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S e lf  - a s s e mbly    i s  t h e  process by which small 
components automatically assemble themselves 
into large, complex structures. Examples in nature 
abound: lipids self-assemble a cell’s membrane, and 
bacteriophage virus proteins self-assemble a capsid 
that allows the virus to invade other bacteria. Even a 
phenomenon as simple as crystal formation is a process 
of self-assembly. How could such a process be described 
as “algorithmic?” The key word in the first sentence is 
automatically. Algorithms automate a series of simple 
computational tasks. Algorithmic self-assembly systems 
automate a series of simple growth tasks, in which the 
object being grown is simultaneously the machine 
controlling its own growth.

Although large tracts of the theory presented in 
this article are applicable to non-molecular systems, 
much of the motivation arises from nanoscale self-
assembly (as an engineering field, as opposed to the 
study of natural self-assembly systems). The broad 
goal of nanoscience is to manipulate molecules with 
nanoscale precision. Ambitious long-term applications 

include microscopic, chemical-detect-
ing robots that move toward and me-
tabolize pollutants, or the integration 
of human tissue with an implanted 
medical device.

Why should computer science have 
anything to do with nanoscience, be-
yond the obvious role of developing 
software-modeling tools? Luca Cardel-
li, in a panel discussion at the 2011 
Conference on DNA Computing and 
Molecular Programming, observed 
that while the computing revolution 
was about the systematic manipulation 
of information, nanoscience is about 
the systematic manipulation of matter. 
Nanoscience provides a novel justifica-
tion for studying computation. Many 
of the traditional forms of manual con-
trol are simply not possible at small 
scales. Automating the growth of mo-
lecular structures is not merely faster 
or more convenient than building such 
structures by hand. Our hands, and the 
machines they operate, are simply too 
large to manipulate individual mol-
ecules. We must learn to program mol-
ecules to manipulate themselves.

DNA is the molecule of choice in 
many labs, not for its biological prop-
erties but for its information-bearing 
properties. It is easy to synthesize, and 
its physical properties are well under-
stood. DNA origami45 is currently the 
most successful laboratory technique 
for self-assembling DNA. A long scaf-
fold DNA strand is folded into a shape 
by mixing it with hundreds of shorter 
staple strands, each of which binds to 
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 �The idea of “molecules that can perform 
computation” is transforming the way 
we engineer self-assembling molecular 
systems.

 �A small number of simple types 
of molecules can grow into large, 
sophisticated nanoscale structures 
automatically.

 �Understanding the fundamental abilities 
and limitations of these systems is 
crucial for guiding experimental work. 
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one region of the scaffold with its left 
half and another region of the scaffold 
with its right half, bringing the two re-
gions together. A more experimentally 
challenging technique, DNA tile assem-
bly, is the physical basis for the theoreti-
cal work discussed in this article. A DNA 
tile is a DNA complex with four short 
single-stranded “sticky” ends protrud-
ing from it (see Figure 2a), which are 
intended to bind the tile to other tiles 
having sticky ends that are Watson-
Crick complementary. Figure 1 shows 
images of some patterns that have been 
experimentally assembled with DNA 
tiles. Figure 2 shows how a DNA tile is 
modeled as a square with four sides 
having “specific glues.” DNA origami in 
its current incarnation is non-algorith-
mic self-assembly, whereas DNA tile 
assembly is potentially algorithmic. We 
now explain this distinction.

Turing54 stated, “The ‘computable’ 
numbers may be described briefly as 
the real numbers whose expressions 
as a decimal are calculable by finite 
means.” Finite means is formally equat-
ed with algorithm (for example, a Tur-
ing machine, a λ-expression, a Python 
program, or an appropriately initial-
ized configuration of Conway’s Game 
of Life). There are uncountably many 
real numbers but only a countable 
number of algorithms, so most real 

numbers are not computable. What if 
we wish to make sense of the question, 
which integers are computable? By Tur-
ing’s qualitative definition, they are 
all computable, but it is reasonable to 
object that some integers (for example, 
n = 1010,000) are easier to compute than 
others (for example, m = a random se-
quence of 10,000 digits), in the sense 
that a much smaller program suffices 
to compute n than to compute m. To 
make formal sense of such intuition, 
the theory of Kolmogorov complexity33 
gives a rigorous quantitative measure 
of the “algorithmic complexity” of an 
integer (or any other “finite object” 
such as a finite string or a graph): the 
length in bits of the shortest algorithm 
that prints the integer and halts.

Both of these definitions adopt the 
view that an object is “algorithmically 
constructed” when there is an algo-
rithm constructing the object that is 
much smaller than the object itself 
(infinitely smaller in the former case). 
From this perspective, algorithmic self-
assembly describes the self-assembly 
of a structure whose total number of 
components (its “size”) is much great-
er than the number of different types of 
components. Since a component type 
is reused many times, it has no way of 
“knowing” where it is going to end up 
in the structure, so only local infor-

mation is available to guide its attach-
ment. DNA origami therefore does not 
constitute algorithmic self-assembly, 
since each staple strand “hardcodes” 
its position in the final structure. DNA 
tile assembly, however, has the po-
tential to reuse a small number of tile 
types to create large structures.

Our combinatorial model of the dy-
namic behavior of these tiles is called 
the abstract Tile Assembly Model 
(aTAM), due to Winfree,56 explained 
briefly in Figure 2. Figure 2c shows sev-
en tile types that fill the entire second 
quadrant with a painting of the discrete 
Sierpinski triangle, showing that this 
pattern is “algorithmically self-assem-
blable.” The main computation is done 
by the bottom four rule tile types using 
cooperative binding, which refers to 
the fact that a tile with only strength-1 
glues cannot bind to an assembly un-
less at least two of them match. (Some-
times this binding strength threshold 
is called the “temperature” τ, which is 
usually 2 but not always.) The rule tiles 
in this example always bind using their 
south and east glues. Thus the glue la-
bels (bits in this case) can be imagined 
as inputs to a function computed by 
the rule tile types (analogous to a tran-
sition function in a Turing machine or 
cellular automaton). The output of the 
function in this example is the XOR 
of the bits, which is advertised on the 
north and west sides.

Parallelism in Molecular 
Computing: The Bad News
Algorithmic self-assembly is a subfield of 
molecular computing, highlighted in a 
news article by Kirk. L. Kroeker in the De-
cember 2011 issue of Communications. 
The field was initiated in 1994 when Adle-
man,1 in a landmark proof-of-concept 
experiment, designed DNA molecules 
that interact to solve a 7-vertex case of 
the Hamiltonian path problem: execut-
ing a “DNA algorithm” whose basic op-
erations are well-understood chemical 
interactions such as hybridization.

Let us state an unequivocal limita-
tion to the power of molecular comput-
ing as a model of computation, which 
applies to algorithmic self-assembly 
systems as well. Molecular comput-
ing is not a magical potion that can 
be ladled over NP-complete problems 
to transubstantiate them into trac-
table problems. In its most generic 

Figure 1. Experiments with double-crossover tiles. 

Atomic force microscopy measures the height of a structure on a surface (mica). Some tile types 
may have attached hairpins as “labels” (appearing white in images). 
a) Lattice of tiles (single tile type).59  
b) Sierpinski triangle in a lattice, no proofreading.46  
c) Binary counter in a ribbon, no proofreading.6  
d) Standard (left) versus snaked (right) proofreading for suppression of facet errors.17  
e) Sierpinski triangle in a ribbon, no proofreading.28  
f) Ribbons with zig-zag tiles for suppression of spurious nucleation.49  
g) Ribbons nucleating from origami seed, copying a bit string, with proofreading.7  
h) Ribbons nucleating from origami seed, executing a binary counter, with partial proofreading.7
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form, the sorcery of DNA solutions to 
NP-complete problems proceeds by 
letting the DNA test all possible solu-
tions in parallel in a single test tube. 
Assuming a modest solution length of 
300 bits, squeezing 2300 molecules into 
a test tube is like installing 2300 proces-
sors in a parallel computer: there is not 
enough sand in the world to supply 
that much silicon.

Scientific journals continue to 
traffic in tales of DNA’s exponential 
search capability. As with Mjölnir, the 
mountain-crushing hammer of Thor, 
the time has come to place these tales 
into the dustbin of mythology, mak-
ing room for the real—and far more 
exciting—scientific work that remains 
to be done in molecular computing. If 
there is a breakthrough in molecular 
engineering that will enable the solu-
tion of classically intractable prob-
lems, it will have to come from quan-
tum mechanics or perhaps from some 
exotic physical theory yet to be dis-
covered. It will not come about solely 
by replacing silicon with DNA. But 
enough pessimism; let’s find out what 
DNA can do.

Computational Universality
Winfree56 showed that the aTAM is 
computationally universal, that is, able 
to simulate any algorithm. This one 
fact explains the richness of the theo-
ry presented in the rest of the article. 
What exactly does it mean? 

The model as stated lacks one fea-
ture in common with other computa-
tional models: there is no input! One 
potential way to program a single tile 
set with different inputs that result in 
different behaviors is to generalize the 
idea of a single seed tile type to a larger 
seed assembly. Within the model, we 
allow the seed assembly to be any finite 
stable assembly (“stable”= all cuts of 
the assembly that separate it into two 
components must break bonds of total 
strength at least 2). In practice, seed 
assemblies are not necessarily made 
of tiles, but must simply have a perim-
eter compatible with the tiles, such as 
a DNA origami shape appropriately 
augmented with sticky ends on its side 
(Figure 1g–h). We use the term tile sys-
tem to refer to a finite set of tile types, 
together with other parameters needed 
to determine its behavior, such as its 
seed assembly σ and its temperature τ.

With this convention established, 
we can now state more formally what 
it means to claim that the aTAM is 
computationally universal. For every 
single-tape Turing machine M, there 
is a tile set T so that, for every input 
string x, there is a seed assembly σ of T 
so that T with seed σ uniquely assem-
bles a space-time configuration tran-
script of M on input x.a By “uniquely 
assembles,” we mean that although T 
with seed σ assembles many different 
partial assemblies, it has a unique ter-
minal assembly α (terminal = no tile 
can attach to it). The tth row of α repre-
sents the configuration of M(x) at time 
step t, with σ occupying the first row.

The computational universality 
of the aTAM implies that arbitrary al-
gorithms may be executed by self-as-
sembling tiles and therefore used to 
direct the growth of the tiles. However, 
the aTAM is not just another program-
ming language. The subtle interplay of 
computation and geometry in self-as-
sembly gives rise to unique character-
istics such as the distinction between 

a	 σ is a 1 ×|x| row encoding x in a standard way; 
we are not cheating by embedding the entire 
computation M(x) into σ.

computable patterns and self-assem-
bling patterns discussed later.

Modeling Errors
The aTAM is not a realistic model of 
how DNA tiles actually behave at the 
molecular level. In particular, it makes 
two assumptions known not to hold in 
practice: that tiles never detach from 
an assembly, and that tiles only attach 
when their binding strength exceeds 
the temperature threshold value τ. 
Winfree56 introduced the kinetic Tile 
Assembly Model (kTAM) as a more re-
alistic model of tile assembly that uses 
standard laws of chemical kinetics to 
relax these assumptions. Each tile 
type is assumed to attach to any bind-
ing site on an assembly α, producing a 
new assembly β, at a rate proportional 
to its concentration, regardless of its 
strength of attachment. If we assume 
that there is only a single seed tile, 
and that each other tile type is equally 
concentrated (and much higher count 
than 1, so that their rate of depletion 
is essentially 0), then this forward rate 
is equal for all tile types and approxi-
mately constant over time. Call this 
forward rate rf . Each tile within β is as-
sumed to detach at a rate proportional 

Figure 2. Abstract Tile Assembly Model (aTAM). 

a) �Double-crossover tile with four sticky end. 
b) �Representation of a tile as a square with sides labeled by string “glues.” 
c) �Seven tile types. Bond strengths indicated by the number of small black squares on a side: 

total strength 2 is required to attach a tile to a partially formed assembly of tiles. One tile type 
is designated as the seed, from which growth is assumed to nucleate.

d) �Growth of the tiles into an assembly with the discrete Sierpinski triangle pattern.

 

a)

c) d)

b)
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to e–b, where b ∈ N is the total strength 
with which the tile is bound. Call this 
reverse rate rr, b. The constant of pro-
portionality depends on factors such 
as temperature, salinity, and sticky 
end length. Winfree56 showed that 
by setting these factors and the non-
seed tile concentrations such that rf 
= rr,2 + ε then the probability that the 
seed grows into a correct assembly 
(an assembly producible under the 
aTAM growth rules) approaches 1 as 
ε → 0. However, the closer ε is to 0, 
the slower assembly proceeds, with ε 
= 0 representing an unbiased random 
walk with attachment equally likely as 
strength 2 detachment.

There is only so much that one can 
do in a laboratory to precisely control 
experimental conditions; errors are 
bound to happen, just as deep-space 
communication and large-scale data 
storage inevitably corrupt some of the 
bits they intend to send or store. What 
should we do about this? Why not do 
the same thing that NASA and Google 
do about it: build in redundancy to 
help correct the errors! Here, I dis-
cuss algorithmic error-correction in 
the kTAM, showing that under certain 
conditions, the probability of correct 
growth can be boosted to enable cor-
rect growth under more flexible experi-
mental conditions.

Winfree and Bekbolatov58 devised 
a scheme known as proofreading. It 
helps correct growth errors, shown in 
Figure 3a, in which an incorrect tile 
binds with strength 1 where a correct 

tile could bind with strength 2. A tile 
bound with only strength 1 may tem-
porarily stick and be secured in place 
by a subsequent tile attachment. The 
basic proofreading scheme is shown 
in Figure 3b. Each tile type t is replaced 
by a k × k block of tile types, with glues 
internal to the block unique to t. This 
enforces that errors cannot happen 
in isolation: if there are any errors in 
the block, then there are ≥ k errors. 
Intuitively, errors happen only slowly 
(since insufficiently bound tiles fall 
off more quickly than new tiles at-
tach), so if one error occurs, it is more 
likely for the erroneous tiles to detach 
before the block completes than for 
an additional k − 1 errors to occur and 
secure the block in place. To a very 
rough approximation, k × k proofread-
ing changes a base error probability 
of ε to be εk. This scheme incurs two 
costs: the number of tile types increas-
es by factor k2, and the system suffers 
a resolution loss since k × k blocks 
in the new system represent individ-
ual tiles in the original system. Reif, 
Sahu, and Yin44 demonstrated a com-
pact proofreading scheme, in which 
there is no resolution loss, but in gen-
eral the tile complexity blowup is ex-
ponential. To reduce error probability 
of ε to εk for tile system T, the new tile 
system may have up to |T|k2 tile types. 
Soloveichik and Winfree51 showed 
that for all but a restricted class of tile 
systems, the tile complexity blowup of 
any compact proofreading scheme is 
necessarily exponential.

A facet error is the attachment of 
a tile with strength 1 where no tile 
should go because there is only one 
adjacent strength 1 glue. Both the 
proofreading constructions cited44,58 
correct growth errors but not facet er-
rors. In practice, facet errors tend to 
dominate the overall behavior. Chen and 
Goel14 showed a proofreading scheme, 
also using a k × k block replacement 
as in Winfree-Bekbolatov,58 which is 
resistant to both growth and facet er-
rors, and which achieves error of O(εk) 
on a base error probability of ε. In 
fact, this scheme was experimentally 
demonstrated17 to reduce facet errors 
better than either no error-correction 
or the Winfree-Bekbolatov proofread-
ing scheme. Chen, Goel, and Luhrs15 
showed that two-dimensional tile sys-
tems may be proofread with no resolu-
tion loss and only polynomial increase 
in tile complexity by using the third 
dimension. It grows a larger structure 
than the original system, but when pro-
jected onto the plane there is no reso-
lution loss. They also introduce combi-
natorial criteria to help in proving that 
a proofreading scheme works without 
needing to carry out the cumbersome 
Markov process analysis required to 
analyze kTAM systems.

Doty et al.26 showed a stronger form 
of error correction using the hierarchi-
cal model of self-assembly, in which 
there is no seed and two assemblies 
that have assembled independently 
in parallel are allowed to aggregate 
together, as opposed to the standard 
seeded aTAM in which tiles attach one 
at a time to a growing assembly. In this 
model, they use the ability of geometry 
to enforce binding constraints (pre-
venting two assemblies with matching 
glues from attaching if their shapes are 
not compatible to allow the glues to 
touch) to show how to assemble an n × 
n square from O(log n) tile types while 
guaranteeing the following constraint. 
Arbitrary strength 1 growth is allowed; 
however, any assembly that grows suf-
ficiently to become stable at tempera-
ture 2 is guaranteed to assemble into 
the correct final assembly. Thus errors 
are prevented absolutely, rather than 
only with high probability.

The errors modeled so far are 
those of “insufficient attachment:” a 
tile binds with strength 1 and sticks 
around long enough to cause prob-

Figure 3. a) Growth error. b) 2 × 2 Proofreading. Each tile type t is replaced by a k × k block 
of tile types, with glues internal to the block unique to t. 

a)

b)

stable at 
temperature 1 =
temporarily stable
at temperature 2

stable at 
temperature 2
but not producible
at temperature 2
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lems. We can consider other types of 
errors. For instance, we consider some 
tile types to have input and output 
sides, although this is not enforced 
from within the model. Consider the 
following error: after some time, a 
portion of the assembly is removed 
to make a hole. This could result in 
“backward” growth filling in the hole 
using output glues, possibly result-
ing in the wrong tiles attaching (this 
would happen in Figure 2d since XOR 
is not a 1-1 function). Winfree57 intro-
duced a 3 × 3 block transformation 
scheme called self-healing that en-
ables the assembly to regrow correctly 
even when holes are blown out of the 
assembly, so long as the seed remains 
present. Soloveichik, Cook, and Win-
free50 showed how to combine self-
healing simultaneously with proof-
reading. Chen et al.16 showed that a 
more extreme form of self-healing was 
possible for the particular task of as-
sembling an n × n square from O(log n) 
tile types: the entire square is able to 
grow from any subassembly of width 
or height 2 log n, without requiring 
the seed. They also generalize the idea 
to arbitrary finite shapes (with some 
resolution loss).

Another type of error is spurious 
nucleation, in which tiles attach to each 
other without a seed, using strength 1 
growth to form a stable assembly from 
which an incorrect assembly could 
grow. Schulman and Winfree showed 
both theoretically48 and experimen-
tally49 that a certain class of tile systems 
can be made resistant to nucleation er-
rors, in the sense that with the addition 
of O(k) extra tile types, in the absence of 
the seed, the probability is at most O(2−k) 
that sufficiently many tiles aggregate to 
create a stable assembly from which fur-
ther growth can occur.

The conclusion to draw from these 
error correction techniques is that, 
even though the aTAM does not ac-
curately describe the behavior of DNA 
tiles, under certain assumptions, it is 
an implementable “programming lan-
guage” for tile self-assembly.

Tile Complexity
We have identified the algorithmic as-
pect of self-assembly with the ability of 
a small number of tile types to assem-
ble a large structure. This ability will 
prove crucial to programming large, 

complex molecular self-assembling 
systems, since the total number of 
types of molecular components domi-
nates the cost (in money and time) of 
implementation.

To quantitatively formalize this 
idea, Rothemund and Winfree47 de-
fined the tile complexity of a shape S (a 
finite, connected subset of Z2) to be the 
minimum number of tile types in any 
tile system—with a single seed tile—
that uniquely assembles a single termi-
nal assembly with shape S. The require-
ment of a size-1 seed avoids cheating by 
simply letting the seed assembly have 
the desired shape. They studied the 
tile complexity of n × n squares, which 
has since become a canonical bench-
mark problem for studying various 
other aspects of self-assembly, since n 
× n squares are in a sense the simplest 
shape with non-trivial tile complexity. 
The simplest shape is a single point, 
whose tile complexity is clearly 1. The 
next simplest shape might be a 1 × n 
line. An easy argument shows that its 
tile complexity is n. Since it is one-
dimensional, any stable assembly with 
that shape must use entirely double-
strength glues to hold it together. If 
fewer than n tile types are used, then 
one must repeat, but this tile system 
would then be able to grow an infinite 
line by repeating the segment between 
the repetitions. Only in two dimen-
sions is tile complexity nontrivial.

Rothemund and Winfree showed 
that for most values of n (all algorith-
mically random n), the tile complex-
ity of an n × n square is Ω( log n

log log n). Why 
does this hold? A tile system of size k 
can be described using O(k log k) bits 
(O(log k) bits per tile type). If the tile 
system uniquely self-assembles an n × 
n square, then that description, togeth-
er with a constant size aTAM simula-
tor, constitute a program of length O(k 
log k) that outputs n. Since for most n, 
the shortest program outputting n is 
log n bits long, we must have k log k = 
Ω(log n), that is, k = Ω( log n

log log n). They then 
show that the tile complexity of all n × n 
squares is O(log n), in which log n tile 
types each represent a particular bit of 
n that assemble to form a 1 × log n row 
whose north glues represent n in binary. 
From this assembly, a O(1) tile types at-
tach to assemble an n × n square, first 
by growing a counter—essentially a bi-
nary-to-unary converter—that counts 

Even though  
the aTAM does  
not accurately 
describe the 
behavior of DNA 
tiles, under certain 
assumptions, it is 
an implementable 
“programming 
language” for tile 
self-assembly.
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the ability to assemble large, complex 
shapes from a very small number of dif-
ferent types of molecular components.

Tile complexity has also been stud-
ied in many interesting variants of the 
standard aTAM. Each of these models 
allows a single tile system to be reused 
for assembling different structures by 
programming it with different environ-
mental conditions affecting the behav-
ior of the tiles, thus showing that O(1) 
tile complexity suffices for assembly of 
complex structures if additional labo-
ratory steps are used.

In the step assembly model intro-
duced by Reif,45 tile types are added 
to a test tube in a series of steps, with 
each step assumed to run to comple-
tion before washing away remaining 
unbound tiles and nonterminal as-
semblies, before adding new tile types 
for the next step. Maňuch, Stacho, and 
Stoll37 showed that for a large class of 
shapes, including arbitrary shapes 
scaled by factor 2 or any other shape 
with a Hamiltonian path, O(1) tile types 
can assemble the shape in the step as-
sembly model. There is a natural gen-
eralization of step assembly known as 
staged assembly, in which the order of 
test tube mixing is not monotonic and 
hierarchical assembly (attachment of 
two large assemblies to each other) is 
allowed. A directed graph describes the 
order of test tube mixing. Under this 
model, Demaine et al.20 showed that 
O(1) tile types can be used to assemble 
any shape, and that certain classes of 
shapes require only O(log n) parallel 
mixing stages (source-to-sink distance 
in the mixing graph). They also showed 
a number of trade-offs between this 
measure (stage complexity) and bin 
complexity, the total number of test 
tubes required. In the same model 
in one dimension, Demaine et al.21 
showed that for each alphabet Σ, there 
is a constant set of tile types—each 
labeled by a symbol from Σ —so that, 
given any string x ∈ Σ*, the tiles can 
be mixed to uniquely assemble a lin-
ear assembly spelling x. Furthermore, 
the number of mixing stages required 
is within a constant of the size of the 
smallest context-free grammar that 
produces the singleton language {x}, 
if each intermediate stage is required 
to produce a unique terminal assembly 
(if not, then there are strings for which 
more efficient mixings exist).

from n down to 0, extending the 1 × log 
n row into a n × log n rectangle, together 
with O(1) tile types that extend this 
rectangle into the full square.

The gap between these upper and 
lower bounds arises from the fact that 
encoding one bit of n per tile type is 
wasteful, in an information-theoretic 
sense. In principle, a set of size k can 
encode log k bits per element. Letting 
k = log n

log log n, Adleman et al.2 showed how 
to encode ≈ log k bits of n per tile type, 
showing the tile complexity of any n × 
n square is O( log n

log log n). The trick is to en-
code n in a larger base b. Letting b be 
the unique power of two satisfying k ≤ b 
< 2k, k tile types are required to encode 
n in base b. An additional O(k) tile types 
then convert n to base 2, from which 
the constant set of tile types of Rothe-
mund and Winfree47 self-assemble an 
n × n square.

Intuitively, most of the complexity of 
an n × n square is captured by its width; 
geometry does not play much of a role. 
What about shapes with more compli-
cated geometry? One would expect that 
even if such a shape has a compact al-
gorithmic description, self-assembly 
that simulates this algorithm may not 
be possible to execute within the shape. 
Soloveichik and Winfree52 showed that 
in fact, if we ignore scaling factors, then 
the tile complexity of every shape S is 
closely related to its Kolmogorov com-
plexity K(S), the length in bits of the 
shortest program outputting the points 
in the shape. More formally, given a fi-
nite shape S ⊂ Z2 and positive integer c 
∈ Z+, let Sc = { (x, y) |(  x

c  ,  y
c   ) ∈ S} be S 

scaled up by factor c. They showed that 
for every finite shape S, there is a scal-
ing factor c such that the tile complex-
ity of Sc is Θ( K (S) 

log K (S)). This is a tight bound, 
since no smaller tile system could 
uniquely self-assemble any scaling of S 
without contradicting the Kolmogorov 
complexity of S. The scaling factor c is 
proportional to the running time of 
the shortest program for S. A constant 
set of tile types T produces Sc from a 1 
× K (S) 

log K (S) row encoding the program for S. 
Thus, T is a single tile set that is univer-
sally programmable (by seeding with 
an appropriate program) for building 
any finite shape S, if scaling factors are 
ignored.

What is the lesson behind of all 
these bounds? The ability of tiles to exe-
cute algorithms translates directly into 

The ability of tiles  
to execute 
algorithms 
translates directly 
into the ability  
to assemble large, 
complex shapes 
from a very small 
number of different 
types of molecular 
components.
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Another model relaxes the assump-
tion of constant temperature over 
time: temperature programming, in 
which the temperature is raised and 
lowered over many stages, with each 
stage assumed to reach a terminal state 
before changing the temperature for 
the next stage. Aggarwal et al.5 proved 
that with one temperature change, a 
thin rectangle—an n × k rectangle where 
k < log n

log log n – log log log n  —can be assembled 
from O( log n

log log n) tile types, compared to a 
provable lower bound of Ω( n1/k

k ) in the 
standard aTAM. Kao and Schweller31 

showed that O(1) tile types suffice to 
assemble any n × n square using O(log 
n) temperature changes. Summers53 

showed that O(1) tile types suffices to 
assemble any shape (scaled up) using 
temperature programming, using two 
constructions. In the first, the num-
ber of temperature changes is O(|S|), 
and the scaling factor is O(1). In the 
second, the number of temperature 
changes is O(K(S)) (the Kolmogorov 
complexity of S), and the scaling factor 
is proportional to the running time of 
the shortest program for S.

Randomized self-assembly uses the 
inherent nondeterminism in the aTAM 
in which multiple tile types compete to 
bind to a single binding site, and tile 
type concentrations determine the 
probability of a tile type attaching to 
a binding site when it competes with 
others sharing the same input glues. 
Chandran, Gopalkrishnan, and Reif12 
showed that the tile complexity of a 1 
× n line is Θ(log n) in the randomized 
model, that is, Θ(log n) tile types are 
sufficient and necessary to assemble a 
line of expected length n (compared to 
n tile types that are provably necessary 
in the deterministic aTAM). In fact, 
their tile system is equimolar: all tile 
types have equal concentrations. Beck-
er, Rapaport, and Rémila9 introduced 
the model of concentration program-
ming, in which concentrations of tile 
types are used to program input to the 
system. Kao and Schweller32 showed 
that for each δ,ε > 0, there is a single tile 
system T so that, for every n ∈ Z+, there 
is a setting of concentrations that cause 
T to assemble an n′ × n′ square, where 
(1 – ε) n ≤ n′ ≤ (1 + ε)n with probability at 
least 1 − δ. That is, the square is probably 
approximately assembled. Doty23 im-
proved this result, showing that for each 
δ > 0, a single tile system can be used to 

assemble an exactly n × n square for any 
n ∈ Z+ with probability at least 1 − δ us-
ing concentration programming.

Demaine et al.22 studied the RNase 
model (first suggested by Rothemund 
and Winfree47), in which some tile 
types are assumed to be made of RNA, 
which is compatible to bind with DNA 
but has a different chemical structure. 
An enzyme called ribonuclease—ab-
breviated RNase—can dissolve RNA 
but not DNA, so adding RNase after 
assembly completes allows one to con-
trollably separate the assembly into 
parts that can now interact with each 
other. They use this model to improve 
on the Soloveichik/Winfree52 result, 
showing that for every shape S, the 
optimal O( K (S) 

log K (S)) tile types suffice to as-
semble a scaled version Sc of S, but with 
scaling factor c = O(log |S|), rather than 
c depending on the running time of S’s 
shortest program.

In the flexible glue model stud-
ied by Aggarwal et al.,5 unequal glues 
are allowed to interact with non-zero 
strength. One could imagine this being 
implemented, for instance, by multi-
ple sticky ends on a tile’s side, in which 
the strength of interaction depends on 
the number of sticky ends that match. 
They showed that with flexible glues, 
O(√(log n)) tile types are necessary and 
sufficient to assemble an n × n square.

Computational Complexity
Rather than manually analyzing each 
new shape or class of shapes to de-
termine its tile complexity, it would 
be beneficial to develop an algorithm 
that automates the task: given a finite 
shape S, it outputs the smallest tile sys-
tem that uniquely assembles S. Unfor-
tunately, an efficient algorithm is un-
likely to exist: Adleman et al.3 showed 
that the problem is NP-complete. 
Here, “uniquely assembles S” means, 
assembles one unique terminal as-
sembly, whose shape is S. One could 
object that a tile system deterministi-
cally assembles S if it produces many 
terminal assemblies that all have the 
shape S. Under this definition, Bryans 
et al.10 showed that the problem, in a 
sense, is even harder: NPNP-complete, 
that is, NP-complete for algorithms 
that have access to a constant-time 
subroutine for an NP-complete prob-
lem such as SAT.

In addition to optimization prob-

lems, there are important verification 
problems of interest in tile assembly. 
One easy problem is this: given a tile 
system T and a (possibly nontermi-
nal) assembly α, can T produce α? One 
can simply add tiles to the seed that 
are consistent with α and have suf-
ficient binding strength until either 
α is complete, or until no more tiles 
can be added; the answer is “yes” in 
the former case and “no” in the latter. 
A more challenging question: Is α the 
unique terminal assembly produced 
by T? A tile system could produce α 
through an exponential number of 
different pathways (orders of tile ad-
dition), so it would naïvely seem to 
require that we check all of them to 
ensure none of them create a different 
terminal assembly. However, Adleman 
et al.3 showed this problem is solvable 
in quadratic time. On the other hand, 
in the hierarchical aTAM (in which 
two large assemblies are allowed to 
attach), the problem of determining 
whether α is uniquely assembled is 
coNP-complete.11 This is discouraging, 
since such decision problems are a 
formalization of the practically impor-
tant task of “write a simulator for the 
hierarchical aTAM.”

Shape building is one goal of self-
assembly; another is pattern painting. 
Briefly, we paint some tile types black 
(for example, by attaching a strepta-
vidin marker molecule) and say the 
pattern assembled is the set of posi-
tions in the final assembly with a black 
tile. Such a definition is appropriate 
for modeling practical goals such as 
self-assembled circuit layouts, such as 
those studied by Cook, Winfree, and 
Rothemund.19 Although the proof tech-
niques for these verification problems 
generalize easily to pattern assembly, 
it remains open to prove or disprove 
pattern assembly analogues of the op-
timization results noted here. The opti-
mization problems are uncomputable 
if the tile system is allowed to grow ar-
bitrarily far outside the pattern, using 
the same argument that shows Kol-
mogorov complexity is uncomputable. 
If the minimum tile system to assem-
ble a given finite pattern could be com-
puted, then this computation could be 
simulated in the second quadrant by a 
tile system of size O(1) + log n search-
ing for the first pattern on the positive 
x-axis that requires more than n tile 
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bled in time O(n), achievable using 
the information-theoretically optimal 
O(log n / log log n) tile types. Reif43 also 
studied local parallelism within the 
seeded aTAM, for the purpose of com-
putation rather than shape-building. 
Reif showed that for many problems 
such as prefix sum and bitonic merge, 
it is possible to design a tile system 
that solves the problem using the 
optimal parallel speedup. Reif used 
a generalization of the model known 
as step assembly, in which tile types 
are added to a test tube in a series of 
steps, with each step assumed to run 
to completion before washing away 
remaining unbound tiles, before add-
ing new tile types.

In a variant of the model known 
as the hierarchical aTAM, two as-
semblies that have assembled inde-
pendently in parallel are allowed to 
aggregate together, as opposed to the 
standard seeded aTAM in which tiles 
attach one at a time to a growing as-
sembly. The distributed parallelism 
of the hierarchical aTAM dwarfs the 
linear local parallelism of the seeded 
aTAM, so a natural conjecture is that 
hierarchical assembly could be much 
faster than seeded assembly. Chen and 
Doty13 showed there is a hierarchical 
tile system with the optimal O( log n

log log n )  
tile types that assembles an n × n 
square using O(log2 n) parallel stages, 
which is close to the optimal log n 
stages, forming the final n × n square 
from four n/2 × n/2 squares, which are 
themselves recursively formed from 
n/4 × n/4 squares, and so on. However, 
despite this nearly maximal paral-
lelism, the system actually requires 
superlinear time to assemble the 
square. They extended the definition 
of partial order tile systems studied by 
Adleman et al. in a natural way to hi-
erarchical assembly and show that no 
hierarchical partial order tile system 
can build any shape with diameter 
N in less than time Ω(N). Intuitively, 
although attaching an assembly β of 
size k to another assembly α increases 
the size of α by k tiles in one step, a 
conservation of mass argument shows 
that the concentration of β is at most 
1/k, so we expect to wait at least k time 
steps for this attachment to occur. 
However, Chen and Doty also showed 
the partial order hypothesis to be nec-
essary, since for infinitely many n, a tile 

system can assemble a diameter-Θ(n) 
rectangle in time O(n4/5 log n), break-
ing the linear-time lower bound that 
applies to all seeded systems and par-
tial order hierarchical systems. It is 
an open question to determine pre-
cisely the extent to which hierarchi-
cal assembly imparts a speedup over 
single-tile assembly.

Intrinsic Universality
Doty et al.24 showed a different notion 
of universality, with respect to growth 
rather than computation, construct-
ing a single tile set U that simulates 
any tile system T, by choosing an ap-
propriate seed assembly to encode 
T using tiles from U. The simulation 
is intrinsic in the sense that the self-
assembly process carried out by U is 
exactly that carried out by T, with each 
tile of T represented by an m × m block 
of U tiles. Therefore there is a single 
tile set that can (modulo rescaling) car-
ry out any self-assembly process that 
can be achieved by any tile system. The 
challenge is to program all this activity 
without ever blocking a path that may 
later be needed for intra-block com-
munication, since no block represent-
ing a tile is necessarily aware of the 
identities of its neighboring blocks, 
whether they are even present, and if 
not, whether they will ever arrive.

Power of Cooperative Binding
Cooperative binding is used crucially 
in all non-trivial constructions in the 
aTAM. It is also the most challeng-
ing aspect of the model to enforce 
experimentally, so it is reasonable to 
question its necessity in algorithmic 
self-assembly. Doty, Patitz, and Sum-
mers27 investigated the power of tem-
perature 1 self-assembly in the aTAM, 
in which all positive glue strengths 
have sufficient energy to bind a tile, 
which effectively inhibits the use of 
cooperative binding. They show that 
a wide class of deterministic tile sys-
tems, satisfying a condition known as 
pumpability, are incapable of univer-
sal computation in the sense that they 
self-assemble only “periodic” (semi-
linear) sets. They conjecture that all 
deterministic, temperature 1 tile sys-
tems are pumpable. Maňuch, Stacho, 
and Stoll38 obtained similar results 
studying temperature 1 tile systems 
that assemble finite assemblies and 

types to assemble, at which point the 
tile system could grow back to the x-
axis assemble that pattern, a contradic-
tion. So to establish (for instance) NP-
completeness requires also specifying 
a bounding box as part of the input and 
requiring that the assembled shape is a 
subset of the bounding box. Göös and 
Orponen30 and Lempiäinen, Czeizler, 
and Orponen35 developed branch-and-
bound algorithms for a variant of this 
problem, but these algorithms require 
exponential time.

One can also consider the assembly 
of infinite patterns (as in Figure 2d) as 
the “computability-theoretic” version 
of self-assembly. Lathrop et al.34 showed 
that not every computable pattern (sub-
set of Z2) can be self-assembled, since 
each time step of computation with 
tiles irreversibly occupies a point in 
space, and for some patterns, it requires 
strictly more time to compute whether 
that point is part of the pattern. How-
ever, with regard to one-dimensional 
patterns, Patitz and Summers42 showed 
that every computable subset of N can 
be self-assembled on the x-axis (cru-
cially using the fact that the assembly 
occupies a large area outside the x-axis 
where the actual computation hap-
pens). Lathrop et al.34 showed a weaker 
result for computably enumerable sets: 
there is a simple quadratically bounded 
function f: N → N such that, for every 
computably enumerable A ⊆ N, f (A) can 
be self-assembled on the x-axis.

Assembly Time Complexity
Another resource bound to consider 
is the time required to build a shape 
(as determined by stochastic chemi-
cal kinetics). There is a linear amount 
of parallelism available for assem-
bling a shape of size N in fewer than N 
steps. This is because the frontier (set 
of potential binding sites) of an as-
sembly of size N is potentially as large 
as O(N), and in a given unit of time, a 
constant fraction of the frontier will 
have tiles attach if tile types are suf-
ficiently concentrated. Adleman et al.2 
showed that any shape of diameter D 
requires time Ω(D) to assemble from a 
deterministic tile system in the aTAM, 
later shown by Chen and Doty13 to 
hold for nondeterministic systems. 
Adleman et al.2 showed that this lower 
bound is tight for the assembly of n × 
n squares, that is, they can be assem-
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guarantee no glue mismatches, show-
ing that Ω(n) tile types are required to 
assemble shapes of diameter n.

However, with slight changes to 
the model, universal computation 
becomes possible. Adleman et al.4 de-
vised a nondeterministic temperature 
1 tile system that simulates a Turing 
machine in the following sense: the 
system has many terminal assemblies, 
but the unique largest terminal assem-
bly represents the computation. Cook, 
Fu, and Schweller18 showed that deter-
ministic tile systems can achieve uni-
versal computation if allowed to grow 
in three dimensions. Patitz, Schweller, 
and Summers41 showed that if nega-
tive glue strengths are allowed then 
universal computation is possible, es-
sentially using negative-strength glues 
to enforce cooperative binding.

But the original question stands: 
what is the computational power of de-
terministic, planar, positive-strength, 
temperature 1 self-assembly? Is coop-
erative binding truly necessary to com-
pute by planar self-assembly?

The Future
In the early history of computability 
theory, the optimistic term “elemen-
tary” was applied to problems com-
putable in time bounded by a tower 
of exponentials such as 222n

. It was not 
until the 1960s, once faster and faster 
computers had been built to execute 
actual algorithms, that polynomial 
time came to be seen as a more realis-
tic notion of feasibly implementable. 
Today we confront a similar situation 
in algorithmic self-assembly, where 
experimental work has not yet caught 
up to theory. When it does, the theory 
will doubtlessly take unanticipated 
turns. One concrete way that theory 
can help experiment today is to fur-
ther develop error correction, such 
as reducing tile complexity of error-
correction constructions or handling 
broader classes of tile systems than 
previous constructions.

The complexity of today’s oper-
ating systems and other software is 
made possible only by the develop-
ment of software engineering tech-
niques to help manage the complexi-
ty. Eventually molecular self-assembly 
systems will scale to the point that no 
one person could manually keep track 
of all the types of molecular compo-

nents and how they are all supposed 
to fit together. Software simulators for 
the aTAM exist40,55 but require the user 
to think at the level of individual tile 
types, which quickly begins to feel like 
assembly code programming with a 
nightmarish instruction set. There is 
some preliminary work8,25 developing 
higher-level languages for describing 
aTAM tile systems, but we are far from 
having a “Python of self-assembly.”

DNA tile assembly is an example 
of passive self-assembly, in which the 
tiles are mobile but otherwise state-
less. Active self-assembly, using com-
ponents with a changeable state, may 
enable sophisticated structures to be 
built at a lower cost in terms of time, 
tile complexity, or error-resistance. 
Majumder, LaBean, and Reif,36 as well 
as Fujibayashi et al.,29 and Padilla, 
Liu, and Seeman,39 have proposed 
theoretical suggestions to augment 
tiles with a physical mechanism 
known as strand displacement to en-
able active signaling across tiles. It 
remains to see what will actually work 
in the laboratory, but whatever works 
will provide a rich theory to explore. 
As in any nascent field, the most ex-
citing aspect is not knowing what the 
future holds.
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