate in constructing sequences U = (uu)
and Y = (yy), such that two additional constraints are satisfied. Intuitively, these constraints give
a way to repeatedly convert some amount of Π species into some amount of Γ species without
changing anything else. Eventually these constraints will allow us to replace p + uu in Lemma 4.16
with uu′ for a larger index u′, and ensure that the excess of species in Π can be consumed after
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Lemma 4.16 is applied.
Recall Γ is the set of species that grow unbounded in sequence Y .

Constraint 1. There are u ∈ NΛ and d ∈ NΠ where ∀S ∈ Π, d(S) > 0, such that uu = u + ud.
Constraint 2. There are y1, k, and g ∈ NΓ where ∀S ∈ Γ,g(S) > 0, such that yy1 +kd =⇒yy1 +g.

Refined construction of sequences U and Y . U can be constructed to satisfy constraint
(1) by following Lemma 4.10 with h = {1F} (since nn+1 = nn + {1F} by construction). To
satisfy constraint (2) we construct sequence Y as follows. First infinite sequence Y ′ is constructed
inductively: Let y′0 be some output stable NO state reached from u0. Let y′y be an output stable
NO state reached from y′y−1 + d (call this path py). Since y′y−1 + d is reachable from uy, which
in turn is reachable from some nn such that n → ∞ as y → ∞, we can ensure that paths py are
f -fast such that f → ∞ as y → ∞ (assuming the CRD is speed fault free). Finally, let Y = (yy)
be an infinite non-decreasing subsequence of Y ′ (invoking Lemma 3.2) restricted to the states y′y
for which py is at least cU -fast for bound cU from Proposition 4.7 (for the U constructed above).

We now show that Y constructed in this manner satisfies constraint (2). There must be yy0

and yy1 in Y such that for all species S ∈ Λ \ Γ, yy0(S) = yy1(S), and for all species S ∈ Γ,
yy0(S) < yy1(S). Then observe that for some k, yy0+kd =⇒yy1 = yy0+g where g = yy1−yy0 ∈ NΓ,
which is positive over all of Γ.

With the two additional constraints on U = (uu) and Y = (yy) described above we are able to
prove the Π-perturbation claim used in the previous subsection.

Claim 1. (Π Perturbation Claim) For all e ∈ ZΠ, there is a y0 ∈ N, such that for all y ≥ y0,
there are infinitely many u ∈ N and gu ∈ NΓ such that uu + e =⇒yy + gu.

Proof. Given, any e ∈ ZΠ, let y be at least as large as y0 from Lemma 4.16 and y1 from constraint
(2). By Lemma 4.16, there is u′ and p ∈ NΠ, eΓ ∈ ZΓ such that p + uu′ + e =⇒p′ p + yy + eΓ.
Suppose that instead of p + uu′ + e, using the constant k from constraint (2), we let u = u′ + ku′′

for some u′′ to be chosen later, and start with uu + e = ku′′d + uu′ + e (by constraint (1))
such that ku′′d ≥ p (which is true for large enough u′′). Then by the same path p′ we have:
ku′′d + uu′ + e =⇒p′ ku

′′d + yy + eΓ.
Let r be the path described in constraint (2). We want to use this path u′′ times to convert

ku′′d ∈ NΠ to u′′g ∈ NΓ starting from ku′′d+yy +eΓ. But eΓ ∈ ZΓ can be negative — how can we
be sure that we don’t go below zero when taking r multiple times? We use the following argument,
which depends on making u′′ large enough as a function of eΓ: In the first u′′/2 applications of
path r we rely on the remaining (ku′′/2)d to remain non-negative. Then, in the second u′′/2
applications of r, we rely on the (u′′/2)g produced in the first half to remain non-negative. More
precisely, for large enough u′′, (ku′′/2)d + eΓ ≥ 0, and so we can take the path ku′′d + yy +
eΓ =⇒(ku′′/2)d + yy + (u′′/2)g + eΓ by repeating path r u′′/2 times. Here, g ∈ NΓ such that
∀S ∈ Γ,g(S) > 0. Thus, (u′′/2)g can be arbitrarily large on Γ if we use a large enough u′′.
Therefore, for sufficiently large u′′, (u′′/2)g + eΓ ≥ 0. Then, by taking path r another u′′/2 times,
(ku′′/2)d + yy + (u′′/2)g + eΓ =⇒(u′′/2)g + yy + (u′′/2)g + eΓ = yy + u′′g + eΓ. We obtain the
statement of the claim with u = u′ + ku′′ for all large enough u′′, and gu = u′′g + eΓ ∈ NΓ.

Acknowledgements. We thank Damien Woods, Anne Condon, Chris Thachuk, Bonnie Kirk-
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