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Abstract

We consider the problem of fault-tolerance in nanoscale algorithmic self-assembly. We em-
ploy a standard variant of Winfree’s abstract Tile Assembly Model (aTAM), the two-handed
aTAM, in which square “tiles” – a model of molecules constructed from DNA for the purpose
of engineering self-assembled nanostructures – aggregate according to specific binding sites of
varying strengths, and in which large aggregations of tiles may attach to each other, in contrast
to the seeded aTAM, in which tiles aggregate one at a time to a single specially-designated
“seed” assembly. We focus on a major cause of errors in tile-based self-assembly: that of unin-
tended growth due to “weak” strength-1 bonds, which if allowed to persist, may be stabilized by
subsequent attachment of neighboring tiles in the sense that at least energy 2 is now required
to break apart the resulting assembly; i.e., the errant assembly is stable at temperature 2.

We study a common self-assembly benchmark problem, that of assembling an n × n square
using O(log n) unique tile types, under the two-handed model of self-assembly. Our main result
achieves a much stronger notion of fault-tolerance than those achieved previously. Arbitrary
strength-1 growth is allowed; however, any assembly that grows sufficiently to become stable
at temperature 2 is guaranteed to assemble into the correct final assembly of an n × n square.
In other words, errors due to insufficient attachment, which is the cause of errors studied in
earlier papers on fault-tolerance, are prevented absolutely in our main construction, rather than
only with high probability and for sufficiently small structures, as in previous fault-tolerance
studies. We term this the fuzzy temperature model of faults, due to the following equivalent
characterization: the temperature is normally 2, but may drift down to 1, allowing unintended
temperature-1 growth for an arbitrary period of time. Our construction ensures that this unin-
tended growth cannot lead to permanent errors, so long as the temperature is eventually raised
back to 2. Thus, our construction overcomes a major cause of errors, insufficient strength-
1 attachments becoming stabilized by subsequent growth, without requiring the detachment of
strength-2 bonds that slows down previous constructions, and without requiring the careful fine-
tuning of thermodynamic parameters to balance forward and reverse rates of reaction necessary
in earlier work on fault-tolerance.

Although we focus on the task of assembling an n × n square, our construction uses a
number of geometric motifs and synchronization primitives that will likely prove useful in other
theoretical (and, we hope, experimental) applications.
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1 Introduction

Tile-based self-assembly is a model of “algorithmic crystal growth” in which square “tiles” represent
molecules that bind to each other via specific and variable-strength bonds on their four sides,
driven by random mixing in solution but constrained by the local binding rules of the tile bonds.
Beginning with the experimental work of Seeman in the early 1980s [38], such molecules have
been engineered from DNA in the laboratory, and used to create a variety of sophisticated self-
assembled structures [7, 13, 26, 29, 30, 35, 47] such as Sierpinski triangles and binary counters. Erik
Winfree [43,44], based on experimental work of Seeman [38], modified Wang’s mathematical model
of tiling [41,42] to add a physically plausible mechanism for growth through time. Winfree defined
two models of tile-based self-assembly, the abstract Tile Assembly Model (aTAM) and the kinetic
Tile Assembly Model (kTAM). In both models, the fundamental components are un-rotatable, but
translatable square “tile types” whose sides are labeled with glue “colors” and “strengths.” Two
tiles that are placed next to each other interact if the glue colors on their abutting sides match,
and in the aTAM, a tile binds to an assembly if it interacts on all sides with total strength at least
a certain ambient “temperature,” usually taken to be 2. In particular, if a tile has two strength-1
glues, both of them must match the corresponding glues in the assembly in order to remain bound.

In the more thermodynamically plausible kTAM, tiles may bind even if they interact with
strength less than 2, but are assumed to detach at a rate inversely and exponentially proportional
to the strength with which they interact. Hence tiles attached with strength 1 detach “quickly”,
and tiles attached with strength 2 detach “slowly”. A tile attached with only strength 1 (a so-
called “insufficient attachment”) represents a potential error, as its other strength-1 glue may be
mismatched with the abutting portion of the assembly, or mismatched with what is eventually
intended to be placed at that position. However, since strength-1 attachments are assumed to
detach after a short time, an insufficient attachment actualizes into a permanent error only if
another tile first binds to secure the faulty tile in place, causing the entire assembly to become
stable at temperature 2. That is, by “wandering” temporarily through the space of assemblies
producible at temperature 1, we may arrive at an assembly not producible at temperature 2,
yet that, once formed, is stable at temperature 2. The development of physical and algorithmic
mechanisms for preventing such errors remains a formidable challenge in nanoscale self-assembly.

Stated informally, the kTAM refines the aTAM by endowing it with a mechanism for error
(temporary binding of tiles with strength 1) as well as a mechanism for error correction (eventual
detachment of tiles, even those bound with strength 2). Indeed, numerous papers have used these
two mechanisms for high-probability error correction in the kTAM [11–13, 31, 44, 46]. In each of
these papers except [44], the same basic principle is used to achieve error correction, known as
proofreading. If an insufficient attachment results in mismatching glues, this error is “amplified”
by forcing further growth to require many other insufficient attachments to stabilize. Since these
happen only slowly, the assembly process is slowed down, giving time for the tiles that stabilized
the original insufficient attachment to detach, thus correcting the original error. In [44], Winfree
also shows how errors are removed through the detaching of tiles, although there is no “error-
amplification process”; Winfree shows that by setting the ratio of the forward rate to the reverse
rate sufficiently small (thus slowing down the entire assembly process), erroneous tiles will detach
with high probability. Other papers have investigated algorithmic correction of other types of errors
[27,36,37,39,45] and physical, rather than algorithmic, mechanisms for error suppression [10,17,28].

We work in a variant of the aTAM known as the two-handed aTAM [1,2,4,6,14,27,45]. Winfree’s
original model, the seeded aTAM [43,44], stipulates that assembly begins from a specially-designated
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“seed” tile type, and all binding events consist of the attachment of a single tile to the growing
assembly that contains the seed. The seed thus serves as a nucleation point from which all further
growth occurs. In reality, such single-point nucleation is difficult to enforce [36, 37] as tiles with
matching glues may attach to each other in solution, even if neither of them is connected to the
seed tile. The two-handed aTAM models this sort of growth by dispensing with the idea of a seed,
and simply defining an assembly to be producible if 1) it consists of a single tile (base case), or 2)
it results from the stable aggregation of two producible assemblies (recursive case). We emphasize
that the present paper does not introduce this two-handed version of the model; it has been studied
by numerous authors [1,2,4,6,14,27,45] under various names, such as the “multiple tile” model or
the “polyomino” model.

Not only is the two-handed aTAM a more realistic model in the sense of accounting for unseeded
nucleation, it allows us to use the geometry of partially-formed assemblies, rather than relying solely
on (error-prone) glue specificity, to enforce binding rules between subassemblies. This phenomenon,
geometric blocking that prevents bond formation, is well-studied in chemistry and is known as
steric hindrance [40, Section 5.11] or, particularly when employed as a design tool for intentional
prevention of unwanted binding in synthesized molecules, steric protection [19–21]. Using the
mechanism of steric protection, we are able to achieve a much stronger notion of fault-tolerance
than that described in previous error-correction papers. Informally, our model of fault-tolerance,
which we term the fuzzy temperature model, is as follows (a formal description is given in Section
4). Similarly to the kTAM, we allow strength-1 insufficient attachments to occur. However, we
do not model forward or reverse rates of growth as in the kTAM, as there is no need to employ
the higher reverse rates of insufficient attachments: any insufficient attachments that lead to an
assembly that is stable at temperature 2 were never errors in the first place, as such an assembly
can always lead to an assembly that was producible with only strength-2 growth. That is, viewed
as a modification of the aTAM, we allow the temperature to be “fuzzy”, occasionally drifting
from 2 down to 1, which allows strength-1 growth for as long as the temperature remains low.
However, once the temperature is raised back to 2, thus dissolving any structure that is stable
only at temperature 1, the stable assemblies that are left over are all assemblies that are already
producible at temperature 2 or that can grow into a temperature-2-producible assembly. Therefore,
while insufficient attachments can occur, errors due to insufficient attachments cannot occur, since
temperature-2 stabilization of such errors, which our construction prevents, is required for the
errors to become permanent.

We focus on the problem of assembling an n × n square, a common benchmark problem for
demonstrating the use of self-assembly techniques [3, 6, 8, 15, 22, 23, 34]. In particular, our main
result is the construction of a tile set with O(log n) unique tile types (which is close to the
Ω(log n/ log log n) optimal lower bound [34]) that uniquely assembles into an n × n square in the
two-handed aTAM at temperature 2, and that has the fuzzy-temperature fault-tolerance property
described above. In keeping with the “wandering” analogy from the beginning of this section, our
construction allows arbitrary wandering in the space of assemblies producible at temperature 1,
but funnels all such wandering towards a single unique terminal assembly, or towards the oblivion
of destruction at temperature 2.1

1We emphasize that this is not the same as saying that our construction assembles an n×n square at temperature
1: at temperature 1, many different terminal assemblies can nondeterministically form, most of which are junk. Our
construction ensures that when the temperature is raised to 2, all the junk dissolves away, leaving only assemblies
that are required to assemble the square, and which could have grown anyway had the temperature remained at 2.
In fact, it is an open problem, first stated by Winfree and Rothemund in [34], to uniquely assemble an n × n square
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This paper is organized as follows. Section 2 gives an informal description of the two-handed
aTAM. Section A formally defines the two-handed aTAM. Section 3 shows a construction of a
non-fault-tolerant counter, to introduce some of the main ideas of the full construction. Section 4
defines the fuzzy temperature model of fault-tolerance. Section 5 describes a high-level overview of
the main construction and explains the basic techniques employed. Section B explains the main
construction in detail. Section 6 concludes the paper and states open questions.

2 Informal Description of the Two-Handed Abstract Tile Assem-

bly Model

This section gives a brief informal sketch of the two-handed temperature-2 abstract Tile Assembly
Model (aTAM). The model is described formally, and more generally, in Section A.

A tile type is a unit square with four sides, each having a glue consisting of a label (a finite
string) and strength (0, 1, or 2). We assume a finite set T of tile types, but an infinite number of
copies of each tile type, each copy referred to as a tile. A supertile (a.k.a., assembly) is a positioning
of tiles on the integer lattice Z

2. Two adjacent tiles in a supertile interact if the glues on their
abutting sides are equal and have positive strength. Each supertile induces a binding graph, a grid
graph whose vertices are tiles, with an edge between two tiles if they interact. The supertile is
τ -stable if every cut of its binding graph has strength at least τ , where the weight of an edge is the
strength of the glue it represents. That is, the supertile is stable if at least energy τ is required to
separate the supertile into two parts. A tile assembly system (TAS) is a pair T = (T, τ), where T
is a finite tile set and τ is the temperature, usually 1 or 2. Given a TAS T = (T, τ), a supertile is
producible if either it is a single tile from T , or it is the τ -stable result of translating two producible
assemblies. A supertile α is terminal if for every producible supertile β, α and β cannot be τ -stably
attached. A TAS is directed (a.k.a., deterministic, confluent) if it has only one terminal, producible
supertile. Given a connected shape X ⊆ Z

2, a TAS T produces X uniquely if every producible,
terminal supertile places tiles only on positions in X (appropriately translated if necessary).

3 Two-Handed Assembly of a Counter from O(log n) Tile Types

In this section we describe the two-handed assembly of a (non-fault-tolerant) counter from O(log n)
tile types, as a warmup to our full fault-tolerant square construction. While this technique does
not achieve fault-tolerance, it introduces a novel new counter design technique that utilizes 1)
geometry to enforce/restrict specific assemblies and 2) non-determinism of supertile formation and
attachment to explore the space of possible intermediate assemblies, despite the existence of only
one unique terminal assembly. This technique forms the basis for the more involved fuzzy fault
tolerant construction.

The tile set for the counter is depicted in Figure 1. In this figure, an example tile set for a 4 bit
counter that counts from 0 to 15 is provided. Tile types that share unique, full strength τ = 2 glues
are connected by a black line that crosses over the bonded edge. Other glues in the system include
strength τ = 2 glues Ai and Ci for i from 0 to log n for a length n counter, and two strength τ = 1
glues denoted by the green and blue squares.

at temperature 1 using fewer than 2n − 1 tile types (compared to our use of O(log n) tile types). Rothemund and
Winfree conjectured that 2n − 1 is a strict lower bound for this problem.
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Figure 1: Tile set for two-handed assembly of a
length n binary counter using O(log n) tile types.

Conceptually, the tile set of Figure 1 consists of
a number of blocks for each bit position of a binary
counter. These blocks assemble into height O(log n)
columns, where the representative block for each bit
is determined non-deterministically. Further, the
geometry of each block encodes a bit on both the
left and right side of the block by a dent that ap-
pears at either the upper or lower half of the block.
In the case of orange rollover blocks, the left side
encodes the value 1, while the right encodes the
value 0; these represent 1 bits less significant than
the least significant 0, which all change from 1 to
0 on the next increment. For the yellow least sig-
nificant 0 blocks, the left dent encodes the value 0
and the right encodes 1. For the grey copy blocks,
the left and right encode the same value, with one
type of grey block for “1” and another for “0”; these
represent bits more significant than the least signif-
icant 0, which remain the same on the next increment.

Figure 2: Fully assembled counter from the tile set given in Figure 1.

The glue types that connect blocks from one row to another ensure that any assembled column
consists of red blocks from rows 1 to r (r at least 1 and at most log n), followed by a yellow block
in row r + 1 (if r < log n), followed by grey blocks (either type) in rows r + 2 to row log n (if
r + 1 < log n). This pattern has the property that for any (log n)-bit string b, a column may
assemble that encodes that string in the geometry of the dents on the left side of the column, and
the right side of the column in turn encodes b + 1. Additionally, a fully assembled column can
also attach the two four-tile chains of Figure 1 to both the top A glue and bottom C glue of the
column. For any two assembled columns, the strength τ = 1 green and blue glues combined give
a strength τ = 2 affinity for any two assembled columns to attach. However, due to the rigid
teeth-like geometry of the columns, only sequential columns can get close enough to realize the
affinity and assemble under the two-handed assembly model. The unique assembly of the tile set
of Figure 1 is shown in Figure 2.

In the example provided, we are specifically considering the special case of a counter that grows
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to a power of 2 length. More generally, it is possible to assemble only columns that encode values
greater or equal to a given initial value, thereby allowing the assembly of a length-n counter for
general n. However, we leave these details for the extended fault tolerant version of the construction.
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Figure 3: The basic temper-
ature τ = 2 counter in this
section is not fuzzy fault toler-
ant. The above supertile is pro-
ducible at temperature τ = 1,
stable at temperature τ = 2,
and cannot grow into the de-
sired unique temperature τ = 2
final assembly of Figure 2.

The counter in this section is not fuzzy fault tolerant. In particular,
the supertile in Figure 3 is producible at temperature τ = 1 (but not
τ = 2 because the two-handed model requires that at most 2 supertiles,
both of which are stable at τ = 2, combine in any step), stable at
temperature τ = 2, but cannot grow into the correct unique τ = 2
assembled counter of Figure 2.

4 Fuzzy Temperature Fault-Tolerance

In this section we introduce the fuzzy temperature model of fault-
tolerance in self-assembly. The fuzzy temperature assembly model
permits rampant temperature τ = 1 growth of supertiles under the
two-handed assembly model. We are then interested in what pro-
ducible temperature τ = 1 assemblies become stable at temperature
τ = 2. If even a single temperature τ = 1 assembly becomes stable
at temperature τ = 2 and is inconsistent with what can be built in
a purely temperature τ = 2 assembly model, the system is deemed
error prone. On the other hand, if all temperature τ = 1 assemblies
that are stable at temperature τ = 2 have a valid temperature τ = 2
path of growth to a supertile that is producible under a pure tem-
perature τ = 2 model, then the system is deemed fuzzy temperature
fault-tolerant. Put another way, even with arbitrary erroneous strength 1 attachments, a fuzzy
temperature fault-tolerant system guarantees that such errors cannot stabilize at temperature 2
unless the stabilized supertile can itself grow into a correct temperature τ = 2 assembly, which
means such an assembly is not really an error.

Formally, for a given initial tile set T , we define fuzzy temperature fault-tolerance in terms of
the following four sets of supertiles: (1) The dependably produced (DP) supertiles are those that
can be assembled at temperature τ = 2 under the two-handed assembly model. Formally, DP is
the set of all producible supertiles for the two-handed assembly system (T, 2); (2) The dependably
terminal (DT) supertiles are all supertiles in DP that cannot grow any further at temperature τ = 2.
Formally, DT is the set of terminal, producible supertiles for the two-handed assembly system (T, 2);
(3) The plausibly produced (PP) supertiles are those that can be assembled at temperature τ = 1.
Formally, PP is the set of all producible supertiles for the two-handed assembly system (T, 1); and
(4) The plausibly stable (PS) supertiles are all supertiles in PP that are stable at temperature τ = 2.

Intuitively, DT denotes a final collection of supertiles that can be expected to be built given
enough time for assembly in a temperature 2 system. On the other hand, due to the occasional
assembly of supertiles with only strength 1 attachments, elements in PP will (plausibly) be assem-
bled. Elements of PP that are not stable at temperature τ = 2 intuitively will eventually break
apart and are not of concern. However, these assemblies may grow to a point in which they become
stable at temperature τ = 2, in which case they will not break apart. Such assemblies constitute
the set PS. The goal is to design a system such that for each element α of PS, every terminal β into
which α can grow at temperature τ = 2 is an element of DT (written PS ⇒ DT ), and that DT
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is the set of desired shapes to be assembled. Put another way, we want to avoid the design of an
error prone system in which stable assemblies that are inconsistent with the desired final assembly
are built by erroneous τ = 1 strength attachments.

More precisely, the fuzzy temperature fault-tolerance design problem is as follows:

fuzzy temperature fault-tolerance design problem: Given a target shape Υ, the goal is to
design a tile set such that: (1) PS ⇒ DT (fuzzy temperature fault-tolerance constraint); and (2)
all supertiles in DT have shape Υ. (Desired goal shape is the unique output of the assembly.)

For the remainder of this paper, we attempt to solve the fuzzy temperature fault-tolerance
problem for the benchmark example of an n × n square. As a metric, we are interested in mini-
mizing the number of distinct tile types required to assemble a square while adhering to the fuzzy
temperature fault-tolerance constraint; the problem is trivialized if one allows n2 different tile types
to hard-code each position in the square (or even using O(n) tile types to use the non-cooperative
“comb” structure from [34]). We show that a sleek O(log n) tile complexity is achievable, which is

very close to the O
(

log n
log log n

)

bound that can be achieved with no fault-tolerance constraint (in the

seeded, single-tile addition model).

5 Overview of Fault-Tolerant Square Construction

This section gives a high-level description of the main construction of this paper, a square that
assembles under the fuzzy temperature fault tolerance model. A more detailed description of the
construction can be found in Section B.

5.1 Square

Figure 4: A simplified diagram of the components of a full
n × n square. Components are not represented to scale.

As is common in many self-assembly con-
structions for square-building, most of the
work is in constructing counters that cal-
culate the dimensions of the square. Fig-
ure 4 shows a high-level diagram of how
to compose these counters. The horizon-
tal counter and the vertical counters are
constructed in conceptually the same way,
with minor differences in the actual imple-
mentation. Most of the effort of our main
construction is in encoding the number n
into the tiles that grow a counter, so that it
can control the length to which the counter
grows, in a fault-tolerant way.

5.2 Counter

For simplicity we describe only the horizon-
tal counter. The vertical counters are con-
structed similarly, with the exception that they are slightly simpler because of the need for the
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horizontal counter to correctly space out its bonds designed to connect the horizontal counter to
the various vertical counters.

Define k ≡ ⌊log n⌋+2 to be 1 plus the number of bits in n. As in Section 3, the counter consists
of ≈ n columns (actually n divided by the width in tiles of a column, which is a constant, but
for simplicity of discussion we will assume that there are n columns), each representing an integer
between 2k−n and 2k−1. Note that we refer to columns as “counter-values.” Each counter-value is
connected to the next by two strength-1 inter-counter-value glues, and correct inter-counter-value
binding is enforced using bumps and dents as in Section 3.

5.3 Counter-Value

As in Section 3, counter-values form randomly from ≈ log n “bit gadgets”, each of constant size,
with each bit selected at random. Figure 6 shows the bit gadgets, and Figure 7 shows some of
them attaching to form a few counter-values of a counter. Beyond the need for fuzzy temperature
fault-tolerance, these bit gadgets must meet additional requirements. We first describe how to meet
these requirements, and then describe how to achieve fault-tolerance.

5.3.1 Glue Design for Additional Requirements of Counter-Values

The logical requirements that counter-values must meet are:

(a) The right side of a counter-value must represent i + 1 if the left side represents i. This was
already needed in Section 3.

(b) Each counter-value must be guaranteed to form an integer in the range
[

2k − n, 2k − 1
]

, so that
the counter has exactly n counter-values.

(c) Only a subset of appropriately spaced counter-values should have glues on the north to allow
the vertical counters to bind, since the horizontal width of each vertical counters is Θ(log n),
whereas the horizontal width of each counter-value in the horizontal counter is O(1). This is
done by choosing a power of two 2m (for m just large enough that 2m > width of a vertical
counter), and placing the glues to the north every 2m counter-values.

The fault-tolerance is achieved entirely through the geometric design of the bit gadgets, and
the choice of binding paths within them. The requirements (a), (b), and (c) are achieved through
careful selection of the north-south glues that connect bit gadgets to each other. For the sake
of meeting these three requirements, we can therefore logically view each bit gadget as a single
tile, with double-strength glues on the north and south. The values of these glues will then be
carried through to every actual tile that makes up a bit gadget, and combined with the glues that
hard-code the relative position of each tile in the bit gadget, allow us to conceptually separate the
problem of fault tolerance from that of meeting the three requirements discussed above. Finally,
we can conceptually separate these three problems from each other, designing tiles to meet those
requirements separately, and combine them in a cross-product construction. Figure 5 shows the
three tile sets that meet the requirements (a), (b), and (c). (A brief discussion follows, but see
Section B.2 for an in-depth description.)

In each case, we take care to ensure that the requirement is met no matter in which order the
tiles aggregate. Nonetheless, it is easiest to describe their operation as though the northmost tile
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(a) Increment a binary
number

(b) Enforces that the
left number is greater
than the right

(c) Detects if the binary number formed 1) is
equal to a given number, or 2) matches a given
number of the low-order bits of that number

Figure 5: Templates for tile sets that perform subsets of the functionality of the hairpin gadgets (described in more
detail in Section 5.3.2). Though not shown, each tile has strength-2 glues on the north and south, implemented in
the actual tile set as a pair of single-strength bonds for fault-tolerance purposes. The east and west “bit values”
in Figure 5a are represented in the actual tile set by the geometric shape of the 16 × 16 tile bit gadget that each
individual tile in this figure represents, geometrically enforcing agreement on the bits of adjacent bit gadgets.

is first present, and the counter-value assembles north-to-south; i.e., most significant bit to least
significant.

Figure 5a shows the tiles that implement incrementing to ensure that the east bits represent
i + 1 if the west bits represent i. If the position of the least significant 0 in i is p, then all bits at
positions above p are equal, all bits at positions below p are 1 for i and 0 for i + 1, and at position
p the bit is 0 for i and 1 for i + 1. Therefore the tiles nondeterministically guess a position p at
which to make this transition, and enforce that all tiles above p have equal bits and all tiles at or
below p obey the stated requirement.

Figure 5b shows the tiles that implement range-checking to ensure that the number i that is
constructed is greater than m = 2k − n. (Since precisely k bits are assembled, i < 2k.) Imagine
comparing i to m starting at the most significant bit. We must enforce that there is at least one
bit difference, and that in the position of most significance where there is a difference that the
bit from i is 1 and the bit from m is 0. As before, the tiles nondeterministically guess at which
position the first disagreement will occur. Below the first disagreement, the bits of i are selected
nondeterministically. We chose the value of k so that we know n’s most significant bit is 0; this
helps to ensure, if tiles grow from south to north and have not yet enforced i > m, then the most
significant bit of i may be chosen equal to 1 to enforce this.
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Figure 5c shows the tiles that ensure that two single-strength glues designed to be an anchor
point for vertical counters are placed on the top of a counter-value in the horizontal counter if and
only if the counter-value is at an appropriate position to space the vertical counters out evenly.
This is accomplished by first determining the number, r, which will be represented by the rightmost
counter-value for which this will be the case. Then, whenever the number i represented by a counter-
value shares the same least significant m bits with r, the northern glues are present to anchor a
vertical counter. Additionally, in the special case where all bits of i match those of r, a pair of
northern glues unique to that position are present, to ensure that the special case, rightmost vertical
counter with the necessary padding to fill out the width to exactly n, can attach.

5.3.2 Geometric Design for Fault-Tolerance

On the assumption that the three requirements in the previous section can be met for each counter-
value that forms, we now describe how to use geometry and “synchronization primitives” involving
careful placement of glues to ensure that even at temperature 1, unwanted structures cannot grow
that will be stable at temperature 2. Recall that at temperature 2, the counter-values of the counter
of Section 3 enforce that binding between adjacent counter-values cannot occur until both counter-
values are fully assembled; this occurs because the path (consisting of all strength-2 glues) from one
single-strength inter-counter-value glue to another goes through every bump of the counter-value.
Hence, to have both glues present, the entire counter-value must also be present.

Our construction enforces that no structure producible even at temperature 1 can stably attach
to the east of counter-value i unless it contains enough of the bumps of its westmost counter-
value to enforce that binding requires that counter-value to represent i + 1. This is enforced by
the following constraint: every path (including strength-1 glues) connecting the two inter-counter-
value glues of counter-value i that intersects any counter-value j > i, also passes through every
bump of the counter-value i + 1. Therefore, enough of the leftmost counter-value of this structure
is guaranteed to be present to ensure that it can only bind to the right of counter-value i if its
leftmost counter-value represents i + 1.

To enforce that a path from some part of counter-value i to some part of counter-value i+2 must
traverse the entire height of counter-value i + 1, we must enforce that a path traverses southward
through the bumps of counter-value i + 1, and then traverses northward again before moving on
to counter-value i + 2. But since the path cannot “short-circuit” there must be no glues between
the southward and northward paths except at the bottom of the counter-value. The bumps and
dents on the east side of the southward path must be faithfully represented on the east side of the
northward path.

Even though the bits can grow in any order, it is easiest to imagine growing the bits of the
southward path, then turning around and guessing those same bits while growing the northward
path. Each bit along a single path is represented by what we will call a hairpin gadget ; one
southward and one northward hairpin gadget (though unconnected to each other) form a single bit
gadget. To ensure that improper guesses do not result in junk assemblies that cannot grow any
further, we use a similar motif to the “single-strength glues at opposite ends” used in Section 3,
within the hairpin gadgets themselves. That is, hairpin gadgets can only bind stably to the north of
other hairpin gadgets when fully formed, which prevents a hairpin gadget that does not match its
complementary hairpin gadget from locking in. Figure 6 shows the individual hairpin gadgets along
with gadgets designed to secure them to each other. Figure 7 shows part of a counter formed from
these gadgets. The white hairpin gadgets are “southward growing” (again, if we imagine tracing
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a path from counter-value i to counter-value i + 1, bearing in mind that the two-handed assembly
can grow in other orders), and the gray hairpin gadgets are “northward growing”.

Intuitively, the only connection between a white “left-half” of a counter-value and the gray
“right-half” of that counter-value is through the southern row. Northward growth from this row
is kept consistent by ensuring that no hairpin gadget can stabilize to the hairpin gadget beneath
it until the red double-bond is present. Since every path from this red double-bond to a blue
single-bond on the south of the same hairpin gadget goes through the bumps of that gadget, the
gadget cannot stabilize unless it is consistent with what has already grown to the left or right of it
(and if nothing has already, then it determines what must be consistent with it).

Conversely, southward growth, which can lock a hairpin gadget to the hairpin gadget to its
north without necessarily agreeing with the hairpin to its left or right, nevertheless cannot stabilize
at temperature 2 without growing enough of those bumps to enforce agreement. This is because
the bottom row must be present to connect a white counter-value half to its gray half, and both
must be present to connect that counter-value to the previous (left) counter-value.

Finally, the bumps and dents at the eastmost and westmost edges leave some space that must
be filled in if we wish to create a true square, and to create an exactly n × n square for any n
there is additional ‘padding’ necessary. In order to obtain smooth edges for the counter, the first
and last counter-value assemblies are created from hard-coded sets of tiles which have no bumps
and dents on their left and right sides, respectively. Finally, additional hard-coded rows of the
necessary length for the full width to be exactly n attach to the right side of the last counter value.
(An example of such padding is shown in Figure 8.) In a similar way, the spacing between vertical
counters is filled in.

6 Conclusion

Adleman, Cheng, Goel, and Huang [3] show that for each n there is a (seeded, single-tile ad-
dition, non-fault-tolerant) tile assembly system that uniquely assembles an n × n square using
O(log n/ log log n) unique tile types, a bound that was shown asymptotically tight by Rothemund
and Winfree [34]. Since our construction uses Θ(log n) tile types, an obvious open question is
whether there is a fuzzy temperature fault-tolerant tile assembly system that uses the asymptoti-
cally optimal O(log n/ log log n) to uniquely assemble an n × n square. Previous papers [2–4] have
focused on running time for self-assembled shapes. This is a particularly difficult problem for two-
handed assembly. The papers attacking the case of the two-handed model [2,4] expend much effort
to derive the expected assembly time for the much simpler problem of assembling a 1-dimensional
1 × n line from n unique tile types that each encode a different position in the line. It is an open
problem, first stated in [2], to prove upper or lower bounds for the optimal time to assemble a
square under the two-handed model. It is also an open problem to derive the expected time to
completion for our more complicated construction of a fuzzy temperature fault-tolerant square.

Our construction is “floppy”: many adjacent tiles in the final square are not connected by glues.
One would expect that more strongly connected squares are more physically resilient, and they may
also help to enforce the steric protection utilized in our construction, so this floppiness may be a
disadvantage. Given the goal of preventing all erroneous temperature-1 growth from stabilizing, it
seems unlikely that a full square – a square in which every neighboring pair of tiles interact with
positive strength – could be constructed using a fuzzy temperature fault-tolerant system. But it is
conceivable that more elaborate use of synchronization could allow extra “support substructures”
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to be used to make our construction “more fully connected”, while preserving the fuzzy temperature
fault-tolerance.

Additionally, the two-handed aTAM, while more realistic than the seeded single-tile attachment
aTAM in the sense that it allows for nucleation without a seed, is perhaps less realistic in another
sense. The DNA tiles that the aTAM was originally conceived to model, while ostensibly two-
dimensional, are not necessarily confined to the plane. In particular, the steric protection that
we employ requires the tiles in the x-y plane to stay at position z = 0. If two mismatching
gadgets collide, but one of them “slides” over the other by moving its bumps out of the plane into
z > 0, then this could allow the cooperative strength-1 bonds to connect even between mismatching
gadgets. We note that other theoretical papers require the assumption of planar steric hindrance
as well [1, 5, 14,16], so this potential shortcoming is not unique to our technique.

However, floppiness is not an unbreakable law of physics; it is an artifact of one particular
experimental method of using DNA to create self-assembling tiles. It is not necessarily infeasible
to construct tiles by another method that stay in the plane, or thicken them along the z-axis
so that some floppiness is tolerable while still enforcing blocking due to steric protection. There
are macro-scale techniques for tile self-assembly that are more sturdy and likely to stay in the
plane [9,32], as well as nanoscale techniques for creating rigid DNA structures [18,25]. Nonetheless,
since a promising current technology for constructing self-assembling molecular tiles is the DNA
double-crossover implementation, floppiness is a potential problem, for our construction as well as
the other theoretical constructions that utilize planar blocking [1, 5, 14, 16]. It remains an open
theoretical problem to design a construction of a fuzzy-temperature fault-tolerant square from
O(log n) tile types that is robust to “3-D floppiness”, and an open experimental problem to design
physical molecular tiles that are inflexible enough to allow the use of programmed steric protection
as a reliable design tool. Another open experimental problem in two-handed tile assembly is to
determine, for a given tile implementation, what is the largest size of supertiles that will reliably
combine. While it is clear that single tiles experience enough motion in solution to move into
positions necessary to combine to growing assemblies, and most likely that supertiles consisting
of small numbers of tiles will also do so, there may be an upper bound on the size of supertiles
that reliably attach. Note that this potential limitation would also apply to other two-handed
constructions employing arbitrarily large supertiles [2,4, 6, 14].

Acknowledgments. We thank anonymous referees for suggested improvements to this paper.
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A Two-Handed Abstract Tile Assembly Model

In this section we formally define a variant of Erik Winfree’s abstract Tile Assembly Model [43,44]
modified to model unseeded growth, known as the two-handed aTAM, which has been studied
previously under various names [2, 4, 6, 14, 27, 45]. In the two-handed aTAM, any two assemblies
can attach to each other, rather than enforcing that tiles can only accrete one at a time to an
existing seed assembly. In this section we define the model to allow for infinite assemblies and
systems that produce more than one terminal assembly, even though our main construction does
not have these properties. We also allow for systems that start with a finite number of tile types,
even though the description of our main construction is in terms of an infinite supply of tiles.

lg(x) and log(x) each denote the base-2 logarithm of x, and ln(x) denotes the base-e logarithm of
x. We work in the 2-dimensional discrete space Z

2. Define the set U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}
to be the set of all unit vectors, i.e., vectors of length 1 in Z

2. All graphs in this paper are undi-
rected. A grid graph is a graph G = (V,E) in which V ⊆ Z

2 and every edge {~a,~b} ∈ E has the
property that ~a −~b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a well-
defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with “label” labelt(~u) – a string
over some fixed alphabet – and “strength” strt(~u) – a nonnegative integer – specified by its type t.
Two tiles t and t′ that are placed at the points ~a and ~a + ~u respectively, bind with strength strt (~u)
if and only if (labelt (~u) , strt (~u)) = (labelt′ (−~u) , strt′ (−~u)).

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f and g
are both defined and equal on x, or if f and g are both undefined on x.

Throughout this section, fix a finite set T of tile types. An assembly is a partial function
α : Z

2
99K T defined on at least one input, with points ~x ∈ Z

2 at which α(~x) is undefined
interpreted to be empty space, so that dom α is the set of points with tiles. We write |α| to denote
|dom α|, and we say α is finite if |α| is finite. For assemblies α and α′, we say that α is a subassembly
of α′, and write α ⊑ α′, if dom α ⊆ dom α′ and α(~x) = α′(~x) for all x ∈ dom α. Two assemblies α
and β are disjoint if dom α∩dom β = ∅. For two assemblies α and β, define the union α∪β to be
the assembly defined for all ~x ∈ Z

2 by (α ∪ β)(~x) = α(~x) if α(~x) is defined, and (α ∪ β)(~x) = β(~x)
otherwise. Say that this union is disjoint if α and β are disjoint.

The binding graph of an assembly α is the grid graph Gα = (V,E), where V = dom α, and
{~m,~n} ∈ E if and only if (1) ~m − ~n ∈ U2, (2) labelα(~m) (~n − ~m) = labelα(~n) (~m − ~n), and (3)
strα(~m) (~n − ~m) > 0. Given τ ∈ N, an assembly is τ -stable (or simply stable if τ is understood from
context), if it cannot be broken up into smaller assemblies without breaking bonds of total strength
at least τ ; i.e., if every cut of Gα has weight at least τ , where the weight of an edge is the strength
of the glue it represents. In contrast to the model of Wang tiling, the nonnegativity of the strength
function implies that glue mismatches between adjacent tiles do not prevent a tile from binding to
an assembly, so long as sufficient binding strength is received from the (other) sides of the tile at
which the glues match.

The two-handed aTAM [6,14] allows for two assemblies, both possibly consisting of more than
one tile, to attach to each other, in contrast to the seeded aTAM [34, 44] in which one of the
attaching objects is assumed to be a single tile, and the other is the assembly containing the unique
“seed tile”. Since we must allow that the assemblies might require translation before they can
bind, we define a supertile to be the set of all translations of a τ -stable assembly, and speak of
the attachment of supertiles to each other, modeling that the assemblies attach, if possible, after
appropriate translation.
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Formally, for assemblies α, β : Z
2

99K T and ~u ∈ Z
2, we write α + ~u to denote the assembly

defined for all ~x ∈ Z
2 by (α+~u)(~x) = α(~x−~u), and write α ≃ β if there exists ~u such that α+~u = β;

i.e., if α is a translation of β. Define the supertile of α to be the set α̃ = { β | α ≃ β } . A supertile
α̃ is τ -stable (or simply stable) if all of the assemblies it contains are τ -stable; equivalently, α̃ is
stable if it contains a stable assembly, since translation preserves the property of stability. Note
also that the notation |α̃| ≡ |α| is well-defined, since translation preserves cardinality (and note in
particular that even though we define α̃ as a set, |α̃| does not denote the cardinality of this set,
which is always ℵ0).

For two supertiles α̃ and β̃, and temperature τ ∈ N, define the combination set Cτ

α̃,β̃
to be the

set of all supertiles γ̃ such that there exist α ∈ α̃ and β ∈ β̃ such that (1) α and β are disjoint, (2)
γ ≡ α ∪ β is τ -stable, and (3) γ ∈ γ̃. That is, Cτ

α̃,β̃
is the set of all τ -stable supertiles that can be

obtained by attaching α̃ to β̃ stably, with |Cτ

α̃,β̃
| > 1 if there is more than one position at which β

could attach stably to α.
It is common with seeded assembly to stipulate an infinite number of copies of each tile, but

our definition allows for a finite number of tiles as well. Our definition also allows for the growth
of infinite assemblies and finite assemblies to be captured by a single definition, similar to the
definitions of [24] for seeded assembly.

Given a set of tiles T , define a state S of T to be a multiset of supertiles, or equivalently, S is
a function mapping supertiles of T to N ∪ {∞}, indicating the multiplicity of each supertile in the
state. We therefore write α̃ ∈ S if and only if S(α̃) > 0.

A (two-handed) tile assembly system (TAS ) is an ordered triple T = (T, S, τ), where T is a
finite set of tile types, S is the initial state, and τ ∈ N is the temperature. Subsequently we assume
that τ = 2, unless explicitly stated otherwise. If not stated otherwise, assume that the initial state
S is defined S(α̃) = ∞ for all supertiles α̃ such that |α̃| = 1, and S(β̃) = 0 for all other supertiles
β̃. That is, S is the state consisting of a countably infinite number of copies of each individual tile
type from T , and no other supertiles. In such a case we write T = (T, τ) to indicate that T uses
the default initial state.

Given a TAS T = (T, S, τ), define an assembly sequence of T to be a sequence of states
~S = (Si | 0 ≤ i < k) (where k = ∞ if ~S is an infinite assembly sequence), and Si+1 is constrained
based on Si in the following way: There exist supertiles α̃, β̃, γ̃ such that (1) γ̃ ∈ Cτ

α̃,β̃
, (2) Si+1(γ̃) =

Si(γ̃) + 1,2 (3) if α̃ 6= β̃, then Si+1(α̃) = Si(α̃) − 1, Si+1(β̃) = Si(β̃) − 1, otherwise if α̃ = β̃, then
Si+1(α̃) = Si(α̃) − 2, and (4) Si+1(ω̃) = Si(ω̃) for all ω̃ 6∈ {α̃, β̃, γ̃}. That is, Si+1 is obtained from
Si by picking two supertiles from Si that can attach to each other, and attaching them, thereby
decreasing the count of the two reactant supertiles and increasing the count of the product supertile.
If S0 = S, we say that ~S is nascent.

Given an assembly sequence ~S = (Si | 0 ≤ i < k) of T = (T, S, τ) and a supertile γ̃ ∈ Si

for some i, define the predecessors of γ̃ in ~S to be the multiset pred~S
(γ̃) = {α̃, β̃} if α̃, β̃ ∈ Si−1

and α̃ and β̃ attached to create γ̃ at step i of the assembly sequence, and define pred~S
(γ̃) = {γ̃}

otherwise. Define the successor of γ̃ in ~S to be succ~S
(γ̃) = α̃ if γ̃ is a predecessor of α̃ in ~S, and

define succ~S
(γ̃) = γ̃ otherwise. A sequence of supertiles ~̃α = (α̃i | 0 ≤ i < k) is a supertile assembly

sequence of T if there is an assembly sequence ~S = (Si | 0 ≤ i < k) of T such that, for all 1 ≤ i < k,
succ~S

(α̃i−1) = α̃i, and ~̃α is nascent if ~S is nascent.

2with the convention that ∞ = ∞ + 1 = ∞− 1
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The result of a supertile assembly sequence ~̃α is the unique supertile res(~̃α) such that there
exist an assembly α ∈ res(~̃α) and, for each 0 ≤ i < k, assemblies αi ∈ α̃i such that dom α =
⋃

0≤i<k dom αi and, for each 0 ≤ i < k, αi ⊑ α. For all supertiles α̃, β̃, we write α̃ →T β̃

(or α̃ → β̃ when T is clear from context) to denote that there is a supertile assembly sequence
~̃α = (α̃i | 0 ≤ i < k) such that α̃0 = α̃ and res(~̃α) = β̃. It can be shown using the techniques of [33]
for seeded systems that for all two-handed tile assembly systems T supplying an infinite number
of each tile type, →T is a transitive, reflexive relation on supertiles of T .

A supertile α̃ is producible, and we write α̃ ∈ A[T ], if it is the result of a nascent supertile
assembly sequence. A supertile α̃ is terminal if, for all producible supertiles β̃, Cτ

α̃,β̃
= ∅.3 Define

A�[T ] ⊆ A[T ] to be the set of terminal and producible supertiles of T . T is directed (a.k.a.,
deterministic, confluent) if |A�[T ]| = 1.

Let X ⊆ Z
2 be a shape. We say X strictly self-assembles in T if, for all α̃ ∈ A�[T ], there exists

α ∈ α̃ such that dom α = X; i.e., T uniquely assembles into the shape X.

B Fault-Tolerant Assembly of a Square with O(log n) Tile Types

Figure 4 shows a high-level depiction of the main logical components, which create an n×n square.
The square consists of two logical components: a bottom portion, which we will call the “width-
counter block,” and a top portion called the “height-counters block.” The width-counter block is
essentially a counter that calculates the width of the square. This counter is composed of a series of
fixed width (16 tiles wide) columns, each representing a binary value x on its left side and the value
x + 1 in its right side. The height-counter blocks are composed of a series of vertically oriented
counters (similar to the horizontal counter in the width-counter block) that count to a lesser value
so that their height (with the necessary padding) is n minus the height of the width-counter block.
These counters are designed so that they attach to the north side of the width-counter block at
specified locations.

Below are quantities that (collectively) define the dimensions and attachment locations of var-
ious sub-assemblies, the combinations of which form the completed square.

• n: the value of the height and width of the square to be assembled

• 16: the width and height of a “bit gadget,” which is a sub-assembly representing a single bit
in a value of a counter, this consists of the combination of a white hairpin gadget and its
complementary grey hairpin gadget (see Figure 6). Note that the bit gadgets for the most
significant bits are 16 tiles wide but only 13 tiles tall in order to compensate for the 2 extra
rows of tiles on the top and 1 on the bottom which are used to connect the counter values.

• c→ = ⌊n/16⌋, the number of counter values, or binary values to be counted by the width-
counter, where a counter value is represented by the vertical combination of bit gadgets.
O(lg(n)) tile types are required to form these counter values.

3Note that a supertile α̃ could be non-terminal in the sense that there is a producible supertile β̃ such that
Cτ

α̃,β̃
6= ∅, yet it may not be possible to produce α̃ and β̃ simultaneously if some tile types are given finite initial

counts, implying that α̃ cannot be “grown” despite being non-terminal. If the count of each tile type in the initial state
is ∞, then all producible supertiles are producible from any state, and the concept of terminal becomes synonymous
with “not able to grow”, since it would always be possible to use the abundant supply of tiles to assemble β̃ alongside
α̃ and then attach them.
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• p→ = n − 16c→, the extra width, or padding, added to the rightmost counter value of the
width-counter to ensure that the width of the square is exactly n (the range is 0-15, thus
requiring a constant sized set of tile types which form rows of length p→ that attach to the
right edge of the rightmost counter value of the width-counter. See Figure 8 for an example.)

• k→ = 2⌈lg(c→)⌉ − c→, the starting counter value for the width-counter, which will count from
k→ to the next power of two, 2⌈lg(c→)⌉. The counter value k→ is actually formed by a hard-
coded set of tiles (requiring O(lg(n)) tile types), and the first counter value which actually
assembles from bit gadgets is k→ + 1.

• k→
Max = 2⌈lg(c→)⌉−1, the maximum counter value reached by the width-counter (consisting of

all 1’s in binary). Similar to the counter value for k→, this counter value is also represented
by a hard-coded assembly requiring O(lg(n)) tile types and which also has glues on the right
side that allow the padding rows of length p→ to attach.

• b→ = ⌈lg(c→)⌉, the number of bits in each width-counter value.

• h = 16b→ the height of the width-counter block, this accounts for the b→ bit gadgets com-
posing each counter value

• c↑ =
⌊

n−h
16

⌋

, the number of counter values to be counted by a height-counter

• p↑ = n − (h + 16c→), the extra height, or padding, added to the topmost counter value of
each height-counter to ensure that the width of the square is exactly n. The space and tile
type requirements for this are similar to those for p→.

• k↑ = 2⌈lg(c→)⌉ − c→, the starting counter value for each height-counter. The representation of
this value in the assembly is analogous to that of k→.

• k↑
Max = 2⌈lg(c→)⌉ − 1, the maximum counter value reached by each height-counter (consisting

of all 1’s in binary). The representation of this value in the assembly is analogous to that of
k→

Max.

• b↑ = ⌈lg(c→)⌉, the number of bits in each height-counter value

• w↑ = 16 · 2⌈lg(b↑)⌉, the width of a padded-height-counter, which is a height-counter plus the
necessary padding on its right side to fill in the gap between it and the height-counter to
its immediate right (must be a power of two multiplied by 16 to allow the width-counter to
provide regular binding sites on its north side for padded-height-counters to attach to)

• pad = w↑ − 16b↑, the width of the padding on the right side of each height-counter (except

for the rightmost, which is a special case). This width is 16 · 2⌈lg⌈lg⌊n−h
16

⌋⌉⌉ − 16b↑, which is
O(lg(n)), and therefore the number of tile types required to make rows of that length are
O(lg(n))

•
⌊

n
w↑

⌋

, the number of padded-height-counters which attach to the north side of the width-
counter to form the height-counters block
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• pad⊣ = n mod w↑, the width of the extra padding on the right side of the rightmost height-

counter. This quantity is bounded by 2w↑ − 16b↑ − 1
(

or 16 · 2⌈lg⌈lg⌊n−h
16

⌋⌉⌉ − 16b↑ − 1
)

, and

therefore by O(lg(n)), and thus the number of tile types required to form rows of this length
are O(lg(n)).

• m = lg(w↑) =
⌈

lg
(

b↑
)⌉

, the number of low-order bits to be matched in the width-counter
values to determine the locations to initiate height-counters

• r = k→ +

(

w↑

⌊

n

w↑

⌋

−1

16

)

, the rightmost counter value of the width-counter which initiates a

height-counter (this height-counter is a special case)

Note that no single component of the construction requires more than O(lg(n)) tile types,
whence the tile complexity of the entire construction is O(lg(n)).

B.1 Hairpin Gadgets

The hairpin gadgets are the assemblies in the middle two boxes of Figure 6. Each hairpin gadget
is composed of two single-tile-wide paths. These paths are denoted by the thick black lines that
represent a series of tiles connected by double-strength bonds. Note that only tile edges through
which one of these lines pass, or that contain a colored square, have a non-zero strength glue. The
red lines represent a double-strength bond that is the single point of connection between the two
paths in each hairpin gadget. The blue squares, two on both the north and south edges of each
hairpin gadget, represent single-strength bonds that enable hairpin gadgets to connect to each other
in a vertical row.

The top box of hairpin gadgets in Figure 6 (in the second box from the top) are used to represent
the most significant bits of the counter and are exactly 13 tiles tall. We construct copies of the
other hairpin gadgets that are specific to each of the other bit positions and are 16 tiles tall. Bits
are represented as “bumps” and “dents” on the east and west sides of the hairpin gadgets, so that
vertical combinations of gadgets create patterns of teeth corresponding to binary numbers. The
representation of each bit consists of both a bump and a dent (it is precisely this pattern that
determines which bit is being represented in a particular location). We purposely design the two
paths that snake through each hairpin gadget to extend the distance of at least one tile into each
bump of that gadget.

The white hairpin gadgets form into a column that logically increments a binary counter by
representing a binary number x on the west side of the column and x+1 on the east side. The grey
hairpin gadgets simply present the same binary number on both sides. It is clear that a column
of white hairpin gadgets can bind to a column of grey hairpin gadgets via their bottom edge in
such a way that the resulting structure is stable at temperature-2 and the adjacent edges between
them represent the same binary number. Such columns of gadgets could form in two general ways.
First, each white column and each grey column could form in its entirety, and then they could
bind together at the bottom to form the full column for a counter if and only if they represent
matching numbers. The second possibility is that some incomplete portion of one or both columns
is formed when they bind together. Clearly at least the bits which are already represented by both
columns will need to match. However, it now must be ensured that as the remaining upper potions
of the columns form that they are unable to form “junk assemblies” under the rules of the fuzzy
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temperature model, which in this case would be assemblies which are stable at temperature-2 but
where the columns are incompletely formed to partially represent different numbers. Since this
could only occur by hairpin gadgets which attach to the north of columns through their southern
edges, by placing the red bonds (see Figure 6), which stabilize both halves of each hairpin gadget
together, near the top of those gadgets it is ensured that only hairpin gadgets which have formed
all of their bumps and dents (and therefore must match neighboring columns) can attach. In this
way it is guaranteed that all columns of white and grey hairpin gadgets which combine together
represent the same binary numbers and that no junk assemblies can stably form at temperature-2.

The reason for having two types of hairpin gadgets, both the white and the grey, is as follows.
If there were only a single type of hairpin gadget, then a column created from them would have to
be able to stably bind to other such columns with bonds equal to strength 2 at the top. While the
geometry of the bits represented on the sides of the column would have to represent the correct bits
for that column as the columns combine to form a counter, there is nothing to enforce that a column
grow the entire necessary height and therefore represent all of the needed bits. For example, if the
desired number of bits in each column is b, a column of y = b − x hairpin gadgets (where x < b)
could attach to the right side of a column as long as it matched the first y bits of that column. This
could clearly lead to a case where the column which binds to the right of this ‘too short’ column
represents a number which is not exactly 2 greater than the full column that is two positions to
the left, thus creating a functionally incorrect counter. By forming each column with two types
of hairpin gadgets which bind to each other only at the bottom, and each of which provides a
single-strength bond allowing that column to combine to others at the top, it is ensured that the
columns can only combine if each represents the correct bits - all of the bits - for that position in
the counter.

B.2 Logical Operation of Hairpin Gadgets

Logically, a hairpin gadget can be thought of as behaving as a scaled-up version (with scale-factor
16) of a single tile. The north and south glues act as strength-2 glues, but are combinations of the
two strength-1 glues on the respective sides of the tiles labeled with blue squares on each of those
edges. Due to the fault-tolerant design of the hairpin gadgets, the only way that an entire hairpin
gadget can form as a stable assembly at temperature 2 is for both of the north glues to match each
other, and for both of the south glues to match each other. This essentially mimicks two individual
strength 2 glues (i.e., the only way that any two sub-assemblies of a hairpin gadget could stably
bind together is for both portions to “agree” on the type of hairpin gadget, since we specifically
design all of the interior glues in such a way that the tiles bind exclusively to tiles of the exact
same type of hairpin gadget). The strength 2 glues along each of the paths through the hairpin
gadget are hard coded to form exactly those paths and provide no logical functionality other than
connecting the two sides of the scaled, logical tile together.

The geometric design of the 16 × 16 hairpin gadget achieves the fault-tolerance of our main
result, which is that no “junk” assembly can stabilize at temperature 2, even when temperature
1 growth is allowed. But when viewed as a single logical tile, each hairpin gadget can be thought
of as encapsulating several sets of additional functions beyond fault-tolerance. Figure 5 depicts
three separate templates for tile sets, and most hairpin gadgets combine the functionality of two of
these. White hairpin gadgets perform the combined functionality of the tile sets in Figure 5a and
Figure 5b, while the grey hairpin gadgets, which assemble into the width-counter block, perform
the combined functionality of the tile sets in Figure 5b and Figure 5c.
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Figure 6: The gadgets that combine to form the counter-values of a counter. The top 6 gadgets that are labeled
with bit values are of height 13 rather than 16 for the others, and are used only for the most significant bit in a
counter value in order to compensate for the 3 rows of tiles necessary for the gadgets that attach to the top and
bottom of the counter and hold the counter values together. Dark black lines represent the strength-2 bonds and
forming the bump and dent patterns to represent bit values. The red line is a double bond representing the single
point of connection between the two “paths” making up the gadget; see the main text for an explanation of the
red bonds’ significance. Blue squares represent strength-1 bonds that bind hairpin gadgets to each other and the
top/bottom gadgets. Yellow squares represent strength-1 bonds that are used for binding to the vertical counters.
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B.2.1 Increment Tiles

Figure 5a depicts a template for a tile set that is used to form columns that represent pairs of
fixed-length binary numbers of the form x (whose bits are represented as the leftmost labels) and
x + 1 (whose bits are represented as the rightmost labels). There are copies of the tile types in
the middle group, labeled with an x in the center, specific to each bit position other than the most
and least significant positions (the tile types represented in the figure are considered a template
for a tile set since copies of each tile type whose center label is “x” would have to be generated
to be unique to each such bit position). All east and west edges have zero-strength glues, and
north and south edges labeled with arrows have double-strength glues that are specific to their
bit ordering, allowing tiles that represent bits in each position of significance to bind only to the
correct neighbors. The numbers and letters are simply for labeling purposes. It is important to
note that this tile set assembles individual columns of tiles, whose labels represent binary values x
and x + 1, independent of the order in which the columns come together.

B.2.2 Tiles to Enforce “x > k”

Figure 5b depicts a template for a tile set that assembles columns representing pairs of fixed-length
binary numbers of the form x > k, where x is a variable binary string whose bits are represented
by the labels on left, and k is a fixed value whose bits are represented by the labels on the right.
This is merely a template for a tile set since, in order to generate the actual tile types, an input
value k must be specified. First, a copy of each of the tile types whose middle label is i must be
created specifically for each bit position of k other than the most or least significant bits. Then,
all of the tile types whose right labels do not match the bit of k corresponding to the significance
of their position are discarded. The resulting tile set consists of tiles that combine (in any order in
the two-handed assembly model) to form columns of height equal to the number of bits in k, but
only in patterns so that the value represented by the string x is greater than k. The range of values
that x can take on is k + 1, k + 2, . . . , 2|k| − 1 (where |k| is the length of the binary representation
of k, since k could - and will in our construction - have a 0 as its most significant bit).

B.2.3 Tiles that Determine Where to Initiate Height-Counters

Figure 5c depicts a template for a tile set that assembles columns representing pairs of fixed-length
binary numbers x and r, where x is a variable binary string whose bits are represented by the
labels on the left, and r is a fixed value whose bits are represented by the values on the right.
Additionally, on the north side of the top tile of each column, the glue will specify whether:

1. x = r,

2. the low-order b bits of x match those of r, or

3. neither of the previous two conditions are true (with the glue for case 1 always being presented
if x fully matches r, rather than the glue for the second case.

In order to generate this tile set, the input values r and b must be specified. Then, for each of the
bit positions 1, 2, . . . , b − 1, copies of the tile types with the label i are created with glues specific
to these bit positions. Next, a copy of each tile type with the label j is created so that the glues
position them in the bth-most significant position, and copies are made of the tile types with the
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label k for each of the remaining positions of greater significance. Finally, tile types whose right
labels do not match the bit of r corresponding to the significance of their position are discarded.
The resulting tile set consists of tiles that can assemble in any order in the two-handed assembly
model to form columns of height equal to the number of bits in r. These columns also represent
an arbitrary binary string x, with the north most glue of the column being “r” if x = r, “%” if the
low-order b bits of x match those of r, and “-” otherwise.

B.2.4 Combining Tile Set Functionality Into the Hairpin Gadgets

As mentioned previously, most of the hairpin gadgets implement a combination of the functionality
of two of the tile sets shown in Figure 5. The white hairpin gadgets perform the combined func-
tionality of assembling into a representation of some binary string x whose value is greater than a
given k (k→ for hairpin gadgets that assemble the width-counter and k↑ for those that assemble
the height-counters) and less than or equal to the maximum value ( k→

Max for the width-counter

and k↑
Max for the height-counters), while representing the value of x on the left and x + 1 on the

right for the width-counter (and bottom and top for the height-counters). The grey hairpin gadgets
that assemble into the height-counters perform only the functionality of forming values of x that
are within the same ranges as those of their white gadget counterparts. However, the grey hairpin
gadgets that assemble into counter values for the width-counter also combine the functionality of
presenting glues on their northernmost edges which denote whether x = r, whether only the low-
order m bits of x match those bits of r, or whether neither of these conditions hold. For counter
values satisfying one of the first two aforementioned cases, a special top gadget (one of which is
shown in the top box of Figure 6 with the two yellow squares on its north side) forms the north piece
of that counter value. This is what allows the height-counters to connect in the correct positions.

In order to combine the functionality of two tile sets, tile types from each set are matched up
according to the bit positions that they represent. Then, we perform a simple “cross product” by
taking each pair of tile types representing the same bit position as well as the same value for x
(i.e., they have matching leftmost labels) and making a single, new tile type whose glues and labels
contain all of the information from the glues and labels of the two original tile types (with only one
copy of the label for x).

Finally, for each tile type t in such a generated set, in order to represent t as a hairpin gadget,
a final transformation is necessary. For this example we will discuss how to convert a tile type t
that (1) represents a bit position of x that is neither the least nor most significant and (2) that
combines the “increment x” and “enforce x > k” functionality with values of 0 and 0 for the bits
of x and x + 1, respectively. Note that transformations for the other classes of tile types is similar
and therefore we omit a formal discussion. The form for the hairpin gadget to be constructed is
that of the white hairpin gadget in the third box from the top in Figure 6 with the label “0, 0.”

First, a tile type is created for the position at the southern end of the left path, containing a
blue square. Its south glue is strength-2 and contains both arrows from the south glue of t (one of
each coming from the tile sets to increment and compare), along with an “L” (since it will be part
of the left path through the hairpin gadget), as well as a number representing the significance of the
bit. The east and west sides have null glues; the glue for the north side is strength-2, and contains
both of the necessary arrows plus the information that both bits are 0, the number representing
the significance of the bit, and an ‘L1’ since it is the first tile on the left path. Next, we add a tile
type for each of the interior positions in the left path through that hairpin gadget, with glues that
match the north glue of that first tile type, but with each position incrementing the value with “L”
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so that each tile type is specific to its position in the path and can only attach to its neighbors
along that path (also accounting for the direction of the path through each tile type and putting
the glues on the appropriate edges). Next, a tile type for the north end of the path is created,
analogous to that for the south tile. Then, in a similar matter, tile types for the right path are
created (changing the “L” to an “R”). Finally, for the tile types that represent the positions on the
two paths where the red bond is located, a strength-2 glue is placed that is unique to exactly those
two tile types.

In this manner, all of the tile types required for the hairpin gadgets of the width-counter and
height-counters (whose tile types require a 90 degree counter-clockwise rotation from the corre-
sponding tile types of the width-counter) can be generated for a tile set that will assemble into an
n × n square. Notice that the information about the bits of x contained in the labels of each t are
now converted to patterns of binary teeth that are used to enforce the correct order of assembly of
counter sub-assemblies via geometric constraints.

B.3 Formation of a Bit Gadget

A bit gadget is a logical assembly consisting of a white hairpin gadget and its complementary grey
hairpin gadget located on its east side so that all 16 tiles along the adjacent edges of each gadget
are in contact with each other. Note that there are only zero-strength glues along this edges so
the two hairpin gadgets do not bind to each other. Only hairpin gadgets that encode the same bit
along their shared edges can form a bit gadget due to the geometric constraints imposed by the
bumps and dents. For the sake of simplicity, hairpin gadgets are designed so that bit gadgets are
effectively 16 × 16 squares (counting bumps on only one side).

B.4 Formation of a Counter-Value

There are two types of counters in our construction, the width-counter and a set of height-counters.
Both types of counters are fixed-width counters. The width-counter counts from the value k→ to
k→

Max, with each value represented by a binary string of b→ bits. The height-counters count from

the value k↑ to k↑
Max, with each value represented by a binary string of b↑ bits. To speak generically

of either type of counter, we will use b to denote the number of bits in the values represented by a
particular counter. A counter-value is an assembly composed of exactly b bit gadgets, along with
the top and bottom gadgets that are shown in the top and bottom boxes of Figure 6 (a counter-
value is essentially a column). The design of each of the components that make up a counter-value
are such that no matter the order in which they assemble, a full counter-value assembly can form
only if a valid bit string within the range specified for the counter forms correctly.

B.5 Formation of the counters

The width-counter is composed of c→ − 2 counter-value sub-assemblies, along with a hard-coded
assembly on the left side, which acts as a counter-value representing k→ via a smooth left side
(containing no bumps or dents), and a hard-coded assembly on the right side representing k→

Max via
a smooth right side and rows of length p→ padding attached to the right. The height-counters are
similar but rotated 90 degrees counterclockwise, with c→ − 2 counter-value sub-assemblies, capped
by values k↑ and k↑

Max and northern padding of height p↑. Additionally, the height-counters have
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rows of length pad attached to their right sides (except for the rightmost such counter, whose
padding rows are of length pad⊣). Figure 7 shows an example sub-assembly of the width-counter.

Only a fully and correctly formed counter-value (i.e., one within the correct range and with
the correct shape) can stably bind to another counter-value with the correct bit pattern due to the
nature of the two types of top gadgets along with the geometry imposed by the bumps and dents
representing bits. In this way, we ensure that counter values can connect to each other only in the
correct order and also without “skipping” any columns of the counter. Therefore, the counters all
grow to exactly the correct lengths and, moreover, no “junk” assemblies are allowed to stabilize at
temperature-2.

1,1 1,1 1,1 1,1 11 1 1

0,1 1 1 1 11,1 1,1 1,1

1,0

1,0 1,0

0 0 1 10,10,0 1,1

0 0 0,10,1 1 1

Figure 7: An example of the rightmost 4 columns of the width-counter, counting from 1100 to 1111.
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B.6 Formation of the square

Although the components could actually come together in a number of possible orderings, it is
valid to consider just one of them for simplicity of discussion due to the fault tolerant design of
the tile set. Therefore, assuming that the width-counter and each of the height-counters correctly
and completely form first, then the east side padding for the width-counter, consisting of rows
of length p→, attach and the north side padding for each of the height-counters, consisting of
columns of length p↑, attach. (Figure 8 shows an example of padding rows attaching.) Next,
the east side padding for each of the height-counters, consisting of rows of length pad (or pad⊣

for the special case height-counter that attaches as the rightmost height-counter) attach to each
height-counter. Finally, the height-counters attach to the northern edge of the width-counter at
the correct locations. The resulting assembly is exactly an n × n square.

Figure 8: An example of padding rows. The grey portion represents the right side of an assembly to which padding
must attach. The padding in this figure is of width 5 and depicted by the rows of white tiles, which are formed by 5
tile types that bind in exactly such a row that binds only on its left side to the correct sub-assembly. In this figure,
4 padding rows have attached and a fifth is nearly in position to do so.
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