
Stable Leader Election in Population Protocols Requires Linear

Time

David Doty∗ David Soloveichik†

University of California, Davis University of Texas at Austin
doty@ucdavis.edu david.soloveichik@utexas.edu

Abstract

A population protocol stably elects a leader if, for all n, starting from an initial configuration
with n agents each in an identical state, with probability 1 it reaches a configuration y that is
correct (exactly one agent is in a special leader state `) and stable (every configuration reachable
from y also has a single agent in state `). We show that any population protocol that stably elects
a leader requires Ω(n) expected “parallel time” — Ω(n2) expected total pairwise interactions
— to reach such a stable configuration. Our result also informs the understanding of the time
complexity of chemical self-organization by showing an essential difficulty in generating exact
quantities of molecular species quickly.

1 Introduction

Background. Population protocols (PPs) were introduced by Angluin, Aspnes, Diamadi, Fis-
cher, and Peralta [2] as a model of distributed computing in which the agents have very little
computational power and no control over their schedule of interaction with other agents. They also
can be thought of as a special case of Petri nets/vector addition systems [14,15], which were intro-
duced in the 1960s as a model of concurrent processing. In addition to being an appropriate model
for electronic computing scenarios such as mobile sensor networks, they are a useful abstraction of
“fast-mixing” physical systems such as animal populations [17], chemical reaction networks, and
gene regulatory networks [7].

A PP is defined by a finite set Λ of states that each agent may have, together with a transition
function δ : Λ × Λ → Λ × Λ.1 Given states r1, r2, p1, p2 ∈ Λ, if δ(r1, r2) = (p1, p2) (denoted
r1, r2 → p1, p2) and a pair of agents in respective states r1 and r2 interact, then their states become
p1 and p2.2 A configuration of a PP is a vector c ∈ NΛ describing, for each state s ∈ Λ, the
count c(s) of how many agents are in state s. Executing a transition r1, r2 → p1, p2 alters the
configuration by decrementing the counts of r1 and r2 by 1 each and incrementing p1 and p2 by 1
each.3

∗Author was supported by NSF grants CCF-1219274 and CCF-1442454 and the Molecular Programming Project
under NSF grant 1317694.
†Author was supported by an NIGMS Systems Biology Center grant P50 GM081879 and NSF grant CCF-1442454.
1Some work on PPs allows “non-deterministic” transitions, in which the transition function maps to subsets of

Λ× Λ. Our results are independent of whether the PP is deterministic or nondeterministic in this manner.
2In the most generic model, there is no restriction on which agents are permitted to interact. If one prefers to

think of the agents as existing on nodes of a graph, then it is the complete graph Kn for a population of n agents.
3Possibly some of r1, r2, p1, p2 are equal to each other, so the count of a state could change by 0, 1, or 2.

1

Associated with a PP is a set of valid initial configurations that we expect the PP to be
able to handle.4 Agents interact in a pairwise manner and change state based on the transition
function. The next pair of agents to interact is chosen uniformly at random among the n agents.
(An interaction may be a “null transition” r1, r2 → r1, r2.) We count the expected number of
interactions until some event occurs, and then define the “parallel time” until this event as the
expected number of interactions divided by the number of agents n. This measure of time is based
on the natural parallel model where each agent participates in a constant number of interactions
in one unit of time, hence Θ(n) total interactions are expected per unit time [4]. In this paper all
references to “time” refer to parallel time.

In order to define error-free computation in PPs, we rely on to the notion of stable computa-
tion [5]. The PP must get to a configuration that is correct5 and “stable” in the sense that no
subsequent sequence of transitions can take the PP to an incorrect configuration. Error-free com-
putation must be correct in an “adversarial” schedule of transitions: we require that from every
configuration reachable by any sequence of transitions from the initial configuration, it is possible
to reach to a correct stable configuration. Since the configuration space is finite, this is equiva-
lent to requiring, under the randomized model, that a correct stable configuration is reached with
probability 1.6

A PP works “with a leader” if there is a special “leader” state `, and every valid initial con-
figuration i satisfies i(`) = 1. This is in contrast to a uniform initial configuration (i(x) = n for
some state x and i(y) = 0 for all states y 6= x) or an initial configuration only encoding the in-
put (i(xi) = ni for i ∈ {1, . . . , k} to represent any input (n1, n2, . . . , nk) ∈ Nk). It is known that
the predicates φ : Nk → {0, 1} stably computable by PPs are exactly the semilinear predicates,
whether an initial leader is allowed or not [5]. Although the initial leader does not alter the class
of computable predicates, it may allow faster computation. Specifically, the fastest known PPs
to stably compute semilinear predicates without a leader take as long as Θ(n) to converge.7 In
contrast, with a leader, it is known that any semilinear predicate can be stably computed with
expected convergence time O(log5 n) [4]. Thus, in certain circumstances, the presence of a initial
leader seems to give PPs more computational power (e.g., to converge quickly). Angluin, Aspnes,
and Eisenstat [4] asked whether polylogarithmic time stable computation of semilinear predicates
is possible without a leader; absent a positive answer, the presence of a leader appears to add power
to the model.

Statement of main result. Motivated in part by the apparent speedup possible with an initial
leader, we ask how quickly a leader may be elected from a configuration lacking one. We pose
the problem as follows: design a PP P with two special states x (the initial state) and ` (the
leader state, which may or may not be identical to x) such that, for every n ∈ N, from the initial
configuration in defined as in(x) = n and in(y) = 0 for all other states y, has the following property.
For every configuration c reachable from in, there is a configuration y reachable from c that has a
stable leader, meaning that in all configurations y′ reachable from y (including y itself), y′(`) = 1.8

4The set of valid initial configurations for a “self-stabilizing” PP is NΛ, where leader election is provably impossi-
ble [6]. We don’t require the PP to work if started in any possible configuration, but rather allow potentially “helpful”
initial configurations as long as they don’t already have small count states (see “α-dense” below).

5What “correct” means depends on the task. For computing a predicate, for example, Λ is partitioned into “yes”
and “no” voters, and a “correct” configuration is one in which every state present has the correct vote.

6It is also equivalent to requiring that every fair sequence of transitions reaches a correct stable configuration,
where “fair” means that every configuration infinitely often reachable is infinitely often reached [5].

7See “Open questions” for the distinction between time to converge and time to stabilize. In this paper, the time
lower bound we prove is on stabilization.

8Note that this problem abstracts away the idea that the leader might be useful for something (such as computing
predicates quickly). In particular, if a certain PP requires an initial leader, and the correctness of the PP depends

2

There is a simple O(n) expected time PP for stable leader election, with (assuming x ≡ `) the
single transition `, ` → `, f . Our main theorem shows that every PP that stably elects a leader
requires time Ω(n) to reach a state with a stable leader; thus the previous PP is asymptotically
optimal. Section 3.3 discusses why some straightforward approaches to proving a time lower bound
for leader election fail.

Multiple leader states, multiple leaders, and other initial configurations. A more general
notion of leader election is to identify a subset Ψ ⊂ Λ of states that are all considered leader states,
and to require the PP to eventually reach a configuration y in which

∑
`∈Ψ y(`) = 1, and this

sum is 1 in every configuration reachable from y. This corresponds more appropriately to how
leader states actually coordinate computation in PPs: a leader agent must remember some state
information in between transitions (hence it changes state while remaining the unique leader). Our
techniques actually show this stronger result as well (as explained in Section 3.2). Further, our
result implies that a PP cannot elect any fixed quantity of leaders (e.g. exactly 256) or variable
quantity of leaders under a fixed bound (e.g. at most 256) in sublinear expected time.

In the simplest formulation of the task of leader election, we always start with n agents in
state x (as described above). Can we capture more generally leader election from a configuration
“without a pre-existing leader”? Intuitively, we want to exclude initial configurations with states
present in small but non-zero count. We can exclude such initial configurations, but allow otherwise
deliberately prepared starting conditions, using the notion of α-dense configurations: any state
present in the initial configuration has count ≥ αn. Our general negative result (Theorem 3.7)
implies that even starting with best-case initial configurations, as long as, for some constant α > 0,
they are all α-dense, sublinear time leader election is impossible. An open question relates to
weakening the notion of α-dense (see below).

Chemical reaction networks. The main result and proof are stated in the language of PPs;
however, the result holds for more general systems that have PPs as a special case. The discrete,
stochastic chemical reaction network (CRN) model has been extensively used in the natural sciences
to model chemical kinetics in a well-mixed solution [13]. The CRN model is also used prescriptively
for specifying the behavior of synthetic chemical systems [9, 16]. A CRN is a finite set of species
(corresponding to PP states) such as X,Y, Z, and reactions (corresponding to PP transitions) such

as X + Y
k1→Z or Y

k2→ 2X + Z. CRNs can be thought of as a generalization of PPs in which
spontaneous transitions are possible (unimolecular reactions), the transition may cause the number
of agents to change (if the reaction has a different number of products than reactants), and each
transition has an associated constant k that affects its probability of being selected.

As an essential form of self-organization, biological cells seem able to precisely control the
count of certain molecules (centriole number [10] is a well studied example). How chemical systems
transform relatively uncontrolled initial conditions to precisely controlled amounts of desired species
is still not well understood. Our negative result applied to CRNs9 implies that generating with
probability 1 an exact count of a certain species, whether 1 or 256, is necessarily slower (Ω(n) time)
than, for example, destroying all molecules of the species (through the reaction X → ∅), which
takes O(log(n)) time.

on the count of the leader never exceeding 1, prior to the conclusion of the leader election, the presence of multiple
leaders may result in unintended transitions. However, our main result is a impossibility theorem, showing that even
if the objective is simplified to stable leader election, without requiring the leader to be useful for any subsequent
task, this still requires Ω(n) time.

9Our result holds for any CRN that obeys Theorem 4.3, the precise constraints of which are specified in [12] (those
constraints automatically apply to all PPs).

3

Open questions. An important open question concerns the contrast between convergence and
stabilization. We say a PP electing a leader converges when it stops changing the count of the
leader (if it is correct, this count should be 1), and we say it stabilizes when it first enters a
configuration from which the count of the leader cannot change. In many PPs these two events
coincide, but it is possible to converge strictly before stabilizing. Section 3.3 shows some examples
of PPs that converge before stabilizing. Our proof shows only that stabilization must take expected
Ω(n) time. We leave as an open question whether there is a PP that stably elects a leader and
converges in expected o(n) time. Recall that there are PPs that work with a leader to stably
compute semilinear predicates with convergence time O(log5 n) [4]. Thus if stable leader election
can converge in expected sublinear time, by coupling the two PPs it might be possible to achieve
stable computation of arbitrary semilinear predicates with sublinear convergence time.

It is similarly open to determine the optimal stabilization time for computing semilinear predi-
cates. The stably computing PPs converging in O(log5 n) time [4] provably require expected time
Ω(n) to stabilize, and it is unknown whether faster stabilization is possible even with an initial
leader.

The open question of Angluin, Aspnes, and Eisenstat [4] asks whether their efficient high-
probability simulation of a space-bounded Turing machine by a PP could remove the assumption
of an initial leader. That simulation has some small probability ε > 0 of failure, so if one could elect
a leader with a small probability ε′ > 0 of error and subsequently use it to drive the simulation,by
the union bound the total probability of error would be at most ε+ε′ (i.e., still close to 0). However,
it remains an open question whether the necessary PP exists. Alistairh and Gelashvili [1] showed
that relaxing the requirement of O(1) states to O(log3 n) states allows for a leader to be elected
with high probability in expected time O(log3 n).10

Our general negative result applies to α-dense initial configurations. However, is sublinear time
stable leader election possible from other kinds of initial configurations that satisfy our intuition
of not having preexisting leaders? It is known, for example, that for each 0 < ε < 1, an initial
configuration with Θ(n) agents in one state and Θ(nε) in another state can elect a leader in expected
time O(log2 n) with high probability [4], although this protocol has a positive probability of failure.
In Section 3.3 we give an example PP that stably elects a leader in O(n1/2 log n) time starting from
an initial configuration with Θ(n) agents in one state and Θ(n1/4) in another state. In general
we want to better characterize the initial configurations for which sublinear time leader election is
possible.

2 Preliminaries

If Λ is a finite set (in this paper, of states), we write NΛ to denote the set of functions c : Λ →
N. Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each
coordinate “labeled” by an element of Λ. Given s ∈ Λ and c ∈ NΛ, we refer to c(s) as the count of
s in c. Let ‖c‖ = ‖c‖1 =

∑
s∈Λ c(s) denote the total number of agents. We write c ≤ c′ to denote

that c(s) ≤ c′(s) for all s ∈ Λ. Since we view vectors c ∈ NΛ equivalently as multisets of elements
from Λ, if c ≤ c′ we say c is a subset of c′. It is sometimes convenient to use multiset notation to
denote vectors, e.g., {x, x, y} and {2x, y} both denote the vector c defined by c(x) = 2, c(y) = 1,
and c(z) = 0 for all z 6∈ {x, y}. Given c, c′ ∈ NΛ, we define the vector component-wise operations
of addition c + c′, subtraction c− c′, and scalar multiplication mc for m ∈ N. For a set ∆ ⊂ Λ, we
view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by assuming c(s) = 0 for all s ∈ Λ \∆.

10Indeed, our proof technique fails if the number of states is not constant with respect to n.

4

2.1 Population Protocols

A population protocol (PP) is a pair P = (Λ, δ),11 where Λ is a finite set of states, and δ : Λ×Λ→
Λ×Λ is the (symmetric) transition function. A configuration of a PP is a vector c ∈ NΛ, with the
interpretation that c(s) agents are in state s. By convention, the value n ∈ Z+ represents the total
number of agents ‖c‖. A transition is a 4-tuple α = (r1, r2, p1, p2) ∈ Λ4, written α : r1, r2 → p1, p2,
such that δ(r1, r2) = (p1, p2). This paper typically defines a PP by a list of transitions, with δ
implicit (there is a null transition δ(r1, r2) = (r1, r2) if a different transition is not specified). If an
agent in state r1 interacts with an agent in state r2, then they change states to p1 and p2.

More formally, given a configuration c and transition α : r1, r2 → p1, p2, we say that α is
applicable to c if c ≥ {r1, r2}, i.e., c contains 2 agents, one in state r1 and one in state r2.
If α is applicable to c, then write α(c) to denote the configuration c − {r1, r2} + {p1, p2} (i.e.,
the configuration that results from applying α to c); otherwise α(c) is undefined. A finite or
infinite sequence of transitions (αi) is a transition sequence. Given an initial configuration c0 and
a transition sequence (αi), the induced execution sequence (or path) is a finite or infinite sequence
of configurations (c0, c1, . . .) such that, for all ci (i ≥ 1), ci = αi−1(ci−1).12 If a finite execution
sequence, with associated transition sequence q, starts with c and ends with c′, we write c =⇒q c′.
We write c =⇒ c′ if such a transition sequence exists (i.e., it is possible for the system to reach from
c to c′) and we say that c′ is reachable from c. If it is understood from context what is the initial
configuration i, then say c is simply reachable if i =⇒ c. Note that this notation omits mention of
P; we always deal with a single PP at a time, so it is clear from context which PP is defining the
transitions. If a transition α : r1, r2 → p1, p2 has the property that for i ∈ {1, 2}, ri 6∈ {p1, p2}, or
if (r1 = r2 and (ri 6= p1 or ri 6= p2)), then we say that α consumes ri. In other words, applying α
reduces the count of ri. We similarly say that α produces pi if it increases the count of pi.

We will find ourselves frequently dealing with infinite sequences of configurations.13 The fol-
lowing lemma, used frequently in reasoning about population protocols, shows that we can always
take a nondecreasing subsequence.

Lemma 2.1 (Dickson’s Lemma [11]). Any infinite sequence x0,x1, . . . ∈ Nk has an infinite nonde-
creasing subsequence xi0 ≤ xi1 ≤ . . ., where i0 < i1 < ... ∈ N.

2.2 Time Complexity

In any configuration the next interaction is chosen by selecting a pair of agents uniformly at
random and applying transition function δ. To measure time we count the expected total number
of interactions (including null), and divide by the number of agents n. (In the population protocols
literature, this is often called “parallel time”; i.e. n interactions among a population of n agents
corresponds to one unit of time). Let c ∈ NΛ and C ⊆ NΛ. Denote the probability that the PP
reaches from c to some configuration c′ ∈ C by Pr[c =⇒C]. If Pr[c =⇒C] = 1,14 define the expected

11We give a slightly different formalism than that of [5] for population protocols. The main difference is that
since we are not deciding a predicate, there is no notion of inputs being mapped to states or states being mapped
to outputs. Another difference is that we assume (for the sake of brevity in some explanations, not because the
difference is essential to the proof) the transition function is symmetric (so there is no notion of a “sender” and
“receiver” agent as in [5]; the unordered pair of states completely determines the next pair of states).

12When the initial configuration to which a transition sequence is applied is clear from context, we may overload
terminology and refer to a transition sequence and an execution sequence interchangeably.

13In general these will not be execution sequences. Typically none of the configurations are reachable from any
others because they are configurations with increasing numbers of agents.

14Since PP’s have a finite reachable configuration space, this is equivalent to requiring that for all x reachable from
c, there is a c′ ∈ C reachable from x.

5

time to reach from c to C, denoted T[c =⇒C], to be the expected number of interactions to reach
from c to some c′ ∈ C, divided by the number of agents n.

3 Main Results

3.1 Impossibility of Sublinear Time Stable Leader Election

We consider the following stable leader election problem. Suppose that each PP P = (Λ, δ) we
consider has a specially designated state ` ∈ Λ, which we call the leader state. Informally, the goal
of stable leader election is to be guaranteed to reach a configuration with count 1 of ` (a leader
has been “elected”), from which no transition sequence can change the count of ` (the leader is
“stable”). We also assume there is a special initial state x (it could be that x ≡ ` but it is not
required), such that the only valid initial configurations i are of the form i(x) > 0 and i(y) = 0 for
all states y ∈ Λ \ {x}. We write in to denote such an initial configuration with in(x) = n.

Definition 3.1. A configuration y is stable if, for all y′ such that y =⇒y′, y′(`) = y(`) (in other
words, after reaching y, the count of ` cannot change); y is said to have a stable leader if it is stable
and y(`) = 1.

The following definition captures our notion of stable leader election. It requires the PP to be
“guaranteed” eventually to reach a configuration with a stable leader.

Definition 3.2. We say a PP elects a leader stably if, for all n ∈ Z+, for all c such that in =⇒ c,
there exists y with a stable leader such that c =⇒y.

In other words, every reachable configuration can reach to a configuration with a stable leader.
It is well-known [5] that the above definition is equivalent to requiring that the PP reaches a
configuration with a stable leader with probability 1.

Definition 3.3. Let t : Z+ → R+, and let Y be the set of all configurations with a stable leader.
We say a PP elects a leader stably in time t(n) if, for all n ∈ Z+, T[in =⇒Y] ≤ t(n).

Our main theorem says that stable leader election requires at least linear time to stabilize:

Theorem 3.4. If a PP stably elects a leader in time t(n), then t(n) = Ω(n).

Thus a PP that elects a leader in sublinear time cannot do so stably, i.e., it must have a positive
probability of failure.

The high-level strategy to prove Theorem 3.4 is as follows. With high probability the PP
initially goes from configuration in to configuration xn, such that in the sequence (xn) for increasing
population size n, every state count grows without bound as n → ∞ (indeed Ω(n)); this follows
from Theorem 4.3. We then show that any such configuration must have an “O(1)-bottleneck
transition” before reaching a configuration with a stable leader (informally this means that every
transition sequence from xn to a configuration y with a stable leader must have a transition in
which both input states have count O(1), depending on the PP but not on n). Since it takes
expected time Ω(n) to execute a transition when both states have constant count, from any such
configuration it requires linear time to stably elect a leader. Since one of these configurations is
reached from the initial configuration with high probability, those configurations’ contribution to
the overall expected time dominates, showing that the expected time to stably elect a leader is
linear.

6

3.2 More General Impossibility Result in Terms of Inapplicable Transitions and
Dense Configurations

Rather than proving Theorem 3.4 using the notion of leader stability directly, we prove a more
general result concerning the notion of a set of inapplicable transitions. The two generalizations
are as follows. (1) A configuration y is stable by Definition 3.1 if no transition altering the count of
` is applicable in any configuration reachable from y; Definition 3.5 generalizes this to an arbitrary
subset Q of transitions. (2) The valid initial configurations of Section 3.1 are those with in(x) = n
and in(y) = 0 for all y ∈ Λ \ {x}; Theorem 3.7 generalizes this to any set I of configurations that
are all “α-dense” (defined below) for a fixed α > 0 independent of n, with a weak sort of “closure
under addition” property: namely, that for infinitely many i, i′ ∈ I, we have i + i′ ∈ I.

Definition 3.5. Let Q be a set of transitions. A configuration y ∈ NΛ is said to be Q-stable if no
transition in Q is applicable in any configuration reachable from y.

If we let Q be the set of transitions that alter the count of the leader state `, then a Q-stable
configuration y with y(`) = 1 exactly corresponds to the property of having a stable leader.

Let I ⊆ NΛ and Q be a set of transitions. Let Y be the set of Q-stable configurations reachable
from some configuration in I. We say that a PP P = (Λ, δ) Q-stabilizes from I if, for any i ∈ I,
Pr[i =⇒Y] = 1.15 If I and Q are understood from context, we say that P stabilizes. For a time
bound t(n), we say that P stabilizes in expected time t(n) if, for all i ∈ I such that ‖i‖ = n,
T[i =⇒Y] ≤ t(n).

To prove our time lower bound, we show that a “slow” transition necessarily occurs, which
means that the counts of the two states in the transition are “small” when it occurs. We will pick
a particular nondecreasing infinite sequence C of configurations and define “small” relative to it:
the “small count” states are those whose counts are bounded in C (denoted bdd(C) below).

Definition 3.6. For an (infinite) set/sequence of configurations C, let bdd(C) be the set of states
{ s ∈ Λ | (∃b ∈ N)(∀c ∈ C) c(s) < b }. Let unbdd(C) = Λ \ bdd(C).

Remark. Note that if C = (cm) is a nondecreasing sequence, then for all k ∈ N, there is cm such
that for all s ∈ unbdd(cm), cm(s) ≥ k. (Note that if C is not nondecreasing, the conclusion can
fail; e.g., cm(s1) = m, cm(s2) = 0 for m even and cm(s1) = 0, cm(s2) = m for m odd.)

Let 0 < α ≤ 1. We say that a configuration c is α-dense if for all s ∈ Λ, c(s) > 0 implies that
c(s) ≥ α‖c‖, i.e., all states present in c occupy at least an α fraction of the total count of agents.

Theorem 3.4 is implied by the next theorem, which the rest of the paper is devoted to proving.

Theorem 3.7. Let P = (Λ, δ), let Q be any subset of transitions of P, let α > 0, and let I ⊆ NΛ

be a set of α-dense initial configurations such that, for infinitely many i, i′ ∈ I, i + i′ ∈ I. Let Y
be the set of Q-stable configurations reachable from I, and let ∆ = bdd(Y). Suppose P Q-stabilizes
from I in expected time o(n). Then there are infinitely many y ∈ Y such that ∀s ∈ ∆, y(s) = 0.

In other words, if some states have “small” count in all reachable stable configurations, then
there is a reachable stable configuration in which those states have count 0. A PP P that stably
elects a leader is a PP in which Q is the set of transitions that alter the count of `, I = { in | n ∈ N }
(note all in are 1-dense), Y is the set of configurations reachable from I with a stable leader, and P
Q-stabilizes from I. Hence by Theorem 3.7, if P stabilizes in expected time o(n), there is a stable
reachable y where y(`) = 0, a contradiction. Thus Theorem 3.4 follows from Theorem 3.7.

15Recall that the condition Pr[i=⇒Y] = 1 is equivalent to [(∀c ∈ NΛ) i=⇒ c implies (∃y ∈ Y) c=⇒y].

7

We can also use Theorem 3.7 to prove that stable leader election requires linear time under the
more relaxed requirement that there is a set Ψ ⊂ Λ of “leader states,” and the goal of the PP is to
reach a configuration y in which

∑
`∈Ψ y(`) = 1 and stays 1 in any configuration reachable from y.

Choosing Q as the set of transitions that alter that sum, Theorem 3.7 implies this form of stable
leader election also requires Ω(n) expected time.

Throughout the rest of this paper, fix P = (Λ, δ), α, I, and Q as in the statement of Theorem 3.7.

3.3 Why Simple Proofs Fail

It is tempting to believe that the main theorem follows by a simple argument based on reasoning
about the last transition to change the count of the leader. Indeed, if we start with more than one
leader, and no transition rule can produce a new leader, then we can easily prove the impossibility
of sublinear time leader election as follows. To quickly reduce from two leaders to one, the other
agent’s state must be numerous in the population, so the same transition could occur again. This
would leave us with no leaders and no possibility to make a new leader. However, if transitions can
produce new leaders, then the argument cannot reason only about the last transition involving the
leader. We illustrate this using two examples, which the authors have found helpful in ruling out
plausible-sounding but ultimately insufficient ideas for proving a negative result.

We describe two PPs that stably elect a leader in sublinear time starting from initial config-
urations that are not α-dense (for α > 0 independent of n). (Since the initial configurations are
not α-dense these PPs do not contradict the statement of our main theorem.) In both examples,
with high probability exactly one transition involving the leader occurs. In the first example the
transition produces precisely one leader in a configuration that previously had none, whereas in
the second example, it consumes precisely one leader in a configuration that previously had two.
(Clearly, these are the only two possible forms of the final transition involving the leader.) The
examples imply that any proof of the main result cannot be based solely on reasoning about the
final transition, but must additionally establish that configurations such as the initial configurations
of these PPs cannot be reached with high probability in sublinear time.

Consider the following PP, with initial configuration i given by i(r) = n1/4, i(x) = n − n1/4,
and transitions:

r, r → `, k (1)

r, k → k, k (2)

x, k → k, k (3)

`, ` → `, k (4)

It takes expected time Θ(n1/2) for transition (1) to occur for the first time, producing a single
leader. Transition (4) ensures that if transition (1) occurs more than once, the PP will eventually
stabilize to a single leader. However, with high probability transitions (2) and (3) consume all r
and x before (1) executes a second time. After exactly one instance of transition (1) occurs, let a
speed fault denote the event that transition (1) occurs again (this is the same speed fault concept
studied in ref. [8]). For convenience, for state s ∈ Λ, let s also denote the count of that state in
the configuration considered. The probability of a speed fault in any particular configuration is

r(r−1)
r(r−1)+2k(n−k−1) <

n1/2

k(n−k−1) .16 By the union bound, the probability that a speed fault occurs in

between k = 1 and k = n− 1 (at which point transition (1) is disabled and the PP stabilizes) is at

16r(r − 1) is the number of ways of choosing two agents in state r, and 2k(n − k − 1) is the number of ways of
choosing an agent in state k and another agent in state either r or x, when ` = 1, and therefore r + x = n− k − 1.

8

most

n1/2
n−2∑
k=1

1

k(n− k − 1)
= n1/2O

(
log n

n

)
= O

(
log n

n1/2

)
.

Whether or not a speed fault occurs, to produce `, transition (1) must occur for the first time,
taking expected time O(n1/2). After this, if no speed fault occurs, the expected time to stabilize
is at most O(log n) (the expected time for transitions (2) and (3) to consume all r and x).17 If a
speed fault occurs, then transition (4) must execute enough times to reduce ` to 1, which requires
expected time O(n) [4]. Thus, the total expected time to stabilize to a single leader is as follows,
where we let T be the random variable denoting the time to stabilization after transition (1) has
occurred for the first time:

O(n1/2) + Pr[speed fault] · E[T|speed fault] + Pr[no speed fault] · E[T|no speed fault]

≤ O(n1/2) +O

(
log n

n1/2

)
·O(n) + 1 ·O(log n) = O(n1/2 log n),

i.e., sublinear time.
The above PP uses a non-dense initial configuration since i(r) = o(n). Thus, although it does

not directly contradict the existence of a linear time lower bound from dense configurations, it
points out that any proof based on reasoning about the last transition to alter the count of `
must disallow the possibility that a leader is elected from some intermediate configuration in the
manner described above. With high probability all states obtain count Ω(n) in a constant amount
of time;18 however, it is possible to subsequently reduce some states to sublinear count after super-
constant time. A priori, it is conceivable that after, say, O(log n) time, the PP reaches a non-dense
configuration, with ` = 0 and r ≈ n1/4 similar to i above, which would then elect a leader in
sublinear time by producing a single ` with high probability.

Even if the final change of ` takes it from 2 to 1, it is a priori conceivable that the final transition
r, `→ p1, p2 to consume ` has count o(n) of r, so that, although a second execution of the transition
is possible, the second execution requires sufficiently long expected time that the system, in the
meantime, likely consumes all remaining copies of r, along with a mechanism to ensure that a leader
is elected even if the second leader is also consumed by an r. The following PP achieves this, with
initial configuration i given by i(`) = 2, i(r) = n1/2, i(x) = n− i(r)− i(`), with transitions

r, ` → r, `′ (5)

`′, x → `′, k (6)

k, x → k, k (7)

k, r → k, k (8)

`′, `′ → `, k (9)

An analysis similar to the previous PP shows that the expected time to stabilize to ` = 1 is
O(n1/2 log n). Informally, transition (5) consumes one copy of ` after expected time O(n1/2).
Transition (6) subsequently produces k in expected time O(1), and transitions (7) and (8) remove
all r and x in expected time O(log n). With high probability this happens before transition (5)
can execute a second time, but if not, then `′ = 2, so transition (9) guarantees that a single leader
is stably elected (as above, if this is needed, it requires expected time Ω(n), but it is needed with
such low probability that the overall expected time remains sublinear).

17Since conditioning on no speed fault can only reduce the expected time for transitions (2) and (3) to complete,
we can use O(logn) as an upper bound for that conditional expectation.

18This is the main theorem of [12], of which Theorem 4.3 is a corollary.

9

In summary, the two PPs above demonstrate that the proof cannot be based solely on reasoning
about the final transition to alter `, no matter whether that transition increases ` from 0 to 1 or
decreases it from 2 to 1.

4 Technical Tools

4.1 Bottleneck Transitions Require Linear Time

This section proves a straightforward observation used in the proof of our main theorem. It states
that, if to get from a configuration x ∈ NΛ to some configuration in a set Y ⊆ NΛ, it is necessary to
execute a transition r1, r2 → p1, p2 in which the counts of r1 and r2 are both at most some number
b, then the expected time to reach from x to some configuration in Y is Ω(n/b2).

Let b ∈ N. We say that transition α : r1, r2 → p1, p2 is a b-bottleneck for configuration c if
c(r1) ≤ b and c(r2) ≤ b.

Observation 4.1. Let b ∈ N, x ∈ NΛ, and Y ⊆ NΛ such that Pr[x =⇒Y] = 1. If every transition
sequence taking x to a configuration y ∈ Y has a b-bottleneck, then T[x =⇒Y] ≥ n−1

2(b·|Λ|)2 .

Proof. Because every transition sequence taking x to a configuration y ∈ Y has a b-bottleneck, it
suffices to show that the expected time of the first b-bottleneck transition to occur from configuration
x is at least n−1

2(b·|Λ|)2 , since the definition of b-bottleneck implies that no configuration in Y can appear

before that event. In any configuration c reachable from x, for any pair of states r1, r2 ∈ Λ such that
r1, r2 → p1, p2 is a b-bottleneck transition in c, the definition implies that c(r1), c(r2) ≤ b. Thus
the probability that the next pair of agents selected to interact are in states r1 and r2, respectively
is at most 2b2

n(n−1) .19 There are at most |Λ|2 such transitions,20 so the union bound implies that the

probability that any of them is the next transition is at most |Λ|2 2b2

n(n−1) . Thus we can bound the
number of interactions until the first b-bottleneck transition occurs by a geometric random variable

with success probability at most 2(b·|Λ|)2

n(n−1) , whence the expected number of interactions until the first

b-bottleneck is at least n(n−1)
2(b·|Λ|)2 . Since the parallel time is defined as the number of interactions

divided by n, this gives the stated expected time bound.

Corollary 4.2. Let γ > 0, b ∈ N, c ∈ NΛ, and X,Y ⊆ NΛ such that Pr[c =⇒X] ≥ γ, Pr[c =⇒Y] =
1, and every transition sequence from every x ∈ X to some y ∈ Y has a b-bottleneck. Then
T[c =⇒Y] ≥ γ n−1

2(b·|Λ|)2 .

4.2 Sublinear Time from Dense Configurations Implies Bottleneck Free Path
from Configurations with Every State “Populous”

The following theorem, along with Corollary 4.2, fully captures the probability theory necessary
to prove our main theorem.21 Given it and Corollary 4.2, Theorem 3.7 is provable (through

19If r1 6= r2 and c(r1) = c(r2) = b, then the probability to pick the first agent in one of the states r1 or r2 is 2b
n

,

and the probability to pick the second agent in the other state is b
n−1

, so the total probability of both is 2b2

n(n−1)
. The

case for r1 = r2 gives b
n

for the first times b−1
n−1

for the second, resulting in lower total probability b2−b
n(n−1)

.
20With a nondeterministic transition function, the total number of transitions would replace the quantity |Λ|2 in

the conclusion, but it would remain a constant independent of the size of the initial configuration.
21Theorem 4.3 was proven for a more general model called Chemical Reaction Networks (CRNs) that obey a certain

technical condition [12]; as observed in that paper, the class of CRNs obeying that condition includes all PPs, so the
theorem holds unconditionally for PPs. The theorem proved in [12] is more general than Theorem 4.3, but we have
stated a corollary of it here. A similar statement is implicit in the proof sketch of Lemma 5 of a technical report on
a variant model called “urn automata” that has PPs as a special case [3].

10

Lemma 4.4) using only combinatorial arguments about reachability between configurations.
For ease of notation, we assume throughout this paper that all states in Λ are producible,

meaning they have positive count in some reachable configuration. Otherwise the following theorem
applies only to states that are actually producible. Recall that for α > 0, a configuration c is α-
dense if for all s ∈ Λ, c(s) > 0 implies that c(s) ≥ α‖c‖. Say that c ∈ NΛ is full if (∀s ∈ Λ) c(s) > 0,
i.e., every state is present. The following theorem states that with high probability, a PP will reach
from an α-dense configuration to a configuration in which all states are present (full) in “high”
count (β-dense, for some 0 < β < α).

Theorem 4.3 (adapted from [12]). Let P = (Λ, δ) be a PP and α > 0. Then there are constants
ε, β > 0 such that, letting X =

{
x ∈ NΛ

∣∣ x is full and β-dense
}

, for all α-dense configurations

i, Pr[i =⇒X] ≥ 1− 2−ε‖i‖.

In [12], the theorem is stated for “sufficiently large” ‖i‖, but of course one can always choose ε
to be small enough to make it true for all i.

The following lemma reduces the problem of proving Theorem 3.7 to a combinatorial statement
involving only reachability among configurations (and the lack of bottleneck transitions between
them). In Section 5 we will prove Theorem 3.7 by showing that the existence of the configurations
xm and ym and the transition sequence pm in the following lemma implies that we can reach a
Q-stable configuration v ∈ NΓ, where Γ = unbdd(Y) and Y is the set of Q-stable configurations
reachable from I.

Lemma 4.4. Let α > 0. Let P = (Λ, δ) be a PP such that, for some set of transitions Q and
infinite set of α-dense initial configurations I, P reaches a set of Q-stable configurations Y in
expected time o(n). Then for all m ∈ N, there is a configuration xm reachable from some i ∈ I and
transition sequence pm such that (1) xm(s) ≥ m for all s ∈ Λ, (2) xm =⇒pm ym, where ym ∈ Y ,
and (3) pm has no m-bottleneck transition.

Proof. Intuitively, the lemma follows from the fact that states xm are reached with high probability
by Theorem 4.3, and if no paths such as pm existed, then all paths from xm to a stable configuration
would have a bottleneck and require linear time. Since xm is reached with high probability, this
would imply the entire expected time is linear.

For any configuration xm reachable from some configuration in I, there is a transition sequence
pm satisfying condition (2) by the fact that P Q-stabilizes from I. It remains to show we can find
xm and pm satisfying conditions (1) and (3).

By Theorem 4.3 there exist ε, β (which depend only on P and α) such that, starting in any
configuration i, with probability at least 1 − 2εn, P reaches a configuration x where all states
s ∈ Λ have count at least βn, where n = ‖i‖. Choose n to be large enough that 1 − 2εn ≥ 1

2
and there is in ∈ I such that ‖in‖ = n. Then by Theorem 4.3, Pr[in =⇒Xn] ≥ 1

2 where Xn =
{ x | in =⇒x and (∀s ∈ Λ) x(s) ≥ βn }.

Suppose that every transition sequence from every configuration x ∈ Xn to some y ∈ Y has
a b(n)-bottleneck, for some function b : N → N. Corollary 4.2 tells us that, then T[in =⇒Y] ≥
1
2

n−1
(b(n)·Λ)2 . For this expected time to be o(n), it must be that b(n) = ω(1). Let xm be a configuration

in Xn that can reach Y by a path without a b(n)-bottleneck transition, where the indexing m
satisfies m ≤ min{bβnc, b(n)}. Since min{bβnc, b(n)} = ω(1), we have an appropriate configuration
for all indexes m ∈ N. Since m ≤ bβnc, condition (1) is satisfied. Finally, since m ≤ b(n), condition
(3) is satisfied.

11

4.3 Transition Ordering Lemma

The following lemma was first proven (in the more general model of Chemical Reaction Networks)
in [8]. We provide a proof for the sake of self-containment. Intuitively, the lemma states that a
“fast” transition sequence (meaning one without a bottleneck transition) that decreases certain
states from large counts to small counts must contain transitions of a certain restricted form. In
particular the form is as follows: if ∆ is the set of states whose counts decrease from large to small,
then we can write the states in ∆ in some order d1, d2, . . . , dk, such that for each 1 ≤ i ≤ k, there
is a transition αi that consumes di, and every other state involved in αi is either not in ∆, or
comes later in the ordering. These transitions will later be used to do controlled “surgery” on fast
transition sequences, because they give a way to alter the count of di, by inserting or removing the
transitions αi, knowing that this will not affect the counts of d1, . . . , di−1.

Lemma 4.5 (Adapted from [8]). Let b1, b2 ∈ N such that b2 > |Λ| · b1. Let x,y ∈ NΛ such that
x =⇒y via transition sequence q that does not contain a b2-bottleneck. Define

∆ = { d ∈ Λ | x(d) ≥ b2 and y(d) ≤ b1 } .

Then there is an order on ∆, so that we may write ∆ = {d1, d2, . . . , dk}, such that, for all
i ∈ {1, . . . , k}, there is a transition αi of the form di, si → oi, o

′
i, such that si, oi, o

′
i 6∈ {d1, . . . , di},

and αi occurs at least (b2 − |Λ| · b1)/|Λ|2 times in q.

Proof. We define the ordering based on increasing sets ∅ = ∆0 ⊂ ∆1 ⊂ ∆2 ⊂ . . .∆k−1 ⊂ ∆k = ∆,
where for each 1 ≤ i ≤ k, ∆i = ∆i−1 ∪ {di}.

We define the ordering inductively “in reverse,” by first defining dk, then dk−1, etc. For all 1 ≤
i ≤ k, define Φi : NΛ → N for all configurations c by Φi(c) =

∑
d∈∆i

c(d). Φk is well-defined since
∆k = ∆, and Φi is well-defined once we have defined di+1, . . . , dk, because ∆i = ∆ \ {di+1, . . . , dk}.

Because y(d) ≤ b1 for all d ∈ ∆, it follows that Φi(y) ≤ i · b1 ≤ |Λ| · b1. Recall that x(d) ≥ b2 for
all d ∈ ∆. Let r be the suffix of q after the last configuration c′ along q such that Φi(c

′) ≥ b2. Then
in all configurations c in r, c(d) < b2 for all d ∈ ∆i. Because Φi(c

′) ≥ b2 but Φi(y) ≤ |Λ| · b1, r
contains a subsequence u of transitions, each of which strictly decreases Φi, and the total decrease
in Φi over all of u is at least (b2 − |Λ| · b1) between configurations c′ and y.

Let α : r1, r2 → p1, p2 be a transition in u. Since α strictly decreases Φi, r1 ∈ ∆i or r2 ∈ ∆i;
assume without loss of generality that r1 ∈ ∆i. Further, since u does not contain a b2-bottleneck,
and all configurations c along u have c(d) < b2 for all d ∈ ∆i, for α not to be a b2-bottleneck, we
must have r2 6∈ ∆i. Since exactly one state in ∆i decreases its count, p1 6∈ ∆i and p2 6∈ ∆i, or else
α would not decrease Φi. Let di = r1, si = r2, oi = p1, and o′i = p2.

Then α decreases Φi by exactly 1. Since there are at least b2−|Λ|·b1 instances of such transitions
in u, and there are at most |Λ|2 total types of transitions, by the pigeonhole principle at least one
transition type must repeat in u at least (b2 − |Λ| · b1)/|Λ|2 times.

5 Proof of Theorem 3.7

By Lemma 4.4, there are sequences (xm) and (ym) of configurations, and a sequence (pm) of
transition sequences, such that, for all m, (1) xm(s) ≥ m for all s ∈ Λ, and for some i ∈ I, i =⇒xm,
(2) ym is Q-stable, and (3) xm =⇒pm ym and pm does not contain an m-bottleneck.

By Dickson’s Lemma there is an infinite subsequence of (xm) for which both (xm) and (ym) are
nondecreasing. Without loss of generality, we take (xm) and (ym) to be these subsequences. Let
∆ = bdd(ym) and Γ = unbdd(ym).

12

To prove Theorem 3.7 we need to show that there are configurations in Y (the set of Q-
stable configurations reachable from I) that contain states only in Γ. Note that stability is closed
downward: subsets of a Q-stable configuration are Q-stable. For any fixed vΓ ∈ NΓ, vΓ ≤ ym for
sufficiently large m, by the definition of Γ (the states that grow unboundedly in ym as m → ∞).
Thus any configuration vΓ ∈ NΓ is automatically Q-stable. This is why Claims 5.1, 5.2, and 5.3 of
this proof center around reaching configurations that have count 0 of every state in ∆.

Recall the path xm =⇒pm ym from Lemma 4.4. Intuitively, Claim 5.1 below says that because
this path is m-bottleneck free, Lemma 4.5 applies, and its transitions can appended to the path to
consume all states in ∆ from ym, resulting in a configuration zΓ

m that contains only states in Γ. The
“cost” of this manipulation is that, to ensure the appended transitions are applicable, we add extra
agents in specific states corresponding to e ∈ NΛ. Claim 5.1 is not sufficient to prove Theorem 3.7
because of this additional e; the subsequent Claims 5.2 and 5.3 will give us the machinery to handle
it.

Claim 5.1. There is e ∈ NΛ such that for all large enough m, there is zΓ
m ∈ NΓ, such that

xm + e =⇒ zΓ
m.

Example. We illustrate Claim 5.1 through an example. Define a PP by the transitions

b, a → f, c (10)

b, c → f, a (11)

a, c → f, f (12)

f, c → f, b (13)

f, b → f, f (14)

For convenience, for state s ∈ Λ, let s also denote the count of that state in the configuration
considered. Let configuration xm be where f = 100, a = 100, b = 100, c = 100. Suppose a
transition sequence pm without an m-bottleneck (m = 100) takes the PP from xm to ym, in which
a = 3, b = 2, c = 1, and f = 394. Then in the language of Lemma 4.5, ∆ = {a, b, c}; these states
go from “large” count in xm to “small” count in ym.

Our strategy is to add interactions to pm in order to reach a configuration zΓ
m with a = b = c = 0.

There are two issues we must deal with. First, to get rid of a we may try to add 3 instances of (10)
at the end of pm. However, there is only enough b for 2 instances. To eliminate such dependency,
in Claim 5.1, whenever we add a transition b, a → f, c, we add an extra agent in state b to e. (In
general if we consume r2 by adding transition r1, r2 → p1, p2, we add an extra agent in state r1

to e.) Second, we need to prevent circularity in consuming and producing states. Imagine trying
to add more executions of (10) to get a to 0 and more of (11) to get c to 0; this will fail because
these transitions conserve the quantity a+ c. To drive each of these states to 0, we must find some
ordering on them so that each can be driven to 0 using a transition that does not affect the count
of any state previously driven to 0.

Lemma 4.5 gives us a way to eliminate such dependency systematically. In the example above,
we can find the ordering d1 ≡ a, d2 ≡ c, and d3 ≡ b, with respective transitions (10) to drive a to 0
(3 executions), (13) to drive c to 0 (4 executions: 1 to consume the 1 copy of c in ym, and 3 more
to consume the extra 3 copies that were produced by the 3 extra executions of (10)), and (14) to
drive b to 0 (6 executions: 2 to consume 2 copies of b in ym, and 4 more to consume the extra 4
copies that were produced by the 4 extra executions of (13)).

13

Proof. Intuitively, the proof works as follows. Recall that xm =⇒pm ym and pm does not contain an
m-bottleneck. The goal is to get from configuration ym (which may be positive on some elements
of ∆) to zΓ

m (which is 0 on all elements of ∆). We will show that we can append to the end of pm
transitions αi : di, si → oi, o

′
i, for i ∈ {1, . . . , k} — in that order — such that for all i, di ∈ ∆ and

si, oi, o
′
i 6∈ {d1, . . . , di}. We use Lemma 4.5 to find the necessary transitions. We add enough αi

transitions to consume all copies of di. However, this will also consume copies of si, so we add more
copies of si to e to account for this. Once we have added enough αi transitions to make the count
of di equal to 0, by the fact that for all j, sj , oj , o

′
j 6∈ {d1, . . . , dj}, subsequently added transitions

αj for j > i will not produce di (so its count will stay 0), nor will it require consuming di (so the
transitions will be applicable). However, prior to reaching the point where we add αi transitions, if
di = oj or o′j for j < i, then the excess copies of di generated by the extra αj transitions mean that
we may need to add more than ym(di) copies of αi to consume all the copies of di. The resulting
configuration will be zΓ

m ∈ NΓ.
More formally, we choose large enough m such that the counts of species in ∆ are no longer

changing with m in (ym). Recall that xm =⇒pm ym and pm does not contain an m-bottleneck.
We’ll apply Lemma 4.5 on this path with b2 = m and let b1 be the largest count of any species in
∆ anywhere in the sequence (ym). (If necessary, increase m further to ensure b2 > |Λ| · b1.) Note
that with these parameters, ∆ = bdd(ym) exactly matches the set of states “∆” defined in the
statement of Lemma 4.5. Then this lemma tells us that there is an ordering on ∆, so that we can
write ∆ = {d1, . . . , dk}, such that for each 1 ≤ i ≤ k, there is a transition αi : di, si → oi, o

′
i such

that di ∈ ∆ and si, oi, o
′
i 6∈ {d1, . . . , di}.

We determine e and show how to consume all states in ∆ using the above transitions in the
following iterative procedure. Start with e0 = 0 and o0 = 0. Intuitively, ei represents the total
number of transitions, among α1, . . . , αi−1, that we add that have di as an input state. Therefore,
that many extra copies of di must be present in e to allow us to execute all of those transitions start-
ing at the configuration ym + e. oi represents the total number of transitions, among α1, . . . , αi−1,
that we add that have di as an output state (counting twice each time a transition has di as both
output states). Therefore, when we apply reaction αi in order to consume all of di, we need to
consume not just ym(di), but ym(di) + o(di), since the previous added transitions that produce di
increased its count.

For all i ∈ {1, . . . , k}, let

• ci = ym(di) + oi−1(di)

• ei = ei−1 + {cisi}

• oi = oi−1 + {cioi, cio′i} (note that if oi = o′i, this is the same as writing {2cioi}).

Given transition sequences p and q, let p ⊕ q denote q appended to the end of p, and given a
single transition α and j ∈ N, let j · α denote the transition sequence consisting of j copies of α.

Let e = ek. For all i ∈ {0, . . . , k}, define pm,i inductively to be pm,i−1⊕ (ci ·αi), where the base
case is pm,0 = pm, and define zm,i inductively to be such that xm + ei =⇒pm,i zm,i, where the base
case is zm,0 = ym. Then zΓ

m in the statement of the claim will be zm,k.
We prove by induction on i that

1. for all j ∈ {1, . . . , i}, zm,i(dj) = 0,

2. pm,i is a valid transition sequence for xm+ei (i.e., it never has a transition in a configuration
in which the input states are not present), and

3. for all j ∈ {i+ 1, . . . , k}, zm,i(dj) = ym(dj) + oi(dj) (in particular, zm,i(di+1) = ci+1).

14

The base case is vacuous for 1 and immediate for 2 and 3 from the fact that pm is a valid
transition sequence to apply to xm and the definition of c1 = ym(di) + o0(di) = ym(di).

Assume the inductive case for i − 1. Then by induction hypothesis 1, zm,i−1(dj) = 0 for
all j ∈ {1, . . . , i − 1}. Since ci · αi does not have dj as an input or output state, and because
ei − ei−1 = {cisi} is 0 on dj (since si 6∈ {d1, . . . , di−1}), it follows that zm,i(dj) = 0 for all
j ∈ {1, . . . , i − 1}. By induction hypothesis 3, zm,i−1(di) = ci, and since ciαi consumes exactly ci
copies of di, this shows that zm,i(di) = 0, establishing the inductive case for 1.

Induction hypothesis 2 implies that pm,i−1 is a valid transition sequence for xm + ei, since it is
valid for xm+ei−1 by the hypothesis and xm+ei ≥ xm+ei−1. We must show that all of pm,i is valid
for xm + ei by showing the final ci ·αi transitions on pm,i, which apply to configuration zm,i−1(di),
are valid. By induction hypothesis 3, there is sufficient count of di to apply the transitions. By
the fact that ei − ei−1 = {cisi}, there is sufficient count of the other input state si to apply the
transitions. This establishes the inductive case for 2.

Let j ∈ {i, . . . , k}. Induction hypothesis 3 gives that zm,i−1(dj) = ym(dj) + oi−1(dj). oi(dj)−
oi−1(dj) is 0 if dj is not an output state of αi, is ci if dj is exactly one output state, and is 2ci if dj
is both output states. Thus after applying ci copies of αi to zm,i−1 to result in configuration zm,i,
we have increased the count of dj by exactly oi(dj) − oi−1(dj), resulting in zm,i(dj) = ym(dj) +
oi−1(dj) + (oi(dj)− oi−1(dj)) = ym(dj) + oi(dj), proving the inductive case for 3.

Since inductive case 1 for the final value k shows that, for all j ∈ {1, . . . , k}, zm,k(dj) = zΓ
m(dj) =

0, this proves that zΓ
m ∈ NΓ.

Intuitively, Claim 5.2 below works toward generating the vector of states e that we needed for
Claim 5.1. The vector e can be split into the ∆ component and the Γ component; we will handle
the Γ component later. The “cost” for Claim 5.2 is that the path must be taken “in the context”
of additional agents in states captured by p. Importantly, the net effect of the path preserves p,
which will give us a way to “interleave” Claims 5.1 and 5.2 as shown in Claim 5.3.

Claim 5.2. For all e∆ ∈ N∆, there is p ∈ NΛ, such that for all large enough m, there is wΓ
m ∈ NΓ,

such that p + xm =⇒p + wΓ
m + e∆, and unbdd(wΓ

m) = Γ.

Example. Recall the example above illustrating Claim 5.1. Claim 5.2 is more difficult than
Claim 5.1 for two reasons. First, we need to be able to obtain any counts of states a, b, c (ie e∆)
and not only a = b = c = 0. Second, we no longer have the freedom to add extra states as e and
consume them. Note that p cannot fulfill the same role as e because p must be recovered at the
end.

For instance suppose e∆ is a = 7, b = 2, c = 1. Recall that ym has a = 3, b = 2, c = 1. How
can we generate additional 4 copies of a? Note that all transitions preserve or decrease the sum
a+ b+ c. Thus we cannot solely add interactions to pm to get to our desired e∆. The key is that
we can increase a by removing existing interactions from pm that consumed it. Indeed, Lemma 4.5
helps us by giving a lower bound on the number of instances of transitions (10),(13),(14) that must
have occurred in pm. (Note that in Claim 5.1, we didn’t need to use the fact that these transitions
occurred in pm. Now, we need to ensure that there are enough instances for us to remove.) In our
case, we can remove 4 instances of interaction (10), which also decreases c by 4. To compensate
for this, we can remove 4 instances of interaction (13), which also decreases b by 4. Finally, we
remove 4 instances of interaction (14). The net result is that we reach the configuration a = 7,
b = 2, c = 1, f = 130.

Note that unlike in Claim 5.1, we have more potential for circularity now because we cannot
add the other input to a transition as e. For example, we can’t use transition (12) to affect c
because it affects a (which we have previously driven to the desired count). Luckily, the ordering

15

given by Lemma 4.5 avoids any circularity because the other input and both of the outputs come
later in the ordering.

Importantly, as we remove interactions from pm, we could potentially drive the count of some
state temporarily negative. Performing these interactions in the context of more agents (p) ensures
that the path can be taken.

Proof. Recall that xm =⇒pm ym and pm does not contain an m-bottleneck. Intuitively, we will try
to modify pm so that in the end we get exactly e∆ of ∆. As in the proof of Claim 5.1, we will use
the fact that pm does not contain an m-bottleneck and Lemma 4.5 to find transitions affecting ∆
in a non-circular manner. However, unlike in Claim 5.1, we cannot simply consume an additional
e ∈ NΛ to ensure that the count of the “other input state si” does not become negative. Rather,
to increase the amounts of si we will remove certain transition instances originally in pm. It turns
out that even with removing transitions, our modification to pm may still temporarily take certain
species negative if we start from xm. However, executing the path in the context of p provides
“buffer room” to ensure that no counts ever go below zero.

More formally, as in the proof of Claim 5.1 (see Appendix) apply Lemma 4.5 with b2 = m and
let b1 be the largest count of any species in ∆ anywhere in the sequence (ym). The lower bound
on b2 = m is determined below (“bound on the amount of fixing”). Lemma 4.5 tells us that there
is an ordering on ∆, so that we can write ∆ = {d1, . . . , dk}, such that for each 1 ≤ i ≤ k, there is
a transition αi : di, si → oi, o

′
i such that di ∈ ∆ and si, oi, o

′
i 6∈ {d1, . . . , di}, and αi occurs at least

(b2 − |Λ| · b1)/|Λ|2 times in pm. Note that the final condition was not necessary to prove Claim 5.1
since its proof only added transitions to pm. However, since this proof removes transitions as well,
we require the condition to ensure that there are sufficiently many existing instances to be removed.

We iteratively fix the counts of states in ∆ one by one, in the ordering given, i.e. we first adjust
pm to fix d1, then we fix d2 (while showing that the fixing of d2 cannot affect the count of d1 in any
configuration, so it remains fixed), etc. We start with e∆

0 (s) = ym(s) for s ∈ ∆ and e∆
0 (s) = 0 for

s ∈ Γ, and wΓ
m,0(s) = ym(s) for s ∈ Γ and wΓ

m,0(s) = 0 for s ∈ ∆. Having fixed d1, . . . , di−1, and

obtaining new e∆
i−1, wΓ

m,i−1 (which could now be negative) such that e∆
i−1 agrees with the desired

e∆ over d1, . . . , di−1, we process di as follows. If δi = e∆(di) − e∆
i−1(di) < 0: add δi instances of

transition αi at the end of the transition sequence. If δi > 0: remove δi instances of αi where they
occur in the transition sequence; property (3) ensures that q contains enough instances of αi (see
below). Let e∆

i be the counts of the species in ∆ at the end of this path. By property (2) and (3),
adding or removing instances of αi affects only the counts of states in Γ and di+1, . . . , dk. Since
we fix these counts in the prescribed order, when we are done, the counts of each di is equal to its
count in e∆ (ie e∆ = e∆

k), while counts of elements of Γ have been altered (letting wΓ
m = wΓ

m,k).

We now claim that for large enough m, wΓ
m,k is nonnegative, and that p can be independent of

m. Finally, we derive a bound on the number of transition instances that we may need to remove,
which determines another bound on m (ie b2) to ensure that there are enough instances by property
(4) above.

Note that the amount of fixing we need to do only depends on the desired e∆ as well as on
the counts of ∆ states in ym. Because ym are nondecreasing, and ∆ = bdd(ym), for large enough
m, the counts of ∆ states in ym stop changing, and the amount of fixing depends only on the
desired e∆. This implies that the p we need to add to ensure that no counts go negative can be
independent of m. Further, for large enough m, the difference between wΓ

m and ym is independent
of m, and thus unbdd(wΓ

m) = unbdd(ym) = Γ. This also implies that for large enough m, wΓ
m,k is

nonnegative.
Bound on the amount of fixing: Let cb = maxm∈N,d∈∆ |ym(d)−e∆(d)| be the maximum amount

16

that any state in ∆ deviates from its desired count. We add or remove at most |δ1| ≤ cb instances
of α1, which affects the count of states in Γ ∪ {d2, . . . , dk} by at most 2cb (it could be 2 per
transition if the transition is α1 : d1, s → s′, s′ for some state s′ ∈ Λ). Thus, |δ2| ≤ cb + 2|δ1| (the
original cb error plus the additional error from altering the number of α1 transitions). In general,
|δi| ≤ cb + 2(|δ1|+ · · ·+ |δi−1|) ≤ 3i−1cb. Thus if we let m = b2 ≥ k · b1 + 3k−1cb|Λ|2, we will have
enough transition instances by property (4) to remove ((b2 − |Λ| · b1)/|Λ|2 = 3i−1cb).

Claim 5.3. For infinitely many i ∈ I, there is vΓ ∈ NΓ such that i =⇒vΓ.

Proof. Intuitively, Claim 5.3 follows by expressing i = i1 + i2 where i1 =⇒xm1 and i2 =⇒xm2 , so
i =⇒xm1 + xm2 . We then apply Claim 5.2 to xm2 (with xm1 playing the role of p) to get to a
configuration with the correct e for Claim 5.1, and then apply Claim 5.1 to remove all states in ∆.

By the hypothesis of Theorem 3.7, there are infinitely many pairs i1, i2 ∈ I such that i = i1+i2 ∈
I. Let m1,m2 be such that i1 =⇒xm1 and i2 =⇒xm2 , hence i =⇒xm1 + xm2 ; choose m1 and m2

large enough to satisfy the conditions stated below as they are needed. By Claim 5.1 (with xm1),
there is e ∈ NΛ, and zΓ ∈ NΓ such that xm1 + e =⇒pm1

zΓ. Write e as e = e∆ + eΓ where e∆ ∈ N∆

and eΓ ∈ NΓ. Then apply Claim 5.2 (with xm2) on e∆ (making sure m2 is large enough to satisfy
the claim on e∆). Thus, there is p ∈ NΛ and wΓ ∈ NΓ such that p + xm2 =⇒pm1

p + wΓ + e∆.

If m1 is large enough that xm1 ≥ p, then xm1 + xm2 =⇒pm2
xm1 + wΓ + e∆. If further m2 is

large enough that wΓ ≥ eΓ (recall unbdd(wΓ) = Γ), then we can rewrite the right hand side as
xm1 + (wΓ − eΓ) + e. Then, by Claim 5.1, xm1 + (wΓ − eΓ) + e =⇒pm1

(wΓ − eΓ) + zΓ. Since the

right hand side is only over Γ, we let vΓ = (wΓ − eΓ) + zΓ.

Finally, Theorem 3.7 is proven because vΓ is Q-stable and it contains zero count of states in ∆.
To see that vΓ is Q-stable recall that vΓ ≤ ym′ for sufficiently large m′ since Γ = unbdd(ym) and
vΓ contains only states in Γ. Since stability is closed downward, and ym′ is Q-stable, we have that
vΓ is Q-stable as well.

Acknowledgements. The authors thank Anne Condon and Monir Hajiaghayi for several in-
sightful discussions. We also thank the attendees of the 2014 Workshop on Programming Chemical
Reaction Networks at the Banff International Research Station, where the first incursions were made
into the solution of the problem of PP stable leader election. We are also grateful to anonymous
reviewers whose comments have significantly improved the presentation.

References

[1] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols.
In ICALP 2015: Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming, Kyoto, Japan, 2015.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18:235–253, 2006.
Preliminary version appeared in PODC 2004.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Urn au-
tomata. Technical Report YALEU/DCS/TR-1280, Yale University, November 2003.

[4] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3):183–199, September 2008. Preliminary version
appeared in DISC 2006.

17

[5] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

[6] Dana Angluin, James Aspnes, Michael J Fischer, and Hong Jiang. Self-stabilizing population
protocols. In Principles of Distributed Systems, pages 103–117. Springer, 2006.

[7] James M Bower and Hamid Bolouri. Computational modeling of genetic and biochemical
networks. MIT press, 2004.

[8] Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. Speed faults in compu-
tation by chemical reaction networks. In DISC 2014: Proceedings of the 28th International
Symposium on Distributed Computing, Austin, TX, USA, pages 16–30, 2014.

[9] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

[10] Inês Cunha-Ferreira, Inês Bento, and Mónica Bettencourt-Dias. From zero to many: control
of centriole number in development and disease. Traffic, 10(5):482–498, 2009.

[11] Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n
distinct prime factors. American Journal of Mathematics, 35(4):413–422, October 1913.

[12] David Doty. Timing in chemical reaction networks. In SODA 2014: Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 772–784, January 2014.

[13] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[14] Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969.

[15] Carl A Petri. Communication with automata. Technical report, DTIC Document, 1966.

[16] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393, 2010. Preliminary
version appeared in DNA 2008.

[17] Vito Volterra. Variazioni e fluttuazioni del numero dindividui in specie animali conviventi.
Mem. Acad. Lincei Roma, 2:31–113, 1926.

18

	Introduction
	Preliminaries
	Population Protocols
	Time Complexity

	Main Results
	Impossibility of Sublinear Time Stable Leader Election
	More General Impossibility Result in Terms of Inapplicable Transitions and Dense Configurations
	Why Simple Proofs Fail

	Technical Tools
	Bottleneck Transitions Require Linear Time
	Sublinear Time from Dense Configurations Implies Bottleneck Free Path from Configurations with Every State ``Populous''
	Transition Ordering Lemma

	Proof of Theorem 3.7

