
78 communications of the acm | december 2012 | vol. 55 | no. 12

review articles

photo

g

raph

 by

 Z
ubeir

 T
ai

S e lf - a s s e mbly i s t h e process by which small
components automatically assemble themselves
into large, complex structures. Examples in nature
abound: lipids self-assemble a cell’s membrane, and
bacteriophage virus proteins self-assemble a capsid
that allows the virus to invade other bacteria. Even a
phenomenon as simple as crystal formation is a process
of self-assembly. How could such a process be described
as “algorithmic?” The key word in the first sentence is
automatically. Algorithms automate a series of simple
computational tasks. Algorithmic self-assembly systems
automate a series of simple growth tasks, in which the
object being grown is simultaneously the machine
controlling its own growth.

Although large tracts of the theory presented in
this article are applicable to non-molecular systems,
much of the motivation arises from nanoscale self-
assembly (as an engineering field, as opposed to the
study of natural self-assembly systems). The broad
goal of nanoscience is to manipulate molecules with
nanoscale precision. Ambitious long-term applications

include microscopic, chemical-detect-
ing robots that move toward and me-
tabolize pollutants, or the integration
of human tissue with an implanted
medical device.

Why should computer science have
anything to do with nanoscience, be-
yond the obvious role of developing
software-modeling tools? Luca Cardel-
li, in a panel discussion at the 2011
Conference on DNA Computing and
Molecular Programming, observed
that while the computing revolution
was about the systematic manipulation
of information, nanoscience is about
the systematic manipulation of matter.
Nanoscience provides a novel justifica-
tion for studying computation. Many
of the traditional forms of manual con-
trol are simply not possible at small
scales. Automating the growth of mo-
lecular structures is not merely faster
or more convenient than building such
structures by hand. Our hands, and the
machines they operate, are simply too
large to manipulate individual mol-
ecules. We must learn to program mol-
ecules to manipulate themselves.

DNA is the molecule of choice in
many labs, not for its biological prop-
erties but for its information-bearing
properties. It is easy to synthesize, and
its physical properties are well under-
stood. DNA origami45 is currently the
most successful laboratory technique
for self-assembling DNA. A long scaf-
fold DNA strand is folded into a shape
by mixing it with hundreds of shorter
staple strands, each of which binds to

doi:10.1145/2380656.2380675

The challenge of programming molecules
to manipulate themselves.

By David Doty

Theory of
Algorithmic
Self-Assembly

 key insights

 �The idea of “molecules that can perform
computation” is transforming the way
we engineer self-assembling molecular
systems.

 �A small number of simple types
of molecules can grow into large,
sophisticated nanoscale structures
automatically.

 �Understanding the fundamental abilities
and limitations of these systems is
crucial for guiding experimental work.
Many known theoretical results have
drawn on the theorems, techniques, and
paradigms of computer science.

December 2012 | vol. 55 | no. 12 | communications of the acm 79

80 communications of the acm | december 2012 | vol. 55 | no. 12

review articles

one region of the scaffold with its left
half and another region of the scaffold
with its right half, bringing the two re-
gions together. A more experimentally
challenging technique, DNA tile assem-
bly, is the physical basis for the theoreti-
cal work discussed in this article. A DNA
tile is a DNA complex with four short
single-stranded “sticky” ends protrud-
ing from it (see Figure 2a), which are
intended to bind the tile to other tiles
having sticky ends that are Watson-
Crick complementary. Figure 1 shows
images of some patterns that have been
experimentally assembled with DNA
tiles. Figure 2 shows how a DNA tile is
modeled as a square with four sides
having “specific glues.” DNA origami in
its current incarnation is non-algorith-
mic self-assembly, whereas DNA tile
assembly is potentially algorithmic. We
now explain this distinction.

Turing54 stated, “The ‘computable’
numbers may be described briefly as
the real numbers whose expressions
as a decimal are calculable by finite
means.” Finite means is formally equat-
ed with algorithm (for example, a Tur-
ing machine, a λ-expression, a Python
program, or an appropriately initial-
ized configuration of Conway’s Game
of Life). There are uncountably many
real numbers but only a countable
number of algorithms, so most real

numbers are not computable. What if
we wish to make sense of the question,
which integers are computable? By Tur-
ing’s qualitative definition, they are
all computable, but it is reasonable to
object that some integers (for example,
n = 1010,000) are easier to compute than
others (for example, m = a random se-
quence of 10,000 digits), in the sense
that a much smaller program suffices
to compute n than to compute m. To
make formal sense of such intuition,
the theory of Kolmogorov complexity33
gives a rigorous quantitative measure
of the “algorithmic complexity” of an
integer (or any other “finite object”
such as a finite string or a graph): the
length in bits of the shortest algorithm
that prints the integer and halts.

Both of these definitions adopt the
view that an object is “algorithmically
constructed” when there is an algo-
rithm constructing the object that is
much smaller than the object itself
(infinitely smaller in the former case).
From this perspective, algorithmic self-
assembly describes the self-assembly
of a structure whose total number of
components (its “size”) is much great-
er than the number of different types of
components. Since a component type
is reused many times, it has no way of
“knowing” where it is going to end up
in the structure, so only local infor-

mation is available to guide its attach-
ment. DNA origami therefore does not
constitute algorithmic self-assembly,
since each staple strand “hardcodes”
its position in the final structure. DNA
tile assembly, however, has the po-
tential to reuse a small number of tile
types to create large structures.

Our combinatorial model of the dy-
namic behavior of these tiles is called
the abstract Tile Assembly Model
(aTAM), due to Winfree,56 explained
briefly in Figure 2. Figure 2c shows sev-
en tile types that fill the entire second
quadrant with a painting of the discrete
Sierpinski triangle, showing that this
pattern is “algorithmically self-assem-
blable.” The main computation is done
by the bottom four rule tile types using
cooperative binding, which refers to
the fact that a tile with only strength-1
glues cannot bind to an assembly un-
less at least two of them match. (Some-
times this binding strength threshold
is called the “temperature” τ, which is
usually 2 but not always.) The rule tiles
in this example always bind using their
south and east glues. Thus the glue la-
bels (bits in this case) can be imagined
as inputs to a function computed by
the rule tile types (analogous to a tran-
sition function in a Turing machine or
cellular automaton). The output of the
function in this example is the XOR
of the bits, which is advertised on the
north and west sides.

Parallelism in Molecular
Computing: The Bad News
Algorithmic self-assembly is a subfield of
molecular computing, highlighted in a
news article by Kirk. L. Kroeker in the De-
cember 2011 issue of Communications.
The field was initiated in 1994 when Adle-
man,1 in a landmark proof-of-concept
experiment, designed DNA molecules
that interact to solve a 7-vertex case of
the Hamiltonian path problem: execut-
ing a “DNA algorithm” whose basic op-
erations are well-understood chemical
interactions such as hybridization.

Let us state an unequivocal limita-
tion to the power of molecular comput-
ing as a model of computation, which
applies to algorithmic self-assembly
systems as well. Molecular comput-
ing is not a magical potion that can
be ladled over NP-complete problems
to transubstantiate them into trac-
table problems. In its most generic

Figure 1. Experiments with double-crossover tiles.

Atomic force microscopy measures the height of a structure on a surface (mica). Some tile types
may have attached hairpins as “labels” (appearing white in images).
a) Lattice of tiles (single tile type).59
b) Sierpinski triangle in a lattice, no proofreading.46
c) Binary counter in a ribbon, no proofreading.6
d) Standard (left) versus snaked (right) proofreading for suppression of facet errors.17
e) Sierpinski triangle in a ribbon, no proofreading.28
f) Ribbons with zig-zag tiles for suppression of spurious nucleation.49
g) Ribbons nucleating from origami seed, copying a bit string, with proofreading.7
h) Ribbons nucleating from origami seed, executing a binary counter, with partial proofreading.7

a)

d)

f) g) h)

e)

b) c)

300 nm

10 nm

100 nm 100 nm

10 nm 100 nm

25 nm

50 nm

50 nm

review articles

December 2012 | vol. 55 | no. 12 | communications of the acm 81

form, the sorcery of DNA solutions to
NP-complete problems proceeds by
letting the DNA test all possible solu-
tions in parallel in a single test tube.
Assuming a modest solution length of
300 bits, squeezing 2300 molecules into
a test tube is like installing 2300 proces-
sors in a parallel computer: there is not
enough sand in the world to supply
that much silicon.

Scientific journals continue to
traffic in tales of DNA’s exponential
search capability. As with Mjölnir, the
mountain-crushing hammer of Thor,
the time has come to place these tales
into the dustbin of mythology, mak-
ing room for the real—and far more
exciting—scientific work that remains
to be done in molecular computing. If
there is a breakthrough in molecular
engineering that will enable the solu-
tion of classically intractable prob-
lems, it will have to come from quan-
tum mechanics or perhaps from some
exotic physical theory yet to be dis-
covered. It will not come about solely
by replacing silicon with DNA. But
enough pessimism; let’s find out what
DNA can do.

Computational Universality
Winfree56 showed that the aTAM is
computationally universal, that is, able
to simulate any algorithm. This one
fact explains the richness of the theo-
ry presented in the rest of the article.
What exactly does it mean?

The model as stated lacks one fea-
ture in common with other computa-
tional models: there is no input! One
potential way to program a single tile
set with different inputs that result in
different behaviors is to generalize the
idea of a single seed tile type to a larger
seed assembly. Within the model, we
allow the seed assembly to be any finite
stable assembly (“stable”= all cuts of
the assembly that separate it into two
components must break bonds of total
strength at least 2). In practice, seed
assemblies are not necessarily made
of tiles, but must simply have a perim-
eter compatible with the tiles, such as
a DNA origami shape appropriately
augmented with sticky ends on its side
(Figure 1g–h). We use the term tile sys-
tem to refer to a finite set of tile types,
together with other parameters needed
to determine its behavior, such as its
seed assembly σ and its temperature τ.

With this convention established,
we can now state more formally what
it means to claim that the aTAM is
computationally universal. For every
single-tape Turing machine M, there
is a tile set T so that, for every input
string x, there is a seed assembly σ of T
so that T with seed σ uniquely assem-
bles a space-time configuration tran-
script of M on input x.a By “uniquely
assembles,” we mean that although T
with seed σ assembles many different
partial assemblies, it has a unique ter-
minal assembly α (terminal = no tile
can attach to it). The tth row of α repre-
sents the configuration of M(x) at time
step t, with σ occupying the first row.

The computational universality
of the aTAM implies that arbitrary al-
gorithms may be executed by self-as-
sembling tiles and therefore used to
direct the growth of the tiles. However,
the aTAM is not just another program-
ming language. The subtle interplay of
computation and geometry in self-as-
sembly gives rise to unique character-
istics such as the distinction between

a	 σ is a 1 ×|x| row encoding x in a standard way;
we are not cheating by embedding the entire
computation M(x) into σ.

computable patterns and self-assem-
bling patterns discussed later.

Modeling Errors
The aTAM is not a realistic model of
how DNA tiles actually behave at the
molecular level. In particular, it makes
two assumptions known not to hold in
practice: that tiles never detach from
an assembly, and that tiles only attach
when their binding strength exceeds
the temperature threshold value τ.
Winfree56 introduced the kinetic Tile
Assembly Model (kTAM) as a more re-
alistic model of tile assembly that uses
standard laws of chemical kinetics to
relax these assumptions. Each tile
type is assumed to attach to any bind-
ing site on an assembly α, producing a
new assembly β, at a rate proportional
to its concentration, regardless of its
strength of attachment. If we assume
that there is only a single seed tile,
and that each other tile type is equally
concentrated (and much higher count
than 1, so that their rate of depletion
is essentially 0), then this forward rate
is equal for all tile types and approxi-
mately constant over time. Call this
forward rate rf . Each tile within β is as-
sumed to detach at a rate proportional

Figure 2. Abstract Tile Assembly Model (aTAM).

a) �Double-crossover tile with four sticky end.
b) �Representation of a tile as a square with sides labeled by string “glues.”
c) �Seven tile types. Bond strengths indicated by the number of small black squares on a side:

total strength 2 is required to attach a tile to a partially formed assembly of tiles. One tile type
is designated as the seed, from which growth is assumed to nucleate.

d) �Growth of the tiles into an assembly with the discrete Sierpinski triangle pattern.

a)

c) d)

b)

E

82 communications of the acm | december 2012 | vol. 55 | no. 12

review articles

to e–b, where b ∈ N is the total strength
with which the tile is bound. Call this
reverse rate rr, b. The constant of pro-
portionality depends on factors such
as temperature, salinity, and sticky
end length. Winfree56 showed that
by setting these factors and the non-
seed tile concentrations such that rf
= rr,2 + ε then the probability that the
seed grows into a correct assembly
(an assembly producible under the
aTAM growth rules) approaches 1 as
ε → 0. However, the closer ε is to 0,
the slower assembly proceeds, with ε
= 0 representing an unbiased random
walk with attachment equally likely as
strength 2 detachment.

There is only so much that one can
do in a laboratory to precisely control
experimental conditions; errors are
bound to happen, just as deep-space
communication and large-scale data
storage inevitably corrupt some of the
bits they intend to send or store. What
should we do about this? Why not do
the same thing that NASA and Google
do about it: build in redundancy to
help correct the errors! Here, I dis-
cuss algorithmic error-correction in
the kTAM, showing that under certain
conditions, the probability of correct
growth can be boosted to enable cor-
rect growth under more flexible experi-
mental conditions.

Winfree and Bekbolatov58 devised
a scheme known as proofreading. It
helps correct growth errors, shown in
Figure 3a, in which an incorrect tile
binds with strength 1 where a correct

tile could bind with strength 2. A tile
bound with only strength 1 may tem-
porarily stick and be secured in place
by a subsequent tile attachment. The
basic proofreading scheme is shown
in Figure 3b. Each tile type t is replaced
by a k × k block of tile types, with glues
internal to the block unique to t. This
enforces that errors cannot happen
in isolation: if there are any errors in
the block, then there are ≥ k errors.
Intuitively, errors happen only slowly
(since insufficiently bound tiles fall
off more quickly than new tiles at-
tach), so if one error occurs, it is more
likely for the erroneous tiles to detach
before the block completes than for
an additional k − 1 errors to occur and
secure the block in place. To a very
rough approximation, k × k proofread-
ing changes a base error probability
of ε to be εk. This scheme incurs two
costs: the number of tile types increas-
es by factor k2, and the system suffers
a resolution loss since k × k blocks
in the new system represent individ-
ual tiles in the original system. Reif,
Sahu, and Yin44 demonstrated a com-
pact proofreading scheme, in which
there is no resolution loss, but in gen-
eral the tile complexity blowup is ex-
ponential. To reduce error probability
of ε to εk for tile system T, the new tile
system may have up to |T|k2 tile types.
Soloveichik and Winfree51 showed
that for all but a restricted class of tile
systems, the tile complexity blowup of
any compact proofreading scheme is
necessarily exponential.

A facet error is the attachment of
a tile with strength 1 where no tile
should go because there is only one
adjacent strength 1 glue. Both the
proofreading constructions cited44,58
correct growth errors but not facet er-
rors. In practice, facet errors tend to
dominate the overall behavior. Chen and
Goel14 showed a proofreading scheme,
also using a k × k block replacement
as in Winfree-Bekbolatov,58 which is
resistant to both growth and facet er-
rors, and which achieves error of O(εk)
on a base error probability of ε. In
fact, this scheme was experimentally
demonstrated17 to reduce facet errors
better than either no error-correction
or the Winfree-Bekbolatov proofread-
ing scheme. Chen, Goel, and Luhrs15
showed that two-dimensional tile sys-
tems may be proofread with no resolu-
tion loss and only polynomial increase
in tile complexity by using the third
dimension. It grows a larger structure
than the original system, but when pro-
jected onto the plane there is no reso-
lution loss. They also introduce combi-
natorial criteria to help in proving that
a proofreading scheme works without
needing to carry out the cumbersome
Markov process analysis required to
analyze kTAM systems.

Doty et al.26 showed a stronger form
of error correction using the hierarchi-
cal model of self-assembly, in which
there is no seed and two assemblies
that have assembled independently
in parallel are allowed to aggregate
together, as opposed to the standard
seeded aTAM in which tiles attach one
at a time to a growing assembly. In this
model, they use the ability of geometry
to enforce binding constraints (pre-
venting two assemblies with matching
glues from attaching if their shapes are
not compatible to allow the glues to
touch) to show how to assemble an n ×
n square from O(log n) tile types while
guaranteeing the following constraint.
Arbitrary strength 1 growth is allowed;
however, any assembly that grows suf-
ficiently to become stable at tempera-
ture 2 is guaranteed to assemble into
the correct final assembly. Thus errors
are prevented absolutely, rather than
only with high probability.

The errors modeled so far are
those of “insufficient attachment:” a
tile binds with strength 1 and sticks
around long enough to cause prob-

Figure 3. a) Growth error. b) 2 × 2 Proofreading. Each tile type t is replaced by a k × k block
of tile types, with glues internal to the block unique to t.

a)

b)

stable at
temperature 1 =
temporarily stable
at temperature 2

stable at
temperature 2
but not producible
at temperature 2

review articles

December 2012 | vol. 55 | no. 12 | communications of the acm 83

lems. We can consider other types of
errors. For instance, we consider some
tile types to have input and output
sides, although this is not enforced
from within the model. Consider the
following error: after some time, a
portion of the assembly is removed
to make a hole. This could result in
“backward” growth filling in the hole
using output glues, possibly result-
ing in the wrong tiles attaching (this
would happen in Figure 2d since XOR
is not a 1-1 function). Winfree57 intro-
duced a 3 × 3 block transformation
scheme called self-healing that en-
ables the assembly to regrow correctly
even when holes are blown out of the
assembly, so long as the seed remains
present. Soloveichik, Cook, and Win-
free50 showed how to combine self-
healing simultaneously with proof-
reading. Chen et al.16 showed that a
more extreme form of self-healing was
possible for the particular task of as-
sembling an n × n square from O(log n)
tile types: the entire square is able to
grow from any subassembly of width
or height 2 log n, without requiring
the seed. They also generalize the idea
to arbitrary finite shapes (with some
resolution loss).

Another type of error is spurious
nucleation, in which tiles attach to each
other without a seed, using strength 1
growth to form a stable assembly from
which an incorrect assembly could
grow. Schulman and Winfree showed
both theoretically48 and experimen-
tally49 that a certain class of tile systems
can be made resistant to nucleation er-
rors, in the sense that with the addition
of O(k) extra tile types, in the absence of
the seed, the probability is at most O(2−k)
that sufficiently many tiles aggregate to
create a stable assembly from which fur-
ther growth can occur.

The conclusion to draw from these
error correction techniques is that,
even though the aTAM does not ac-
curately describe the behavior of DNA
tiles, under certain assumptions, it is
an implementable “programming lan-
guage” for tile self-assembly.

Tile Complexity
We have identified the algorithmic as-
pect of self-assembly with the ability of
a small number of tile types to assem-
ble a large structure. This ability will
prove crucial to programming large,

complex molecular self-assembling
systems, since the total number of
types of molecular components domi-
nates the cost (in money and time) of
implementation.

To quantitatively formalize this
idea, Rothemund and Winfree47 de-
fined the tile complexity of a shape S (a
finite, connected subset of Z2) to be the
minimum number of tile types in any
tile system—with a single seed tile—
that uniquely assembles a single termi-
nal assembly with shape S. The require-
ment of a size-1 seed avoids cheating by
simply letting the seed assembly have
the desired shape. They studied the
tile complexity of n × n squares, which
has since become a canonical bench-
mark problem for studying various
other aspects of self-assembly, since n
× n squares are in a sense the simplest
shape with non-trivial tile complexity.
The simplest shape is a single point,
whose tile complexity is clearly 1. The
next simplest shape might be a 1 × n
line. An easy argument shows that its
tile complexity is n. Since it is one-
dimensional, any stable assembly with
that shape must use entirely double-
strength glues to hold it together. If
fewer than n tile types are used, then
one must repeat, but this tile system
would then be able to grow an infinite
line by repeating the segment between
the repetitions. Only in two dimen-
sions is tile complexity nontrivial.

Rothemund and Winfree showed
that for most values of n (all algorith-
mically random n), the tile complex-
ity of an n × n square is Ω(log n

log log n). Why
does this hold? A tile system of size k
can be described using O(k log k) bits
(O(log k) bits per tile type). If the tile
system uniquely self-assembles an n ×
n square, then that description, togeth-
er with a constant size aTAM simula-
tor, constitute a program of length O(k
log k) that outputs n. Since for most n,
the shortest program outputting n is
log n bits long, we must have k log k =
Ω(log n), that is, k = Ω(log n

log log n). They then
show that the tile complexity of all n × n
squares is O(log n), in which log n tile
types each represent a particular bit of
n that assemble to form a 1 × log n row
whose north glues represent n in binary.
From this assembly, a O(1) tile types at-
tach to assemble an n × n square, first
by growing a counter—essentially a bi-
nary-to-unary converter—that counts

Even though
the aTAM does
not accurately
describe the
behavior of DNA
tiles, under certain
assumptions, it is
an implementable
“programming
language” for tile
self-assembly.

84 communications of the acm | december 2012 | vol. 55 | no. 12

review articles

the ability to assemble large, complex
shapes from a very small number of dif-
ferent types of molecular components.

Tile complexity has also been stud-
ied in many interesting variants of the
standard aTAM. Each of these models
allows a single tile system to be reused
for assembling different structures by
programming it with different environ-
mental conditions affecting the behav-
ior of the tiles, thus showing that O(1)
tile complexity suffices for assembly of
complex structures if additional labo-
ratory steps are used.

In the step assembly model intro-
duced by Reif,45 tile types are added
to a test tube in a series of steps, with
each step assumed to run to comple-
tion before washing away remaining
unbound tiles and nonterminal as-
semblies, before adding new tile types
for the next step. Maňuch, Stacho, and
Stoll37 showed that for a large class of
shapes, including arbitrary shapes
scaled by factor 2 or any other shape
with a Hamiltonian path, O(1) tile types
can assemble the shape in the step as-
sembly model. There is a natural gen-
eralization of step assembly known as
staged assembly, in which the order of
test tube mixing is not monotonic and
hierarchical assembly (attachment of
two large assemblies to each other) is
allowed. A directed graph describes the
order of test tube mixing. Under this
model, Demaine et al.20 showed that
O(1) tile types can be used to assemble
any shape, and that certain classes of
shapes require only O(log n) parallel
mixing stages (source-to-sink distance
in the mixing graph). They also showed
a number of trade-offs between this
measure (stage complexity) and bin
complexity, the total number of test
tubes required. In the same model
in one dimension, Demaine et al.21
showed that for each alphabet Σ, there
is a constant set of tile types—each
labeled by a symbol from Σ —so that,
given any string x ∈ Σ*, the tiles can
be mixed to uniquely assemble a lin-
ear assembly spelling x. Furthermore,
the number of mixing stages required
is within a constant of the size of the
smallest context-free grammar that
produces the singleton language {x},
if each intermediate stage is required
to produce a unique terminal assembly
(if not, then there are strings for which
more efficient mixings exist).

from n down to 0, extending the 1 × log
n row into a n × log n rectangle, together
with O(1) tile types that extend this
rectangle into the full square.

The gap between these upper and
lower bounds arises from the fact that
encoding one bit of n per tile type is
wasteful, in an information-theoretic
sense. In principle, a set of size k can
encode log k bits per element. Letting
k = log n

log log n, Adleman et al.2 showed how
to encode ≈ log k bits of n per tile type,
showing the tile complexity of any n ×
n square is O(log n

log log n). The trick is to en-
code n in a larger base b. Letting b be
the unique power of two satisfying k ≤ b
< 2k, k tile types are required to encode
n in base b. An additional O(k) tile types
then convert n to base 2, from which
the constant set of tile types of Rothe-
mund and Winfree47 self-assemble an
n × n square.

Intuitively, most of the complexity of
an n × n square is captured by its width;
geometry does not play much of a role.
What about shapes with more compli-
cated geometry? One would expect that
even if such a shape has a compact al-
gorithmic description, self-assembly
that simulates this algorithm may not
be possible to execute within the shape.
Soloveichik and Winfree52 showed that
in fact, if we ignore scaling factors, then
the tile complexity of every shape S is
closely related to its Kolmogorov com-
plexity K(S), the length in bits of the
shortest program outputting the points
in the shape. More formally, given a fi-
nite shape S ⊂ Z2 and positive integer c
∈ Z+, let Sc = { (x, y) |( x

c ,  y
c ) ∈ S} be S

scaled up by factor c. They showed that
for every finite shape S, there is a scal-
ing factor c such that the tile complex-
ity of Sc is Θ(K (S)

log K (S)). This is a tight bound,
since no smaller tile system could
uniquely self-assemble any scaling of S
without contradicting the Kolmogorov
complexity of S. The scaling factor c is
proportional to the running time of
the shortest program for S. A constant
set of tile types T produces Sc from a 1
× K (S)

log K (S) row encoding the program for S.
Thus, T is a single tile set that is univer-
sally programmable (by seeding with
an appropriate program) for building
any finite shape S, if scaling factors are
ignored.

What is the lesson behind of all
these bounds? The ability of tiles to exe-
cute algorithms translates directly into

The ability of tiles
to execute
algorithms
translates directly
into the ability
to assemble large,
complex shapes
from a very small
number of different
types of molecular
components.

review articles

December 2012 | vol. 55 | no. 12 | communications of the acm 85

Another model relaxes the assump-
tion of constant temperature over
time: temperature programming, in
which the temperature is raised and
lowered over many stages, with each
stage assumed to reach a terminal state
before changing the temperature for
the next stage. Aggarwal et al.5 proved
that with one temperature change, a
thin rectangle—an n × k rectangle where
k < log n

log log n – log log log n  —can be assembled
from O(log n

log log n) tile types, compared to a
provable lower bound of Ω(n1/k

k) in the
standard aTAM. Kao and Schweller31

showed that O(1) tile types suffice to
assemble any n × n square using O(log
n) temperature changes. Summers53

showed that O(1) tile types suffices to
assemble any shape (scaled up) using
temperature programming, using two
constructions. In the first, the num-
ber of temperature changes is O(|S|),
and the scaling factor is O(1). In the
second, the number of temperature
changes is O(K(S)) (the Kolmogorov
complexity of S), and the scaling factor
is proportional to the running time of
the shortest program for S.

Randomized self-assembly uses the
inherent nondeterminism in the aTAM
in which multiple tile types compete to
bind to a single binding site, and tile
type concentrations determine the
probability of a tile type attaching to
a binding site when it competes with
others sharing the same input glues.
Chandran, Gopalkrishnan, and Reif12
showed that the tile complexity of a 1
× n line is Θ(log n) in the randomized
model, that is, Θ(log n) tile types are
sufficient and necessary to assemble a
line of expected length n (compared to
n tile types that are provably necessary
in the deterministic aTAM). In fact,
their tile system is equimolar: all tile
types have equal concentrations. Beck-
er, Rapaport, and Rémila9 introduced
the model of concentration program-
ming, in which concentrations of tile
types are used to program input to the
system. Kao and Schweller32 showed
that for each δ,ε > 0, there is a single tile
system T so that, for every n ∈ Z+, there
is a setting of concentrations that cause
T to assemble an n′ × n′ square, where
(1 – ε) n ≤ n′ ≤ (1 + ε)n with probability at
least 1 − δ. That is, the square is probably
approximately assembled. Doty23 im-
proved this result, showing that for each
δ > 0, a single tile system can be used to

assemble an exactly n × n square for any
n ∈ Z+ with probability at least 1 − δ us-
ing concentration programming.

Demaine et al.22 studied the RNase
model (first suggested by Rothemund
and Winfree47), in which some tile
types are assumed to be made of RNA,
which is compatible to bind with DNA
but has a different chemical structure.
An enzyme called ribonuclease—ab-
breviated RNase—can dissolve RNA
but not DNA, so adding RNase after
assembly completes allows one to con-
trollably separate the assembly into
parts that can now interact with each
other. They use this model to improve
on the Soloveichik/Winfree52 result,
showing that for every shape S, the
optimal O(K (S)

log K (S)) tile types suffice to as-
semble a scaled version Sc of S, but with
scaling factor c = O(log |S|), rather than
c depending on the running time of S’s
shortest program.

In the flexible glue model stud-
ied by Aggarwal et al.,5 unequal glues
are allowed to interact with non-zero
strength. One could imagine this being
implemented, for instance, by multi-
ple sticky ends on a tile’s side, in which
the strength of interaction depends on
the number of sticky ends that match.
They showed that with flexible glues,
O(√(log n)) tile types are necessary and
sufficient to assemble an n × n square.

Computational Complexity
Rather than manually analyzing each
new shape or class of shapes to de-
termine its tile complexity, it would
be beneficial to develop an algorithm
that automates the task: given a finite
shape S, it outputs the smallest tile sys-
tem that uniquely assembles S. Unfor-
tunately, an efficient algorithm is un-
likely to exist: Adleman et al.3 showed
that the problem is NP-complete.
Here, “uniquely assembles S” means,
assembles one unique terminal as-
sembly, whose shape is S. One could
object that a tile system deterministi-
cally assembles S if it produces many
terminal assemblies that all have the
shape S. Under this definition, Bryans
et al.10 showed that the problem, in a
sense, is even harder: NPNP-complete,
that is, NP-complete for algorithms
that have access to a constant-time
subroutine for an NP-complete prob-
lem such as SAT.

In addition to optimization prob-

lems, there are important verification
problems of interest in tile assembly.
One easy problem is this: given a tile
system T and a (possibly nontermi-
nal) assembly α, can T produce α? One
can simply add tiles to the seed that
are consistent with α and have suf-
ficient binding strength until either
α is complete, or until no more tiles
can be added; the answer is “yes” in
the former case and “no” in the latter.
A more challenging question: Is α the
unique terminal assembly produced
by T? A tile system could produce α
through an exponential number of
different pathways (orders of tile ad-
dition), so it would naïvely seem to
require that we check all of them to
ensure none of them create a different
terminal assembly. However, Adleman
et al.3 showed this problem is solvable
in quadratic time. On the other hand,
in the hierarchical aTAM (in which
two large assemblies are allowed to
attach), the problem of determining
whether α is uniquely assembled is
coNP-complete.11 This is discouraging,
since such decision problems are a
formalization of the practically impor-
tant task of “write a simulator for the
hierarchical aTAM.”

Shape building is one goal of self-
assembly; another is pattern painting.
Briefly, we paint some tile types black
(for example, by attaching a strepta-
vidin marker molecule) and say the
pattern assembled is the set of posi-
tions in the final assembly with a black
tile. Such a definition is appropriate
for modeling practical goals such as
self-assembled circuit layouts, such as
those studied by Cook, Winfree, and
Rothemund.19 Although the proof tech-
niques for these verification problems
generalize easily to pattern assembly,
it remains open to prove or disprove
pattern assembly analogues of the op-
timization results noted here. The opti-
mization problems are uncomputable
if the tile system is allowed to grow ar-
bitrarily far outside the pattern, using
the same argument that shows Kol-
mogorov complexity is uncomputable.
If the minimum tile system to assem-
ble a given finite pattern could be com-
puted, then this computation could be
simulated in the second quadrant by a
tile system of size O(1) + log n search-
ing for the first pattern on the positive
x-axis that requires more than n tile

86 communications of the acm | december 2012 | vol. 55 | no. 12

review articles

bled in time O(n), achievable using
the information-theoretically optimal
O(log n / log log n) tile types. Reif43 also
studied local parallelism within the
seeded aTAM, for the purpose of com-
putation rather than shape-building.
Reif showed that for many problems
such as prefix sum and bitonic merge,
it is possible to design a tile system
that solves the problem using the
optimal parallel speedup. Reif used
a generalization of the model known
as step assembly, in which tile types
are added to a test tube in a series of
steps, with each step assumed to run
to completion before washing away
remaining unbound tiles, before add-
ing new tile types.

In a variant of the model known
as the hierarchical aTAM, two as-
semblies that have assembled inde-
pendently in parallel are allowed to
aggregate together, as opposed to the
standard seeded aTAM in which tiles
attach one at a time to a growing as-
sembly. The distributed parallelism
of the hierarchical aTAM dwarfs the
linear local parallelism of the seeded
aTAM, so a natural conjecture is that
hierarchical assembly could be much
faster than seeded assembly. Chen and
Doty13 showed there is a hierarchical
tile system with the optimal O(log n

log log n)
tile types that assembles an n × n
square using O(log2 n) parallel stages,
which is close to the optimal log n
stages, forming the final n × n square
from four n/2 × n/2 squares, which are
themselves recursively formed from
n/4 × n/4 squares, and so on. However,
despite this nearly maximal paral-
lelism, the system actually requires
superlinear time to assemble the
square. They extended the definition
of partial order tile systems studied by
Adleman et al. in a natural way to hi-
erarchical assembly and show that no
hierarchical partial order tile system
can build any shape with diameter
N in less than time Ω(N). Intuitively,
although attaching an assembly β of
size k to another assembly α increases
the size of α by k tiles in one step, a
conservation of mass argument shows
that the concentration of β is at most
1/k, so we expect to wait at least k time
steps for this attachment to occur.
However, Chen and Doty also showed
the partial order hypothesis to be nec-
essary, since for infinitely many n, a tile

system can assemble a diameter-Θ(n)
rectangle in time O(n4/5 log n), break-
ing the linear-time lower bound that
applies to all seeded systems and par-
tial order hierarchical systems. It is
an open question to determine pre-
cisely the extent to which hierarchi-
cal assembly imparts a speedup over
single-tile assembly.

Intrinsic Universality
Doty et al.24 showed a different notion
of universality, with respect to growth
rather than computation, construct-
ing a single tile set U that simulates
any tile system T, by choosing an ap-
propriate seed assembly to encode
T using tiles from U. The simulation
is intrinsic in the sense that the self-
assembly process carried out by U is
exactly that carried out by T, with each
tile of T represented by an m × m block
of U tiles. Therefore there is a single
tile set that can (modulo rescaling) car-
ry out any self-assembly process that
can be achieved by any tile system. The
challenge is to program all this activity
without ever blocking a path that may
later be needed for intra-block com-
munication, since no block represent-
ing a tile is necessarily aware of the
identities of its neighboring blocks,
whether they are even present, and if
not, whether they will ever arrive.

Power of Cooperative Binding
Cooperative binding is used crucially
in all non-trivial constructions in the
aTAM. It is also the most challeng-
ing aspect of the model to enforce
experimentally, so it is reasonable to
question its necessity in algorithmic
self-assembly. Doty, Patitz, and Sum-
mers27 investigated the power of tem-
perature 1 self-assembly in the aTAM,
in which all positive glue strengths
have sufficient energy to bind a tile,
which effectively inhibits the use of
cooperative binding. They show that
a wide class of deterministic tile sys-
tems, satisfying a condition known as
pumpability, are incapable of univer-
sal computation in the sense that they
self-assemble only “periodic” (semi-
linear) sets. They conjecture that all
deterministic, temperature 1 tile sys-
tems are pumpable. Maňuch, Stacho,
and Stoll38 obtained similar results
studying temperature 1 tile systems
that assemble finite assemblies and

types to assemble, at which point the
tile system could grow back to the x-
axis assemble that pattern, a contradic-
tion. So to establish (for instance) NP-
completeness requires also specifying
a bounding box as part of the input and
requiring that the assembled shape is a
subset of the bounding box. Göös and
Orponen30 and Lempiäinen, Czeizler,
and Orponen35 developed branch-and-
bound algorithms for a variant of this
problem, but these algorithms require
exponential time.

One can also consider the assembly
of infinite patterns (as in Figure 2d) as
the “computability-theoretic” version
of self-assembly. Lathrop et al.34 showed
that not every computable pattern (sub-
set of Z2) can be self-assembled, since
each time step of computation with
tiles irreversibly occupies a point in
space, and for some patterns, it requires
strictly more time to compute whether
that point is part of the pattern. How-
ever, with regard to one-dimensional
patterns, Patitz and Summers42 showed
that every computable subset of N can
be self-assembled on the x-axis (cru-
cially using the fact that the assembly
occupies a large area outside the x-axis
where the actual computation hap-
pens). Lathrop et al.34 showed a weaker
result for computably enumerable sets:
there is a simple quadratically bounded
function f: N → N such that, for every
computably enumerable A ⊆ N, f (A) can
be self-assembled on the x-axis.

Assembly Time Complexity
Another resource bound to consider
is the time required to build a shape
(as determined by stochastic chemi-
cal kinetics). There is a linear amount
of parallelism available for assem-
bling a shape of size N in fewer than N
steps. This is because the frontier (set
of potential binding sites) of an as-
sembly of size N is potentially as large
as O(N), and in a given unit of time, a
constant fraction of the frontier will
have tiles attach if tile types are suf-
ficiently concentrated. Adleman et al.2
showed that any shape of diameter D
requires time Ω(D) to assemble from a
deterministic tile system in the aTAM,
later shown by Chen and Doty13 to
hold for nondeterministic systems.
Adleman et al.2 showed that this lower
bound is tight for the assembly of n ×
n squares, that is, they can be assem-

review articles

December 2012 | vol. 55 | no. 12 | communications of the acm 87

guarantee no glue mismatches, show-
ing that Ω(n) tile types are required to
assemble shapes of diameter n.

However, with slight changes to
the model, universal computation
becomes possible. Adleman et al.4 de-
vised a nondeterministic temperature
1 tile system that simulates a Turing
machine in the following sense: the
system has many terminal assemblies,
but the unique largest terminal assem-
bly represents the computation. Cook,
Fu, and Schweller18 showed that deter-
ministic tile systems can achieve uni-
versal computation if allowed to grow
in three dimensions. Patitz, Schweller,
and Summers41 showed that if nega-
tive glue strengths are allowed then
universal computation is possible, es-
sentially using negative-strength glues
to enforce cooperative binding.

But the original question stands:
what is the computational power of de-
terministic, planar, positive-strength,
temperature 1 self-assembly? Is coop-
erative binding truly necessary to com-
pute by planar self-assembly?

The Future
In the early history of computability
theory, the optimistic term “elemen-
tary” was applied to problems com-
putable in time bounded by a tower
of exponentials such as 222n

. It was not
until the 1960s, once faster and faster
computers had been built to execute
actual algorithms, that polynomial
time came to be seen as a more realis-
tic notion of feasibly implementable.
Today we confront a similar situation
in algorithmic self-assembly, where
experimental work has not yet caught
up to theory. When it does, the theory
will doubtlessly take unanticipated
turns. One concrete way that theory
can help experiment today is to fur-
ther develop error correction, such
as reducing tile complexity of error-
correction constructions or handling
broader classes of tile systems than
previous constructions.

The complexity of today’s oper-
ating systems and other software is
made possible only by the develop-
ment of software engineering tech-
niques to help manage the complexi-
ty. Eventually molecular self-assembly
systems will scale to the point that no
one person could manually keep track
of all the types of molecular compo-

nents and how they are all supposed
to fit together. Software simulators for
the aTAM exist40,55 but require the user
to think at the level of individual tile
types, which quickly begins to feel like
assembly code programming with a
nightmarish instruction set. There is
some preliminary work8,25 developing
higher-level languages for describing
aTAM tile systems, but we are far from
having a “Python of self-assembly.”

DNA tile assembly is an example
of passive self-assembly, in which the
tiles are mobile but otherwise state-
less. Active self-assembly, using com-
ponents with a changeable state, may
enable sophisticated structures to be
built at a lower cost in terms of time,
tile complexity, or error-resistance.
Majumder, LaBean, and Reif,36 as well
as Fujibayashi et al.,29 and Padilla,
Liu, and Seeman,39 have proposed
theoretical suggestions to augment
tiles with a physical mechanism
known as strand displacement to en-
able active signaling across tiles. It
remains to see what will actually work
in the laboratory, but whatever works
will provide a rich theory to explore.
As in any nascent field, the most ex-
citing aspect is not knowing what the
future holds.

Acknowledgments
I thank Damien Woods, Matt Patitz, and
Scott Summers for helpful suggestions.

The author was supported by a
Computing Innovation Fellowship un-
der NSF grant 1019343 and NSF grants
CCF-1219274 and CCF-1162589, and
by the Molecular Programming Project
under NSF grant 0832824.	

References
1.	 Adleman, L.M. Molecular computation of solutions to

combinatorial problems. Science 266, 5187 (1994), 1021.
2.	 Adleman, L.M., Cheng, Q., Goel, A. and Huang, M-D.

Running time and program size for self-assembled
squares. In Proceedings of STOC (2001), 40–748.

3.	 Adleman, L.M., Cheng, Q., Goel, A. and Huang, M-D.,
Kempe, D., de Espanés, P.M. and Rothemund, P.W.K.
Combinatorial optimization problems in self-assembly.
In Proceedings of STOC (2002), 23–32.

4.	 Adleman, L.M, Kari, J., Kari, L., Reishus, D. and Sosík,
P. The undecidability of the infinite ribbon problem:
Implications for computing by self-assembly. SIAM
Journal on Computing 38, 6 (2009), 2356–2381.
Preliminary version appeared in FOCS 2002.

5.	 Aggarwal, G. Cheng, Q., Goldwasser, M.H., Kao, M-Y.,
de Espanés, P.M. and Schweller, R.T. Complexities for
generalized models of self-assembly. SIAM Journal
on Computing 34 (2005), 1493–1515. Preliminary
version appeared in In Proceedings of SODA 2004.

6.	 Barish, R.D., Rothemund, P.W.K. and Winfree, E.
Two computational primitives for algorithmic self-
assembly: Copying and counting. Nano Letters 5
(2005), 2586–2592.

7.	 Barish, R.D, Schulman, R., Rothemund, P.W.K. and
Winfree, E. An information-bearing seed for nucleating

Eventually
molecular
self-assembly
systems will
scale to the point
that no one person
could manually
keep track of all
the types of
molecular
components
and how they are
all supposed
to fit together.

88 communications of the acm | december 2012 | vol. 55 | no. 12

review articles

33.	 Kolmogorov, A.N. Three approaches to the quantitative
definition of ‘information.’ Problems of Information
Transmission 1:1 (1965), 7.

34.	 Lathrop, J. Lutz, J., Patitz, M. and Summers, S.
Computability and complexity in self-assembly.
Theory of Computing Systems 48 (2011), 617–647.
Preliminary version appeared in CiE (2008).

35.	 Lempiäinen, T., Czeizler, E. and Orponen, P.
Synthesizing small and reliable tile sets for patterned
DNA self-assembly. DNA (2011), 145–159.

36.	M ajumder, U., LaBean, T.H. and Reif, J.H. Activatable
tiles for compact error-resilient directional assembly.
DNA (2007), 15–25.

37.	M aňuch, J., Stacho, L. and Stoll, C. Step-assembly
with a constant number of tile types. In Proceedings
of ISAAC (2009), 954–963.

38.	M aňuch, J., Stacho, L. and Stoll, C. Two lower bounds
for self-assemblies at Temperature 1. Journal of
Computational Biology 17, 6 (2010), 841–852.

39.	 Padilla, J.E., Liu, W. and Seeman, N.C. Hierarchical
self-assembly of patterns from the Robinson tilings:
DNA tile design in an enhanced tile assembly model.
Natural Computing 11, 2 (2012), 323–338.

40.	Patitz, M.J. Simulation of self-assembly in the abstract
tile assembly model with ISU TAS. FNANO (2009),
209–219.

41.	 Patitz, M.J., Schweller, R.T. and Summers, S.M. Exact
shapes and Turing universality at Temperature 1 with
a single negative glue. DNA (2011), 175–189.

42.	 Patitz, M.J. and Summers, S.M. Self-assembly
of decidable sets. Natural Computing 10 (2011),
853–877. Preliminary version appeared in UC 2008.

43.	 Reif, J.H. Local parallel biomolecular computation.
DNA 3 (1999), 217–254.

44.	Reif, J. Sahu, S. and Yin, P. Compact error-resilient
computational DNA tiling assemblies. DNA 2004.

45.	 Rothemund, P.W.K. Folding DNA to create nanoscale
shapes and patterns. Nature 440, 7082 (2006), 297–302.

46.	 Rothemund, P.W.K., Papadakis, N. and Winfree, E.
Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biology 2, 12 (2004), 2041–2053.

47.	 Rothemund, P.W.K. and Winfree, E. The program-size
complexity of self-assembled squares (extended
abstract). In Proceedings of STOC (2000), 459–468.

48.	 Schulman, R. and Winfree, E. Programmable control
of nucleation for algorithmic self-assembly. SIAM
Journal on Computing 39, 4 (2009), 1581–1616.
Preliminary version appeared in DNA (2004).

49.	Schulman, R. and Winfree, E. Synthesis of crystals
with a programmable kinetic barrier to nucleation. In
Proceedings of the National Academy of Sciences 104,
39 (2007), 15236–15241.

50.	 Soloveichik, D., Cook, M. and Winfree, E. Combining
self-healing and proofreading in self-assembly.
Natural Computing 7, 2 (2008), 203–218.

51.	 Soloveichik, D. and Winfree, E. Complexity of compact
proofreading for self-assembled patterns. DNA (2005).

52.	 Soloveichik, D. and Winfree, E. Complexity of self-
assembled shapes. SIAM Journal on Computing 36,
6 (2007), 1544–1569. Preliminary version appeared in
DNA (2004).

53.	 Summers, S.M. Reducing tile complexity for the
self-assembly of scaled shapes through temperature
programming. Algorithmica 63, 1 (2012) 117–136.

54.	Turing, A.M. On computable numbers, with an
application to the Entscheidungsproblem. In
Proceedings of the London Mathematical Society
(1936), 230–265.

55.	 Winfree, E. Simulations of computing by self-
assembly. Technical Report Caltech CSTR:1998.22.
California Institute of Technology, 1998.

56.	 Winfree, E. Algorithmic Self-Assembly of DNA. Ph.D.
thesis, California Institute of Technology, June 1998.

57.	 Winfree, E. Self-healing tile sets. Nanotechnology:
Science and Computation, Natural Computing Series.
J. Chen, N. Jonoska, and G. Rozenberg, eds. Springer,
2006, 55–78.

58.	 Winfree, E. and Bekbolatov, R. Proofreading tile sets:
Error correction for algorithmic self-assembly. DNA
(2003), 126–144.

59.	 Winfree, E., Liu, F., Wenzler, L.A. and Seeman, N.C.
Design and self-assembly of two-dimensional DNA
crystals. Nature 394, 6693 (1998), 539–544.

David Doty (ddoty@caltech.edu) is a Computing
Innovation Fellow and Postdoctoral Scholar in the
Department of Computing and Mathematical Sciences
at the California Institute of Technology, Pasadena.

© 2012 ACM 0001-0782/12/12

algorithmic self-assembly. In Proceedings of the
National Academy of Sciences 106, 15 (Mar. 2009),
6054–6059.

8.	 Becker, F. Pictures worth a thousand tiles, a geometrical
programming language for self-assembly. Theoretical
Computer Science 410, 16 (2009), 1495–1515.

9.	 Becker, F., Rapaport, I. and Rémila, E. Self-
assembling classes of shapes with a minimum
number of tiles, and in optimal time. In Proceedings
of FSTTCS (2006), 45–56.

10.	 Bryans, N., Chiniforooshan, E., Doty, D., Kari, L. and
Seki, S. The power of nondeterminism in self-assembly.
Theory of Computing. To appear. Preliminary version
appeared in Proceedings of SODA (2011), 590–602.

11.	 Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat,
S., Patitz, M.J., Schweller, R.T., Summers, S.M. and
Winslow, A. Two hands are better than one (up to
constant factors). Technical Report 1201.1650,
Computing Research Repository, 2012.

12.	 Chandran, H., Gopalkrishnan, N. and Reif, J.H. The tile
complexity of linear assemblies. In SIAM Journal
on Computing 41, 4 (2012) 1051–1073. Preliminarly
version appeared in ICALP (2009).

13.	 Chen, H.-L. and Doty, D. Parallelism and time in
hierarchical self-assembly. In Proceedings of SODA
(2012), 1163–1182.

14.	 Chen, H.-L. and Goel, A. Error free self-assembly with
error prone tiles. DNA 2004.

15.	 Chen, H.-L., Goel, A. and Luhrs, C. Dimension
augmentation and combinatorial criteria for efficient
error-resistant DNA self-assembly. In Proceedings of
SODA (2008), 409–418.

16.	 Chen, H.-L., Goel, A. and Luhrs, C. and Winfree, E.
Self-assembling tile systems that heal from small
fragments. DNA (2007), 30–46.

17.	 Chen, H.-L., Schulman, R., Goel, A. and Winfree, E.
Reducing facet nucleation during algorithmic self-
assembly. Nano Letters 7, 9 (Sept. 2007), 2913–2919.

18.	 Cook, M., Fu, Y. and Schweller, R.T. Temperature 1
self-assembly: Deterministic assembly in 3D and
probabilistic assembly in 2D. In Proceedings of SODA
(2011), 570–589.

19.	 Cook, M., Rothemund, P. and Winfree, E. Self-
assembled circuit patterns. DNA (2004), 1979–1979.

20.	D emaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M.
Rafalin, E., Schweller, R.T. and Souvaine, D.L. Staged
self-assembly: Nanomanufacture of arbitrary shapes
with O(1) glues. Natural Computing 7, 3 (2008),
347–370. Preliminary version appeared in DNA (2007).

21.	D emaine, E.D., Eisenstat, S., Ishaque, M. and Winslow,
A. One-dimensional staged self-assembly. DNA (2011),
100–114.

22.	D emaine, E.D., Patitz, M.J., Schweller, R.T. and
Summers, S.M. Self-assembly of arbitrary shapes using
RNAse enzymes: Meeting the Kolmogorov bound with
small scale factor. In Proceedings of STACS (2011).

23.	D oty, D. Randomized self-assembly for exact shapes.
SIAM Journal on Computing, 39, 8 (2010), 3521–
3552. Preliminary version appeared in Proceedings of
FOCS (2009).

24.	D oty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T.,
Summers, M. and Woods, D. The tile assembly model
is intrinsically universal. In Proceedings of FOCS
(2012), to appear. IEEE.

25.	D oty, D. and Patitz, M.J. A domain-specific language
for programming in the tile assembly model.
Proceedings of DNA (2009), 25–34.

26.	D oty, D. and Patitz, M.J., Reishus, D., Schweller, R.T.
and Summers, S.M. Strong fault-tolerance for self-
assembly with fuzzy temperature. In Proceedings of
FOCS (2010), IEEE, 417–426.

27.	D oty, D. and Patitz, M.J. and Summers, S.M.
Limitations of self-assembly at Temperature 1.
Theoretical Computer Science 412, 1–2 (Jan. 2011),
145–158. Preliminary version appeared in DNA (2009).

28.	 Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E. and
Murata, S. Toward reliable algorithmic self-assembly
of DNA tiles: A fixed-width cellular automaton pattern.
Nano Letters 8, 7 (2007), 1791–1797.

29.	 Fujibayashi, K., Zhang, D., Winfree, E. and Murata,
S. Error suppression mechanisms for DNA tile self-
assembly and their simulation. Natural Computing 8,
3 (2009), 589–612.

30.	G öös, M. and Orponen, P. Synthesizing minimal tile sets
for patterned DNA self-assembly. DNA (2010), 71–82.

31.	 Kao, M.-Y. and Schweller, R.T. Reducing tile complexity
for self-assembly through temperature programming.
In Proceedings of SODA (2006), 571–580.

32.	 Kao, M.-Y. and Schweller, R.T. Randomized self-
assembly for approximate shapes. In Proceedings of
ICALP (2008), 370–384.

ACM
Transactions on

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegrates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1 6/9/09 1:04 PM Page 1

