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Abstract

This thesis applies the theory of computing to the theory of nanoscale self-assembly, to

explore the ability – and under certain conditions, the inability – of molecules to automatically

arrange themselves in computationally sophisticated ways. In particular, we investigate a

model of molecular self-assembly known as the abstract Tile Assembly Model (aTAM), in

which different types of square “tiles” represent molecules that, through the interaction of

highly specific binding sites on their four sides, can automatically assemble into larger and

more elaborate structures.

We investigate the possibility of using the inherent randomness of sampling different tiles

in a well-mixed solution to drive selection of random numbers from a finite set, and explore the

tradeoff between the uniformity of the imposed distribution and the size of structures necessary

to process the sampled tiles.

We then show that the inherent randomness of the competition of different types of

molecules for binding can be exploited in a different way. By adjusting the relative con-

centrations of tiles, the structure assembled by a tile set is shown to be programmable to a

high precision, in the following sense. There is a single tile set that can be made to assem-

ble a square of arbitrary width with high probability, by setting the concentrations of the

tiles appropriately, so that all the information about the square’s width is “learned” from the

concentrations by sampling the tiles.

Based on these constructions, and those of other researchers, which have been completely

implemented in a simulated environment, we design a high-level domain-specific “visual lan-

guage” for implementing complex constructions in the aTAM. This language frees the imple-

menter of an aTAM construction from many low-level and tedious details of programming
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and, together with a visual software tool that directly implements the basic operations of the

language, frees the implementer from almost any programming at all.

Finally, after showing these positive results, we turn our attention to negative results and

investigate inherent limitations in the aTAM at “temperature 1”, meaning roughly that all

bonds in the system have sufficient strength to permanently attach tiles without help from

other bonds (i.e., the temperature is too low to “shake off” any tiles, even those connected

by a single bond). Specifically, we show that at temperature 1, a wide class of deterministic

tile sets (those satisfying a natural condition known as “pumpability”) form only the most

computationally simple structures (specifically, semilinear sets of integer coordinates, equiva-

lently those sets definable in Presburger arithmetic), and in particular are strictly less powerful

than the computationally universal temperature 2 tile assembly model. We leave as an open

question whether all deterministic temperature 1 tile sets are in fact pumpable.
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Chapter 1. Overview

1.1 Introduction

1.1.1 Why is computation beneficial?

What is it about algorithmic computation, and our ability to implement it with electronic

components, that makes it so useful? The obvious answer may be speed. For instance, pro-

grammers often find themselves, when working on a large programming project, writing a build

script, which quickly handles all the tedious steps that must be taken to create a program from

its source code: compiling, linking libraries, packaging into a single executable file along with

images and other data files, perhaps uploading the whole thing to a web server.

Is speed the only reason to do this? Even if the build script took twice as long as doing all

this by hand, programmers would still write it. Why? There is another reason: correctness.

The build script does not make the mistakes that every programmer eventually makes.

But I argue that we are still misdiagnosing the disorder that the build script cures. If

my build script worked at half the speed I do, and one in every ten times failed to build the

program, forcing me to re-run it, I would continue in my stubborn ways and use the script in

lieu of building the program manually. What makes that build script so useful, if not speed

or correctness? I contend that automation is the script’s raison d’être; since my time is worth

much more than my computer’s, if the script can free me of 5 minutes to think about fixing

bugs or designing the next module, that script can be remarkably inefficient, and even require

the occasional restart, and I will thank Turing for the privilege of using it.
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1.1.2 Why is computation at molecular scales more than just beneficial?

While the previous example shows that an automatic build script gives a programmer

extra time to think about design (or to shop online or to daydream), the script is not, strictly

speaking, necessary. Nanoscience provides a novel justification for studying computation, and

for studying the kinds of computation that can happen at the nanoscale. This reason is that

many of the traditional forms of manual control are simply not possible at small scales. We

will automate the building of molecular structures not because it is faster than building such

structures by hand. Rather, our hands, and the machines that they operate, are too large to

manipulate individual molecules, so we simply have no other choice. We must learn to program

molecules to manipulate themselves.

1.2 Nanoscale Self-Assembly

1.2.1 Practice

Ned Seeman [35] proposed a novel approach to the problem of protein crystallization, the

first – and often the most difficult – step of determining the structure of a protein through

the technique of x-ray crystallography. He designed DNA sequences with the property that

their natural tendency was to form what is known as a Holliday junction: four single strands

of DNA linked together, given the correct length and temperature parameters, as shown in

Figure 1.1.

We refer to such a molecule with four designed sticky ends as a DNA tile. The single

strands protruding from each of the four sides are known as sticky ends, because each will stick

to its Watson-Crick complementary strand: adenine (A) to thymine (T) and cytosine (C) to

guanine (G). Finally, observe that the north sticky end is complementary to the south, and the

west to the east, so that many copies of the molecule of Figure 1.1, mixed in solution, will form

the crystal lattice depicted in Figure 1.2. Seeman hoped to simplify the crystallization step of

crystallography by designing each tile to hold exactly one protein in place, thus arranging all

proteins in a crystal lattice, oriented in the same direction, which is necessary for determining
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Figure 1.1: Logical depiction of a Holliday junction. Note the sticky ends coming from each of the
four sides, which give the Holliday junction its binding constraints.
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the protein’s structure through crystallography.

Figure 1.2: Lattice assembled by many copies of the Holliday junction of Figure 1.1.

This biochemical application remains experimental, but Erik Winfree, a theoretical com-

puter scientist, noticed something extraordinary. If there were more than one type of tile, and

if the sticky ends were set up to allow different types of tiles to bind to each other, then much

more sophisticated structures could be created; one example is shown in Figure 1.3. In fact,

what emerges from this simple generalization is a theory quite similar to the computationally

rich model of tiling studied by the logician Hao Wang [43,44].

Using techniques borrowed from Seeman, Winfree and others have created self-assembled

structures from DNA tiles in the laboratory [3,9,23–25,33,48]. These experiments provide the

physical basis for the theoretical questions explored in this thesis.
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1.2.2 Theory

In this section we give a semi-formal introduction to Winfree’s mathematical model of self-

assembling DNA tiles, known as the abstract Tile Assembly Model (aTAM). Chapter 2 provides

a complete formal specification of the aTAM. These concepts were introduced in [45], and the

notions of weak and strict self-assembly were first studied in their present form in [22].

The molecules discussed in Section 1.2.1 are modeled as unit squares called tiles that cannot

be rotated (in reality, of course they rotate, but the binding rules can be set such that assembly

will only occur between squares that are oriented in the same un-rotated direction). Each side

of a tile has a glue, consisting of a label (modeled as a finite string for the sake of drawing

figures) and a non-negative integer strength, usually 0, 1, or 2. The four glues of each side

define a tile type, and two tiles of the same type are functionally identical. There are a finite

number of tile types, and an infinite supply of copies of each tile type. Assembly begins with

a single copy of the specially designated seed tile type, placed at the origin of the integer

lattice Z2. The fundamental transition rule is this: given the assembly that has grown thus far

(beginning with the assembly consisting of just the seed), a tile may attach to the assembly

at a given point if the sum, over all sides of the tile whose glue label matches that of the

glue to which it is adjacent, of the strengths of those glues, is at least the system’s ambient

temperature (usually set to be 2, although sometimes 1). Any empty position adjacent to an

assembly at which some tile could bind is known as a frontier location. The tile set, when taken

together with the seed tile (or sometimes, a multi-tile seed assembly), the temperature value,

and whatever other information is necessary to specify the environment (in generalizations of

the model), is referred to as a tile assembly system (TAS).

Stated plainly, the transition rule for temperature-2 assembly implies that a tile may attach

to an assembly if it may be placed so that two of its strength-1 glues match the glues of the

abutting sides of two adjacent tiles in the assembly, or if one of its strength-2 glues matches the

glue of the abutting side of an adjacent tile in the assembly. The former case is a phenomenon

informally termed cooperation, in the sense that two different tiles already existing in the

assembly are required to both match sides of the new tile before it can be placed. The effect
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is that the newly attached tile “computes a function” of two inputs, where two different tiles

in the existing assembly provide the input values, and the output is advertised on the non-

input sides of the newly-attached tile (perhaps propagating a different output in two different

directions). This cooperation is key to many advanced constructions in the aTAM. Note that,

unlike the related model of Wang tiling [43,44], a tile may attach even if some of its adjacent

glues do not match those of the assembly, so long as sufficient binding strength is received

from the sides that match. In other words, there are no negative glue strengths. Note that

this implies monotone growth; once a tile attaches to the assembly, it never detaches.

(a) Example tile set that
assembles the discrete Sier-
pinski triangle.

(b) Possible first few stages of assembly.

Figure 1.3: Example tile set that weakly assembles the discrete Sierpinski triangle, and some examples
of potential initial stages of assembly. Strength-2 glues are illustrated with two lines between tiles,
strength-1 glues are illustrated with a single line between tiles, and strength-0 glues (i.e., the absence of
a glue) have no lines. Using the analogy that cooperation between strength-1 bonds is like computing
a function of two inputs, the input each of the non-border tiles computes is the XOR of the bits on the
south and west, the output of which appears on the north and east side.

Figure 1.3 shows an example of a tile set, due to Winfree [45], and the first few stages

of growth of the unique assembly that it forms. The entire first quadrant is filled by tiles in

the limit, and the pattern “painted” is alternately known as the discrete Sierpinski triangle or
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Pascal’s triangle modulo 2.

There are multiple senses in which a TAS may be nondeterministic. Nearly all nontrivial

TAS’s have the property that they may grow into an assembly with more than one frontier

location. The frontier location for the next attachment is selected nondeterministically, with

the selection scheme being a parameter of the theory. In all of our constructions, any selection

scheme will suffice, so long as it is fair, meaning that any frontier location will eventually

have a tile placed there (none of the frontier locations are “starved”). Such a TAS may still

be deterministic in the sense that all fair assembly sequences eventually result in the same

assembly. The more significant sense in which tile assembly may be nondeterministic is that

there is more than one terminal assembly, terminal meaning an assembly with an empty

frontier. This is easily seen to be equivalent to the condition that in every possible sequence

of tile additions, for each frontier location of each intermediate nonterminal assembly, there is

only one tile that could be placed at that location. A TAS that is deterministic in this sense is

alternately known as directed, confluent, or is said to produce a unique assembly.

The term assembly refers not only to what positions have a tile, but also what tile is placed

at each position. Two different assemblies may represent the same shape, in the sense that they

have tiles placed at the same set of positions but have at least one position at which they have

placed different types of tiles. If the TAS T is guaranteed to produce a terminal assembly with

tiles at exactly the positions in some set X ⊆ Z2, we say X strictly self-assembles in T (even

if it is not guaranteed which tile will be placed at each position in X).1 Furthermore, we may

relax the definition of “shape” somewhat, defining weak self-assembly. Instead of asking what

locations have a tile in an assembly, we paint some of the tile types “black” (i.e., designate a

subset of the tile types that will represent the shape), and define the shape of the assembly to

be those locations occupied by a black tile. For instance, by defining all but the two tile types

labeled in the center with ‘0’ in Figure 1.3 to be black, the TAS weakly self-assembles the

discrete Sierpinski triangle, or equivalently the set
{

(x, y) ∈ N2
∣∣∣
(x+y

y

)
is odd

}
. The same

1Although it is difficult to imagine a counterexample, it is an open problem to prove that if a set strictly
self-assembles in some TAS, then it strictly self-assembles in some directed TAS. The same problem is currently
open for weak self-assembly.
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TAS strictly self-assembles the entire first quadrant. The results of weak self-assembly can be

measured, for instance, by placing hairpin loops on the black tile types, which can then be

scanned by atomic force microscopy [33].

In fact, the aTAM is capable of much more. Winfree [45] showed that every algorithm

can be simulated by a TAS, in the sense that the TAS forms an assembly representing the

space-time configuration history of a cellular automaton implementing the algorithm.

1.3 Applications of the Theory of Computation to Nanoscale

Self-Assembly

This section informally outlines the original contributions of this thesis.

1.3.1 Random Number Selection in Self-Assembly

In Chapter 3, we investigate methods for exploiting nondeterminism inherent within the

aTAM in order to generate uniform random numbers. Namely, given an integer range {0, . . . , n−

1}, we exhibit methods for randomly selecting a number within that range. We present three

constructions exhibiting a trade-off between space requirements and closeness to uniformity.

The first selector selects a random number with probability Θ(1/n) using O(log2 n) tiles.

The second selector takes a user-specified parameter that guarantees the probabilities are

arbitrarily close to uniform, at the cost of additional space. The third selector selects a random

number with exact uniformity (i.e., probability exactly 1/n), and uses no more space than the

first selector with high probability, but uses potentially unbounded space.

The final construction is a self-assembly implementation of von Neumann’s rejection method

[20, 42], which is equivalent to the algorithm used to select random numbers in programming

language libraries such as the Java’s standard library. In a programming language, a “ZPP”

algorithm that almost certainly takes a small amount of time, but may rarely use more time,

is not a problem except perhaps in critical real-time systems. However, in a tile assembly

system, consisting of possibly billions of tiles, the presence of even a single region that uses

too much space will destroy the correctness of the entire assembly. In such situations, it may
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be preferable to absolutely guarantee that space bounds are obeyed at the cost of a slight

deviation from uniformity.

1.3.2 Randomized Self-Assembly for Exact Shapes

In Chapter 4, we prove a result in a generalization of the aTAM known as tile concentration

programming. In this model, each tile type is assumed to be present in solution in a certain

experimenter-controlled concentration, which, if more than one tile type compete nondeter-

ministically to bind to a single frontier location, determines the probability that each will be

the one to bind.

We show that a constant-size tile assembly system can be programmed through tile con-

centration programming to build an n × n square with high probability, for any sufficiently

large n. This answers an open question of Kao and Schweller [19], who showed how to build

an approximately n× n square using tile concentration programming, and asked whether the

approximation could be made exact with high probability. This technique can be modified to

answer another question of Kao and Schweller [19], by showing that a constant-size tile assem-

bly system can be programmed through tile concentrations to assemble arbitrary finite scaled

shapes (a concept introduced for the aTAM in [38]), which are shapes modified by replacing

each point with a c× c block of points, for some integer c.

1.3.3 A Domain-Specific Language for Programming in the Tile Assembly Model

The tile assembly systems of Chapters 3 and 4 were not produced by hand; rather they

were output by a program that reused code for groups of related tile types.

In Chapter 5, we introduce a domain-specific language (DSL) for creating sets of tile types

for simulations of the aTAM. The language defines objects known as tile templates, which

represent related groups of tiles, and a small number of basic operations on tile templates that

help to eliminate the error-prone drudgery of enumerating such tile types manually or with

low-level constructs of general-purpose programming languages. The language is implemented

as a class library in Python (a so-called internal DSL), but is presented independently of
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Python or object-oriented programming, with emphasis on support for a visual editing tool

for creating large sets of complex tile types.

1.3.4 Limitations of Self-Assembly at Temperature One

In Chapter 6, we explore what sort of assembly and computation are possible in the aTAM

when the temperature is set to 1. This is equivalent to eliminating cooperativity from the

model; i.e., changing the rules so that a tile may bind to an assembly if any single one of

its glues match those of an exposed side of a tile in the assembly. Our goal is to show that

cooperativity is essential for advanced computation in the aTAM, by showing that temperature

1 tile assembly is strictly weaker than assembly at temperature 2.

We prove that if a set X ⊆ Z2 weakly self-assembles at temperature 1 in a deterministic

(Winfree) tile assembly system satisfying a natural condition known as pumpability, then X is a

finite union of linear sets. A set is linear if it is expressible as
{

~b + n · ~u + m · ~v
∣∣∣ n,m ∈ N

}

for some fixed vectors ~b, ~u,~v ∈ Z2; i.e., it consists of the vertices of an infinite array of parallel-

ograms packed next to each other. A finite union of linear sets is also known as a semilinear

set. Semilinear sets are computationally very simple. They have been shown, for example,

to be equivalent to those sets definable in Presburger arithmetic [29, 40], the first-order the-

ory of natural numbers with only the addition operation (but lacking multiplication). For

completeness, we give a self-contained proof (Observation 6.3.2) that the projection of any

semilinear set onto the x-axis, when expressed in unary, is a regular language, to emphasize

the computational simplicity of semilinear sets.

Informally, a pumpable temperature 1 tile assembly system is one with the property that ev-

ery sufficiently long path of tiles in an assembly of this system contains a segment in which the

same tile type repeats (a condition clearly implied by the pigeonhole principle), and that fur-

thermore, the subpath between these two occurrences can be repeated indefinitely (“pumped”)

along the same direction as the first occurrence of the segment, without “colliding” with a pre-

vious portion of the path. We give a counterexample in Section 6.2 (Figure 6.1) of a path

in which the same tile type appears twice, yet the segment between the appearances cannot
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be pumped without eventually resulting in a collision that prevents additional pumping. The

hypothesis of pumpability states (roughly) that in every sufficiently long path, despite the

presence of some repeating tiles that cannot be pumped, there exists a segment in which the

same tile type repeats that can be pumped.

This shows that only the most simple of infinite shapes and patterns can be constructed

using pumpable temperature 1 tile assembly systems, and gives evidence for the thesis that

temperature 2 or higher is required to carry out general-purpose computation in a tile assembly

system. We employ this result to show that, unlike the case of temperature 2 self-assembly, no

discrete self-similar fractal weakly self-assembles at temperature 1 in a pumpable tile assembly

system. Finally, we show that general-purpose computation is possible at temperature 1 if

negative glue strengths are allowed in the tile assembly model.

It remains open whether every deterministic temperature 1 tile assembly system is pumpable;

if so, this would settle the question completely, showing that deterministic temperature 1 tile

assembly systems assemble only the most computationally simple sets.
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Chapter 2. The Abstract Tile Assembly Model

We work in the 2-dimensional discrete space Z2. Define the set U2 = {(0, 1), (1, 0), (0,−1),

(−1, 0)} to be the set of all unit vectors, i.e., vectors of length 1 in Z2. We write [X]2 for the

set of all 2-element subsets of a set X. All graphs here are undirected graphs, i.e., ordered

pairs G = (V,E), where V is the set of vertices and E ⊆ [V ]2 is the set of edges.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a

well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with “label” labt(~u) – a

string over some fixed alphabet Σ – and “strength” strt(~u) – a nonnegative integer – specified

by its type t. Two tiles t and t′ that are placed at the points ~a and ~a + ~u respectively, bind

with strength strt (~u) if and only if (labt (~u) , strt (~u)) = (labt′ (−~u) , strt′ (−~u)).

Given a set T of tile types, an assembly is a partial function α : Z2 99K T , with points

~x ∈ Z2 at which α(~x) is undefined interpreted to be empty space, so that dom α is the set

of points with tiles. α is finite if |dom α| is finite. For assemblies α and α′, we say that α

is a subconfiguration of α′, and write α ⊑ α′, if dom α ⊆ dom α′ and α(~x) = α′(~x) for all

x ∈ dom α.

Let α be an assembly and B ⊆ Z2. α restricted to B, written as α ↾ B, is the unique

assembly satisfying (α ↾ B) ⊑ α, and dom (α ↾ B) = B. If π is a sequence over Z2 (such as a

path), then we write α ↾ π to mean α restricted to the set of points in π. If A ⊆ dom α, we

write α \A = α ↾ (dom α−A). If ~0 6= ~v ∈ Z2, then the translation of α by ~v is defined as the

assembly (α + ~v) satisfying, for all ~a ∈ Z2,

(α + ~v) (~a) =






α(~a) if ~a− ~v ∈ dom α

↑ otherwise.
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A grid graph is a graph G = (V,E) in which V ⊆ Z2 and every edge {~a,~b} ∈ E has the

property that ~a−~b ∈ U2. The binding graph of an assembly α is the grid graph Gα = (V,E),

where V = dom α, and {~m,~n} ∈ E if and only if (1) ~m − ~n ∈ U2, (2) labelα(~m) (~n− ~m) =

labelα(~n) (~m− ~n), and (3) strα(~m) (~n− ~m) > 0. An assembly is τ -stable, where τ ∈ N, if it

cannot be broken up into smaller assemblies without breaking bonds of total strength at least

τ (i.e., if every cut of Gα cuts edges, the sum of whose strengths is at least τ).

Self-assembly begins with a seed assembly σ (typically assumed to be finite and τ -stable)

and proceeds asynchronously and nondeterministically, with tiles adsorbing one at a time to

the existing assembly in any manner that preserves stability at all times.

A tile assembly system (TAS ) is an ordered triple T = (T, σ, τ), where T is a finite set of

tile types, σ is a seed assembly with finite domain, and τ is the temperature. An assembly

sequence in a TAS T = (T, σ, τ) is a (possibly infinite) sequence ~α = (αi | 0 ≤ i < k) of

assemblies in which α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition of

a single tile. The result of an assembly sequence ~α is the unique assembly res(~α) satisfying

dom res(~α) =
⋃

0≤i<k dom αi and, for each 0 ≤ i < k, αi ⊑ res(~α).

Note that, if T = (T, σ, 1), then there is a finite path from the seed to a point ~x ∈ dom α,

denoted as π~0,~x if and only if there is an assembly sequence ~α satisfying res(~α) = α ↾ π~0,~x.

We write A[T ] for the set of all producible assemblies of T . An assembly α is terminal,

and we write α ∈ A2[T ], if no tile can be stably added to it. We write A2[T ] for the set

of all terminal assemblies of T . A TAS T is directed, or produces a unique assembly, if it

has exactly one terminal assembly i.e., |A2[T ]| = 1. The reader is cautioned that the term

“directed” has also been used for a different, more specialized notion in self-assembly [2]. We

interpret “directed” to mean “deterministic”, though there are multiple senses in which a TAS

may be deterministic or nondeterministic.

A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, 1) and a set B ⊆ T (B

constitutes the “black” tiles) such that α−1(B) = X holds for every assembly α ∈ A2[T ]. A

set X strictly self-assembles if there is a TAS T for which every assembly α ∈ A2[T ] satisfies

dom α = X. Note that if X strictly self-assembles, then X weakly self-assembles; let B = T .
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Chapter 3. Random Number Selection in Self-Assembly

This chapter is joint work with Jack Lutz, Matt Patitz, Scott Summers, and Damien Woods

and was originally published as [13].

3.1 Introduction

One prominent feature of self-assembly is its inherent nondeterminism, and the Tile As-

sembly Model represents this well. At any given time, there may be many locations where

a tile might attach itself to the growing assembly, and, even at a single location, there may

be more than one type of tile that can attach itself. When we are designing a tile assembly

system that is supposed to result in a specified terminal assembly, regardless of the particular

sequence in which tiles attach themselves, this nondeterminism is a conceptual difficulty that

we overcome with tools like local determinism [38] and modularity [21]. In other situations,

such as when we are using randomized algorithms to reduce the number of tile types required

for a self-assembly [12,19] or when we are simulating a system that is itself nondeterministic,

the Tile Assembly Model’s nondeterminism is a programming resource.

This chapter concerns the problem of using the nondeterminism inherent in self-assembly

to implement a nondeterministic choice among an arbitrary number of options. That is, we

consider the problem of designing a tile assembly system that, given a positive integer n,

chooses an integer r ∈ {0, . . . , n − 1}.

As stated so far, this problem is not interesting. We simply count down from n − 1 to 0,

tossing a “coin” (implemented by having either one of two tiles attach at a suitable location)

after each decrement to decide whether to stop or keep counting down. This solves the logical

problem of nondeterministic choice, but, if n is large and the “coins” are fair and independent,
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it is nearly certain that r will be much larger than 0. This is not satisfactory if we want to use

the nondeterministic choice for a randomized algorithm or a useful simulation.

So our actual problem treats nondeterminism probabilistically. We assume that, at each

time and location in self-assembly, all the tile types than can attach at that location are equally

likely to do so, and that the “choices” made at different locations are independent. We then

seek to design a tile assembly system that, given a positive integer n (represented in binary

as a seed assembly), chooses an integer r ∈ {0, . . . , n − 1} in such a way that the outcomes

r = 0, r = 1, . . . , r = n − 1 are all equally likely, or nearly so. (We are not constructing

pseudorandom generators in the sense of complexity theory or cryptography. Pseudorandom

generators expand a short, truly random “seed” into a longer pseudorandom string. Our

random number selectors use at least as much randomness as they produce.)

We present three solutions to this problem. Our first random number selector has 324

tile types and uses only O(log2 n) space to select the number r, but the probabilities are only

Θ(uniform), in the sense that the probability that r is selected is between 1
2n and 2

n .

Our second random number selector has 821 tile types and takes as input both n and a

user-supplied precision parameter t. The probability that it selects r is then between 1
n −

1
t

and 1
n + 1

t . This is very nearly uniform if t ≫ n, but this added uniformity comes at a price,

namely that the selector uses O(t2) space.

Our third selector has 100 tile types and selects r with probability exactly 1
n . With high

probability it uses only as much space as our first selector, but there is no absolute bound

on the space that it takes. (This selector is a self-assembly implementation of von Neumann’s

rejection method [20, 42].)

We expect each of these random number selectors to be useful in some self-assemblies.

Taken together, our selectors suggest that there is a tradeoff between how uniform a random

number selector is and how much space it takes. We conjecture that this tradeoff is real, and

not merely an artifact of our constructions. Proving or disproving this conjecture is an open

problem.
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3.2 A Θ(uniform) Selector

The first selector that we implement chooses a number at random between s ∈ N (“start”)

and e ∈ Z+ (“end”), where s < e and both are encoded in binary in the seed as shown in the

bottom row of Figure 3.1.

The construction is shown in Figure 3.1. The tile set implements the random binary search

algorithm Selector. It is written such that each numbered line corresponds exactly to a row

in Figure 3.1. The identifier ¢, wherever it appears, indicates the result of a fair coin flip, with

result H or T . Each evaluation of ¢ is independent of the others.

Selector({s, . . . , e})

1 s′ ← s + 1

2 while s′ < e

3 do sum← s + e

4 mid← sum >> 1 � divide sum by 2 by bit shifting

5 if ¢ = H

then s← mid + 1 � choose right subinterval

else e← mid � choose left subinterval

6 s′ ← s + 1

7 if ¢ = H then return s else return e

Figure 3.1 depicts a selector that randomly chooses an integer between s and e, such that,

letting n = |{s, . . . , e}|, we have 1
2 ·

1
n ≤ Pr(a) ≤ 2 · 1

n for each a ∈ {s, . . . , e}. The bottom row

encodes s and e in binary. Note that the direction of growth can be inferred from the binding

strengths. Each gray row is a comparison row whose result indicates whether the binary search

is complete. The rows between each adjacent pair of gray rows implement the main loop of

the random binary search. The interval {s, . . . , e} is subdivided into two subintervals, with

the left subinterval always chosen to be one larger if {s, . . . , e} has an odd number of elements.

One of the subintervals is randomly chosen to become the new interval, by replacing either s

or e with a value near their midpoint. When {s, . . . , e} has either 1 or 2 elements, the loop
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terminates, and one of s or e is randomly chosen.

Theorem 3.2.1. For all n ∈ N and r ∈ {1, . . . , n},

1

2n
≤

1

2⌊log2 n⌋+1
≤ Pr[Selector(1, n) = r] ≤

1

2⌊log2 n⌋
<

2

n

Proof. Let 2i−1 < n ≤ 2i, i ∈ N. Immediately after k coin flips we are working within one of 2k

subintervals of [1, n] that are non-overlapping and cover all of [1, n]. The leftmost subinterval,

denoted [1, nk], has maximal size (number of elements) out of the 2k sub-intervals, which can

be shown by the following simple inductive argument. For k = 1, we have two sub-intervals

and the leftmost is maximal since

⌊
1 + n

2

⌋
≥ n−

⌊
1 + n

2

⌋
. (3.2.1)

If we assume that the leftmost interval [1, nk] is maximal at flip k, then by letting n = nk in

the inequality (3.2.1), the leftmost interval is maximal at flip k + 1.

So a maximal length sequence of coin flips, over all such valid sequences, is given by a

sequence of 1’s (we choose the left sub-interval at each coin flip). We next show that this

maximal number of coin flips is no more than ⌊log2 n⌋ + 1. The leftmost interval [1, nk] has

size

nk =

⌊
1 + nk−1

2

⌋
=
⌈nk−1

2

⌉
(3.2.2)

=






nk−1

2 nk−1 even

nk−1+1
2 nk−1 odd

(3.2.3)

Assuming that nk is odd for all k (to give an upper bound on the number of flips), we have

n⌊log n⌋+1 = 1. This gives

1

2⌊log2 n⌋+1
≤ Pr[Selector(1, n) = r].
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Similarly, using (3.2.1), it can be shown that at flip k, the rightmost subinterval is of

minimal size over all 2k possible subintervals. A lower bound of log2 n on the number of flips

is found when nk is even for all k in (3.2.3), and this lower bound is reached when n = 2i,

i ∈ N. Thus

Pr[Selector(1, n) = r] ≤
1

2⌊log2 n⌋
.

Unfortunately,the bounds of Theorem 3.2.1 are tight, in the sense that for certain n and

r ∈ {0, . . . , n−1}, Pr[r] can be nearly twice or half of 1
n . The asymmetry of the interval sizes is

what prevents the tile set from achieving perfect uniformity. Intuitively, if the left subinterval

has length l and the right has length l + 1, then we should pick the right with probability

l+1
2l+1 , as opposed to 1

2 as our algorithm does. It may seem at first glance that by randomly

selecting which interval is larger, we could smooth out the probabilities and approach a uniform

distribution in the limit as the interval size approaches infinity.

However, this does not work. Roughly speaking, selecting r from {0, . . . , n− 1} using this

method, we can express Pr[r] =
∏≈log n

i=1 pi, where each pi represents the probability that r is

in the subinterval picked during the ith stage. If n is a power of 2, then each pi will be 1
2 , and

the selector (both that just described and the selector constructed earlier in this section) will

select r with probability exactly 1
n . If n is not a power of 2, then at most one of the pi’s will

be unequal to 1
2 ; this will occur precisely at the stage when the interval length is odd and r

is the middle element, which can happen at most once in the course of the algorithm. In the

case of r = 1 or r = n− 2, when this occurs, the interval will have length 3, so pi will be equal

to 1
2 , when in fact it ought to be 2

3 to achieve uniformity. Therefore, no matter how large n is,

r = 1 will be selected with probability a constant factor away from uniform.

In the next section we introduce a random selector that allows the user to control the

desired closeness to uniformity as a parameter, trading off space for error in approximating

uniformity.
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Figure 3.1: Θ(uniform) selector
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3.3 A Controllable-Error Selector

In this section, we implement the self-assembly version of a random number generator

whose deviation from uniform can be controlled by a user-specified parameter. More precisely,

given an upper bound n ∈ N, and a precision parameter t ∈ N, the tile system generates a

random number r ∈ {0, . . . n− 1} with probability approaching 1
n as t→∞. We first outline

the algorithm.

The following algorithm is one of the more intuitive methods of generating a random

number from an arbitrary range, using flips of an unbiased coin, although the number is not

generated with perfect uniformity. MSB stands for most significant bit, and LSB stands for

least significant bit.

Controllable-Selector(n,t)

1 Uniformly at random choose m ∈ {0, . . . , t− 1}

2 return Mod (m,n)

Mod(m,n)

� compute m mod n in binary

1 Line up MSBs of m and n by shifting n to the left

sm← the integer represented by the ⌊log n⌋+ 1 MSBs of m (“small m”)

2 while n’s LSB lies to the left of m’s LSB

do if sm ≥ n

3 then sm← sm− n

concatenate the bit of m to the right of n’s LSB to the end of sm

4 shift n one bit to the right relative to sm and m

5 if sm ≥ n

6 then sm← sm− n

7 return sm

As before, we have generally numbered the lines corresponding to rows in the tile assembly.

However, in this case, lines 2 and 4 are implemented in the same row, since it is possible to shift
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n to the right by one bit and simultaneously compare it to sm. This occurs on all comparisons

except for the first check of the loop condition, immediately after n has been shifted left to

line it up with the MSB of m. Also, line 3 represents the row that subtracts sm−n if sm ≥ n,

or simply copies sm otherwise, although the copying does not appear as an explicit line in the

pseudocode. Finally, line 1 is actually implemented as a series of rows as shown in Figure 3.3,

but we express it as a single instruction in the pseudocode.

Our construction takes as inputs two positive integers, n and t′, which we encode in a

seed row. Choosing t′ so that t = 24t′−1 means that the construction executes the procedure

Controllable-Selector(n,t).1 The construction first grows a number of rows upward, each

having a width one greater than the previous, until a row having a width of exactly 4t′ − 1

is formed. Finally, the top most row assembles in which, at each location, one of exactly two

tile types is randomly selected to bind. This effectively generates a random number m in

the set
{
0, . . . 24t′−1 − 1

}
with a uniform distribution. Then, the subsequent rows to attach

implement step 2 in Controllable-Selector. The resulting modulus is encoded in the top

most row of the construction and is the number r.

We now present a more detailed discussion of this construction. The tile assembly system

can be thought of as assembling in three logical stages.

First Stage: In the initial stage, our goal is to take as input n and t′, and (uniformly) produce

a random number, say m, in the range
{

0, . . . 24t′−1 − 1
}

. We will then feed the numbers

m and n to the second stage of the construction. Our input is encoded in a seed row

whose length k is the greater of ⌊log n⌋+ 1 and ⌊log t′⌋+ 1. The seed row is the bottom

most row in Figure 3.2.

1. On top of the seed row, we use a (zig-zagging) Rothemund-Winfree binary subtractor

[32] that counts down from t′ while “blindly” passing the value of n up through the

subsequent rows. This gives us a k by 2t′ + 1 rectangle.

1If t 6= 24t′−1 for some t′ ∈ N, choose t′ so that t ≤ 24t′−1. This achieves the bound on the probability that
we derive for t, while using asymptotically the same amount of space.
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Figure 3.2: The first stage of the construction.

2. We use filler tiles (labeled ‘A’, ‘B’ and “Filler” tiles in Figure 3.2) to self-assemble

a right-triangle to the left of the rectangle that was built in the previous step.

3. (line 1 of the pseudocode for Controllable-Selector) The top most row of the

construction is 4t′ − 1 tiles long and self-assembles from right to left such that,

for each of the 4t′ − 1 locations in the row, there are two possible tile types that

can attach - one tile representing a 0 and the other a 1. The choice of each tile

that attaches in this row can be made independently of its predecessor (i.e., the tile

immediately to its right). This results in the generation of a random number m in

the range
{
0, . . . 24t′−1 − 1

}
with uniform distribution.

The top of the last row of the initial stage of the construction encodes (as output) the

number n (the “lower” bits in each tile), along with the number m (the randomly chosen

“upper” bits in each tile). Note that we allow leading zeros in both m and n.

Second Stage: (Line 1 of the pseudocode for Mod) The second stage of the construction

takes as input m and n (output from the previous stage), and shifts (all of the bits of)

n to the left so that the most significant 1 of n lines up with the MSB of m.



23

1. Every other row (starting with the first row) in this stage of the construction sends a

“request-a-shift” signal from left-to-right only if the most significant 1 of n does not

line up with the MSB of m. For example, the second (from the bottom most) row

in Figure 3.3 self-assembles left-to-right and carries the first request-a-shift signal.

2. On top of each row that carries a request-a-shift signal, a row self-assembles right-

to-left in which each bit of n is shifted once to the left. The third (from the bottom

most) row in Figure 3.3 is the first row that carries out a shift operation. For shift

rows, as self-assembly proceeds right-to-left, the position of the most significant 1 of

n is compared with the MSB of m, and if they line up, then a subsequent request-

a-shift signal is not sent. It is at this point that the third, and final stage of the

construction is carried out.
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Figure 3.3: The second stage of the construction.

Third Stage: The third stage of the construction performs the task of calculating m mod n

(step 2 in Controllable-Selector) and then (as a final step) self-assembles a row
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Figure 3.4: The third stage of the construction. The “direction” of self-assembly for each row is either
right-to-left or left-to-right (as noted in parentheses).
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which represents only that value as the final output of the construction. The third

stage begins with a row of tiles which encode the values of m and n such that the most

significant 1 of n lines up with the MSB of m. Throughout this discussion, “small m”

will refer to the bits of m that begin with the leftmost and continue right to the location

of the rightmost bit of n in that row (these positions are represented by the dark colored

tiles in Figure 3.4). The third stage proceeds as follows.

1. (line 2 of the pseudocode for Mod) Self-assemble a row from left-to-right which

performs an initial comparison of the values of “small m” and n.

2. (line 3 of the pseudocode for Mod) Self-assemble the next row from right to left

which performs one of the following functions based on the comparison from the

previous step.

(a) If n > “small m,” send a signal requesting that (all of the bits of) n be shifted

one position to the right.

(b) Else, subtract the value of n from “small m” request to shift n. Note that this

will result in a new value of “small m.”

3. (line 4 of the pseudocode for Mod) Now the construction self-assembles a row from

left-to-right which shifts the value of n one position to the right (shifting 0 bits in

from the left) and keeping the current value of “small m” in the same position. Note

that this row also performs a comparison against the newly shifted value of n and

the current value of “small m.” The latter will now extend one bit further to the

right than it previously did.

4. (lines 2 and 4 of the pseudocode for Mod) The construction continues the self-

assembly of rows which perform the previous two steps in a loop until the value of

n has shifted far enough to the right so that its LSB is aligned with that of m.

5. (line 6 of the pseudocode for Mod) Only if the last comparison resulted in n < “small

m,” the construction self-assembles the necessary rows to do one more subtraction

of n from “small m,” and a final comparison (as done above).
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6. (line 7 of the pseudocode for Mod) The remaining value of “small m” now represents

the result of m mod n. The final step in the third stage of the construction self-

assembles a row from right-to-left which represents only that remainder, and thus

the final output, r ∈ {0, . . . , n− 1}.

Theorem 3.3.1. For all n ∈ N, and r ∈ {0, . . . , n− 1},

lim
t→∞

Pr [Controllable-Selector(n, t) = r] =
1

n

Proof. Fix t ∈ N. Note that, by a trivial counting argument, there are either
⌊

t
n

⌋
or
⌈

t
n

⌉
ways

to choose a number congruent to r (modulo n) from the set {0, . . . , t− 1}, whence

Pr [Controllable-Selector(n, t) = r] ≤

⌈
t
n

⌉

t

≤
t
n + 1

t

=
1

n
+

1

t
.

Similarly, we have

Pr [Controllable-Selector(n, t) = r] ≥
1

n
−

1

t
.

It follows, by the Squeeze theorem, that

lim
t→∞

Pr [Controllable-Selector(n, t) = r] =
1

n
.

3.4 An Exactly Uniform Selector

Even though the selector of Section 3.3 asymptotically approaches a uniform distribution

as the precision parameter t grows to infinity, for certain n it deviates slightly from uniform.

In this section we outline a construction of a random number selector with the property
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that it selects a random number in the range {0, . . . , n − 1} with probability exactly 1
n . The

catch is that while the selector has a very low expected number of tiles that need to be used,

with some small probability, an unbounded number of tiles could be required, making this

selector unsuitable for applications in which space constraints must absolutely be enforced.

The construction is shown in Figure 3.5. The tile set implements the following algorithm.

The random element r is generated by selecting t bits uniformly and independently at random,

where t is the length of the binary expansion of n.

Uniform-Selector(n)

1 r ← random element of {0, 1, . . . , 2⌊log n⌋+1 − 1}

2 while r ≥ n

3 do r ← random element of {0, 1, . . . , 2⌊log n⌋+1 − 1}

4 return r

The selector chooses r between 0 and the next power of 2 above n and outputs r if r < n.

The selector will use a small number of rows with high probability, but may potentially use an

unbounded number of rows.

Since the element of
{
0, 1, . . . , 2⌊log n⌋+1 − 1

}
is selected with uniform probability, then

conditioned on that element being less than n, the probability of each element r ∈ {0, . . . , n−1}

is equal, i.e., 1
n . Furthermore, since the next power of two greater than n is at most 2n,

the probability that r ≥ n is at most 1
2 , whence the expected number of iterations i is a

geometric random variable with expected value at most 2, subject to the tail bound, for all

k ∈ N,Pr[i > k] ≤ 2−k.

Since two rows are used per iteration, so allowing, for instance, 100 rows (plus the two for

the seed and final row) ensures that sufficient room will exist to generate r with probability at

least 1− 2−50.

3.5 Conclusion

We have introduced random number selectors in the Tile Assembly Model, powered by the

randomness inherent in nondeterministic tile sets. They allow for a more algorithmic control
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of randomness than by hard-coding probabilities by fixed tile concentrations.

The perfectly uniform selector is not entirely unlike the procedure used to generate ran-

dom integers from random bits used in many standard libraries; for instance, the method

Random.nextInt in the Java standard library. Why then have we bothered to describe the

first two selectors, which are provably different from uniform? In a programming language, a

“ZPP” algorithm that almost certainly takes a small amount of time, but may rarely use more

time, is not a problem except perhaps in critical real-time systems. However, in a tile assembly

system, consisting of possibly billions of tiles, the presence of even a single region that uses

too much space will destroy the correctness of the entire assembly. In such situations, it may

be preferable to guarantee that space bounds are adhered to at the cost of a slight deviation

from uniformity.
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Chapter 4. Randomized Self-Assembly for Exact Shapes

This chapter was originally published as [12].

4.1 Introduction

Rothemund and Winfree [32] investigated the minimum number of tile types needed to

uniquely assemble an n×n square. Utilizing the theory of Kolmogorov complexity, they show

that for any algorithmically random n, Ω
(

log n
log log n

)
tile types are required to uniquely assemble

an n × n square, and Adleman, Cheng, Goel, and Huang [1] exhibit a construction showing

that this lower bound is asymptotically tight.

Real-life implementations of the aTAM involve (at the present time) creating tile types out

of DNA Holliday junctions or double-crossover molecules [33], copies of which can be created

at an exponential rate using the polymerase chain reaction (PCR) [34]. PCR technology has

advanced to the point where it is automated by machines, meaning that copies of tiles are easy

to supply, whereas the number of distinct tile types is a precious resource, costing much more lab

time to create. Therefore, effort has been put towards developing methods of “programming”

tile sets through methods other than hard-coding the desired behavior into the tile types.

Such methods include temperature programming [18,41], which involves changing the ambient

temperature through the assembly process in order to alter which bonds are possible to break

or create, and staged assembly [11], which involves preparing different assemblies in different

test tubes, which are then mixed after reaching a terminal state. Each of these models allows a

single tile set to be reused for assembling different structures by programming it with different

environmental conditions affecting the behavior of the tiles.

The model used in this chapter is known as tile concentration programming. If the tile
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assembly system is nondeterministic – if intermediate assemblies exist in which more than one

tile type is capable of binding to the same position – and if the solution is well-mixed, then

the relative concentrations of these tile types determine the probability that each tile type will

be the one to bind.

Tile concentrations affect the expected time before an assembly is completed (such a model

is considered in [1] and [5], for instance), but we ignore such running time considerations in

the present chapter. We instead focus on using the biased randomness of tile concentrations

to guide a probabilistic shape-building algorithm, subject a certain kind of “geometric space

bound”; namely, that the algorithm must be executed within the confines of the shape being

assembled. This restriction follows from the monotone nature of the aTAM: once a tile attaches

to an assembly, it never detaches. Chandran, Gopalkrishnan, and Reif [8] show that a one-

dimensional line of expected length n can be assembled using Θ (log n) tile types, subject to

the restriction that all tile concentrations are equal. Furthermore, they show that this bound

is tight for all n. Becker, Rapaport, and Rémila [5] show that there is a single tile assembly

system T such that, for all n ∈ Z+, setting the tile concentrations appropriately causes T to

assemble an n′ x n′ square, such that n′ has expected value n. However, n′ will have a large

deviation from n with non-negligible probability. Kao and Schweller [19] improve this result by

constructing, for each δ, ǫ > 0, a tile assembly system T such that setting the tile concentrations

appropriately causes T to assemble an n′ x n′ square, where (1 − ǫ)n ≤ n′ ≤ (1 + ǫ)n with

probability at least 1− δ, for sufficiently large n ∈ Z+.

Kao and Schweller asked whether a constant-sized tile assembly system could be constructed

that, through tile concentration programming, would assemble a square of dimensions exactly

n × n, with high probability. We answer this question affirmatively, showing that, for each

δ > 0, there is a tile assembly system T such that, for sufficiently large n ∈ Z+, there is an

assignment of tile concentrations to T such that T assembles an n×n square with probability

at least 1− δ.

Kao and Schweller also asked whether arbitrary finite connected shapes, possibly scaled by

factor c ∈ N (depending on the shape) by replacing each point in the shape with a c× c block
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of points, could be assembled from a constant tile set through concentration programming.

Our construction answering the first question computes the binary expansion of n with high

probability in a self-assembled rectangle of height O(log n) and width O(n2/3). By assembling

this structure within the “seed block” of the construction of [38], our construction can easily

be combined with that of [38] to answer this question affirmatively as well, by replacing the

number n with a program that outputs a list of points in the shape, and using this as the “seed

block” of the construction of [38].

This chapter is organized as follows. Section 4.2 defines tile concentration programming.

Section 4.3 provides the construction and proof of correctness. Section 4.4 concludes the

chapter, discusses practical limitations of the construction and potential improvements, and

suggests non-square structures that can be assembled with the same technique.

4.2 Tile Concentration Programming

Let T = (T, σ, τ) be a TAS. A tile concentration assignment on T is a function ρ : T →

[0,∞).1 If ρ(t) is not specified explicitly for some t ∈ T , then ρ(t) = 1. If α : Z2 99K T is a

τ -stable assembly such that t1, . . . , tj ∈ T are the tiles capable of binding to the same position

~m of α,2 then for 1 ≤ i ≤ j, ti binds at position ~m with probability ρ(ti)
ρ(t1)+...+ρ(tj)

.3 ρ induces

a probability measure on A2[T ] in the obvious way.4 For p ∈ [0, 1] and X ⊆ Z2, we say X

strictly self-assembles in T (ρ) with probability at least p if Prα∈A2[T ][dom α = X] ≥ p. That

is, T self-assembles into a shape equal to X with probability at least p. Note that different

two assemblies may have the same shape though they might assign different tile types to the

1Note in particular that we do not require ρ to be a probability measure on T . ρ induces a probability
measure as described later on subsets of tiles in T that contend nondeterministically to bind, but there may
be more than one such subset, and the relative concentration of a tile from one subset to that of another is
irrelevant, since they do not compete.

2More precisely, if α + (~m 7→ ti) is τ -stable for some ~m 6∈ dom α and all i ∈ {1, . . . , j}, but α + (~m 7→ t) is
not τ -stable for any t ∈ T − {t1, . . . , tj}.

3This quantity is the conditional probability that ti attaches to position ~m, given that one of t1, . . . , tj will
bind to position ~m at the current stage of self-assembly. We do not use probabilities to model the choice of
which position ~m receives a tile; any fair assembly sequence (see [22] for a definition) will suffice.

4Formally, let α ∈ A2[T ] be a producible terminal assembly. Let A(α) be the set of all assembly sequences
~α = (αi | 1 ≤ i ≤ k) such that res(~α) = α, with p~α,i denoting the probability of attachment of the tile added to

αi−1 to produce αi (noting that p~α,i = 1 if the ith tile attached without contention). Then Pr[α] =
∑

~α∈A(α)

k∏
i=2

p~α,i.
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same position.

4.3 Construction of the Tile Set

This section is devoted to proving the following theorem, which is the main result of this

chapter.

For all δ > 0 and n ∈ Z+, define rδ =

⌈
log δ

8
log 0.9421

⌉
, cδ = 2 +

⌈
log

log δ
8

log 0.717

⌉
, and kn =

⌈
⌊log n⌋+1

3

⌉
, and define b(n, δ) = max

{
rδ, 2

2kn+cδ
}

+ cδ + 3kn.

Theorem 4.3.1. For all δ > 0, there is a tile assembly system Tδ = (T, σ, 2) such that,

for all integers n ≥ b(n, δ), there is a tile concentration assignment ρn : T → [0,∞) such

that a translation of the set { (x, y) | x, y ∈ {1, . . . , n} } strictly self-assembles in Tδ(ρn) with

probability at least 1− δ.

Note that for any fixed δ > 0, b(n, δ) = O(n2/3) (the constant in the O() depending on δ),

whence n ≥ b(n, δ) for all sufficiently large n.

4.3.1 Intuitive Idea of the Construction

Kao and Schweller introduced a basic primitive in [19] (refining a lower-precision technique

described in [5]), called a sampling line. The sampling line allows tile concentrations to encode

a natural number whose binary representation can be probably approximately reproduced.

Kao and Schweller utilize the sampling line to encode n ∈ N by an approximation n′ ∈ N such

that (1− ǫ)n ≤ n′ ≤ (1 + ǫ)n with probability at least 1− δ.

The idea of our construction is as follows. We will “approximate” only numbers m small

enough that the sampling line approximation has sufficient space to be an exact computation

of m with high probability. The construction of Kao and Schweller can be thought of as

estimating n by, in a sense, probabilistically counting to n using independent Bernoulli trials

with appropriately fixed success probability; i.e., the probabilities are used to estimate an

approximate unary encoding of n, which is converted to binary by a counter. Representing

n in unary, of course, takes space n, and recovering it probabilistically from tiles subject to
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randomization requires using much more than space n to overcome the error introduced by

randomization. Kao and Schweller use an ingenious technique to spread this estimation out

into the center of the n×n square being built, affording O(n2) space to approximate n closely.

However, that construction lacks the space to compute n exactly, which requires much more

than n2 Bernoulli trials – applying the standard Chernoff bound to the Kao-Schweller sampling

line achieves an upper bound of O(n5) trials – to achieve a sufficiently small estimation error.

Hence, attempting to use a sampling line directly to compute n would result in a line containing

many more tiles than the n2 tiles that compose an n × n square, and no amount of twisting

the line will cause it to fit inside the boundaries of the square.

We split n’s binary expansion b(n) = b1b2 . . . b⌊log n⌋+1 ∈ {0, 1}
∗ into three subsequences

b1b4b7 . . ., b2b5b8 . . ., and b3b6b9 . . ., each of length about 1
3 log n, and interpret these binary

strings as natural numbers m1,m2,m3 ≤ n1/3 to be estimated. The problem of estimating n

is reduced to that of estimating these three numbers. At the same time, we introduce a new

sampling line technique that can exactly estimate a number m with high probability using

only O(m2) trials.5 Since m1,m2,m3 ≤ n1/3, estimating m1,m2, and m3 will require O(n2/3)

trials, which fits within the width of an n× n square for sufficiently large n.

Intuitively, the reason that estimating m1, m2, and m3 creates an improvement over esti-

mating n directly is that the space needed for the unary encodings of numbers whose binary

length is one-third that of n’s does not scale linearly with that length; the unary encoding of

these numbers scales with n1/3, not n/3, whence a quadratic increase in the space needed for

probabilistic recovery remains sufficiently small (O(n2/3)) that three such decodings easily fit

into space n.

5As opposed to the O(m5) trials that would be required by the Kao-Schweller sampling line. It is possible
to use Kao and Schweller’s original sampling line to estimate seven numbers – ⌊log n⌋ + 1 (the length of the

binary expansion of n), and the six numbers m1 - m6 encoded by length-
⌈

⌊log n⌋+1
6

⌉
substrings of n’s binary

expansion, each small enough that m5
i = o(n) – and to use these numbers to reconstruct n and from that, build

an n×n square. A straightforward and tedious analysis of the constants involved reveals that such a technique
can be used to construct n × n squares for n ≥ 1018. We achieve much more feasible bounds on n (≈ 107 for
δ = 0.01) using the techniques introduced in this chapter, and indeed, better bounds than those required by
Kao and Schweller to approximate n, whose construction achieves, for instance, a (0.01, 0.01)-approximation
only for n ≥ 1013, according to their analysis.
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4.3.2 Probabilistic Decoding of a Natural Number using a Sampling Line

In this section, we describe how to exactly compute a positive integer m probabilistically

from tile concentrations that are appropriately programmed to represent m. In our final

construction, the sampling line will estimate not one but three integers m1, m2, and m3, as

described in Section 4.3.1, by embedding additional bits into the tiles. However, for the sake

of clarity, in this section, we describe how to estimate a single positive integer m, and then

describe in Section 4.3.2.2 how to modify the construction and set the probabilities to allow

three numbers to be estimated simultaneously on a single sampling line.

Figure 4.1: The portion of the basic Kao-Schweller sampling line that controls its length. Two tiles
compete nondeterministically to bind to the right of the line, one of which stops the growth, while the
other continues, giving the length of the line a geometric distribution.

The basic length-controlling portion of the Kao-Schweller sampling line is shown in Figure

4.1.6 A horizontal row of tiles forms to the right of the seed. Two tiles, G (“go”) and S

(“stop”) nondeterministically connect to the right end of the line; G continues the growth,

while S stops the growth. If S has concentration p ∈ [0, 1] and G has concentration 1−p, then

the length L of the line is a geometric random variable with expected value 1/p. By setting

p appropriately, E[L] can be controlled, but not precisely, since a geometric random variable

may have a deviation from the expected value that is too large for our purposes.

6Our description of the Kao-Schweller sampling line is incomplete, as discussed in the next paragraph.
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Kao and Schweller allow a third tile type to bind within the sampling line, which does the

actual sampling for computing a natural number, but our construction splits this sampling into

a separate set of tiles that forms above the line. The sampling portion is discussed in Section

4.3.2.2. For the present time, we restrict our discussion to controlling the length of the line.

4.3.2.1 More Precisely Controlling the Sampling Line Length

Our goal is to control L, the length of the sampling line, such that, by setting tile concen-

trations appropriately, we may ensure that L lies between 2a−1 and 2a with high probability,

for an a ∈ Z+ of our choosing (which will be influenced by the number n we are estimating).

That is, we may ensure that the number of bits required to represent L is computed precisely,

even if the exact value of L varies widely within the interval [2a−1, 2a). We then attach a

counter – a group of tiles that measures the length of the line by counting in binary – to the

north of the line that measures L until the final stopping tile. The stop signal is not intended

to stop the counter immediately, but rather to signal that the counter should continue until it

reaches the next power of 2 – i.e., the next time a new most significant bit is required – and

then stop. Hence, we may choose an arbitrary power of 2 and set tile concentrations to ensure

that the counter counts to that value and then stops.

Figure 4.2: The portion of the sampling line of our construction that controls its length. r stages each
have expected length 1/p, making the expected total length r/p, but more tightly concentrated about
that expected length than in the case of one stage.

To increase the precision with which we control L, we use not one but many stages of “go”

and “stop” tiles, G1, S1, G2, S2, . . . , Gr, Sr. The construction is shown in Figure 4.2. Gi and Si
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each compete to bind to the right of Si−1 and Gi. Si signals a transition to the next stage i+1,

with Sr stopping the growth of the line after r stages. Therefore, the sequence of tiles to the

right of the seed is a string described by the regular expression G∗1S1G
∗
2S2 . . . G∗rSr. Each Si

has concentration p, and the remaining Gi tiles each have concentration 1−p. The length L of

the line is a negative binomial random variable7 with parameters r, p (see [26]) with expected

value r/p by linearity of expectation; i.e., its length is the number of Bernoulli trials required

before exactly r successes, provided each Bernoulli trial has success probability p.

Let N,R ∈ N and p ∈ [0, 1]. A binomial random variable B(N, p) (the number of successes

after N Bernoulli trials, each having success probability p) is related to a negative binomial

random variable N (R, p) (the number of trials before exactly R successes) by the relationships

Pr[N (R, p) < N ] = Pr[B(N, p) > R] and (4.3.1)

Pr[N (R, p) > N ] = Pr[B(N, p) < R]. (4.3.2)

Thus, Chernoff bounds that provide tail bounds for binomial distributions can be applied to

negative binomial distributions via (4.3.1) and (4.3.2).

To cause L to fall in the interval [2a−1, 2a), we must set its expected length L (by setting

p = r/L) to be such that the rth success occurs when the line has length in the interval

[2a−1, 2a). Note that pN is the expected number of successes in the first N tiles of the line;

i.e., it is the expected number of successes in exactly N Bernoulli trials.

We define ǫ and ǫ′ so that L = (1 + ǫ)2a−1 = (1 − ǫ′)2a and the two error probabilities

derived below are approximately equal; ǫ ≈ 0.442695 and ǫ′ ≈ 0.2786525 suffice. The event

that L < 2a−1 is equivalent to the event that 2a−1 Bernoulli trials are conducted (with expected

number of successes p2a−1) with at least r successes. By (4.3.1) and the Chernoff bound [26,

7The term negative is misleading; a negative binomial random variable is better described (informally) as
the inverse of a binomial random variable, if one thinks of a binomial random variable as being like a function
that maps a number of Bernoulli trials to a number of successes. A negative binomial random variable maps a
number of successes to the number of trials necessary to achieve that number of successes.
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Theorem 4.4, part 1],

Pr
[
L < 2a−1

]
= Pr

[
r > (1 + ǫ)p2a−1

]
≤

(
eǫ

(1+ǫ)1+ǫ

)p2a−1

=
(

eǫ

(1+ǫ)1+ǫ

)r2a−1/L

=
(

eǫ

(1+ǫ)1+ǫ

)r2a−1/((1+ǫ)2a−1)
=

(
eǫ

(1+ǫ)1+ǫ

)r/(1+ǫ)
< 0.9421r .

The event that L ≥ 2a is equivalent to the event that 2a Bernoulli trials are conducted (with

expected number of successes p2a) with fewer than r successes. To bound the probability that L

is too large, we use (4.3.2) and the Chernoff bound for deviations below the mean [26, Theorem

4.5, part 1],

Pr [L ≥ 2a] = Pr [r ≤ (1− ǫ′)p2a] ≤
(

e−ǫ′

(1−ǫ′)1−ǫ′

)p2a

=
(

e−ǫ′

(1−ǫ′)1−ǫ′

)r2a/L

=
(

e−ǫ′

(1−ǫ′)1−ǫ′

)r2a/((1+ǫ)2a−1)
=

(
e−ǫ′

(1−ǫ′)1−ǫ′

)2r/(1+ǫ)
< 0.9421r .

By the union bound,

Pr[L 6∈ [2a−1, 2a)] < 2 · 0.9421r (4.3.3)

Therefore, by setting r sufficiently large, we can exponentially decrease the probability that L

falls outside the range [2a−1, 2a), independently of a. For example, letting r = 113 leads to

Pr
[
L 6∈ [2a−1, 2a)

]
< 0.0025. Since r is a constant depending only on δ, it can be encoded into

the tile types as shown in Figure 4.2.

4.3.2.2 Computing a Number Exactly using a Sampling Line

As stated previously, our goal is that, with a sampling line of length O(m2), we can exactly

compute a number m. The idea is shown in Figure 4.3, and is inspired by the sampling line of

Kao and Schweller [19] but can estimate a number more precisely using a given length, as well

as having a length that is itself controlled more precisely by the technique of Section 4.3.2.1.

The length-controlling portion of the sampling line of length L will control a counter placed

above the sampling line, which counts to the next power of 2 greater than L, 2a. This counter

will eventually end up with a total bits before stopping. Let k be the maximum number of
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Figure 4.3: Computing the natural number m = 2 from tile concentrations using a sampling line.
For brevity, glue strengths and labels are not shown. Each column increments the primary counter,
represented by the bits on the left of each tile, and each gray tile increments the sampling counter,
represented by the bits on the right of each tile. The number of bits at the end is l + k, where c is a
constant coded into the tile set, and k depends on m, and l = k + c. The most significant k bits of the
sampling counter encode m. In this example, k = 2 and c = 1.

bits needed to represent m (k will be about 1
3 log n in our application), and let l = a− k. We

form a row above the row described in Section 4.3.2.1, which does the sampling. To implement

the Bernoulli trials that estimate m, one of two tiles A (the gray tile in Figure 4.3) or B

(the white tile in Figure 4.3) nondeterministically binds to every position of this row. Set the

concentration of A to be m2l+2l−1

2a and the concentration of B to be 1− m2l+2l−1

2a . We embed a

second counter – the sampling counter – within the primary counter. Whenever A appears, the

sampling counter increments, and when B appears it does not change. Let M be the random

variable representing the final value of the sampling counter. Then M is a binomial random

variable with E[M ] = m2l + 2l−1.

We will choose k and l so that the most significant k bits of the sampling counter will

almost certainly represent m. Intuitively, the least significant l bits of M “absorb” the error.

This will occur if m2l ≤ M < (m + 1)2l. Note that m < 2k. Let ε = 1
2m . Then the Chernoff
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bound [26, Theorems 4.4/4.5, part 2] and the union bound tell us that

Pr
[
M ≥ (m + 1)2l or M < m2l

]

= Pr [M ≥ (1 + ε)E[M ] or M < (1− ε)E[M ]]

≤ e−E[M ]ε2/3 + e−E[M ]ε2/2 < e−m2l( 1
2m)

2
/3 + e−m2l( 1

2m)
2
/2

= e−
2l−2

3m + e−
2l−2

2m < e−2l−k−2/3 + e−2l−k−2/2

Let c ∈ N be a constant. By setting l = k+c, the probability of error decreases exponentially

in c:

Pr
[
M ≥ (m + 1)2l or M < m2l

]
< e−2c−2/3 + e−2c−2/2 < 2 · 0.7172c−2

. (4.3.4)

For instance, letting c = 6 bounds the left-hand side of (4.3.4) below 0.0052.

The number of samples is 2a = 22k+c = O((2k)2). Since m < 2k, integers m such that

m2 ≪ n can be “probably exactly computed” using much fewer than n Bernoulli trials, and

can therefore be computed by a sampling line without exceeding the boundaries of an n × n

square.

4.3.3 Computing n Exactly

We have shown how to compute a number m exactly using a sampling line of length

O(m2) and width O(log m). To compute n, the dimensions of the square, we must compute

m1,m2, and m3, which are the numbers represented by the bits of the binary expansion of n

at positions congruent to 1 mod 3, 2 mod 3, and 0 mod 3, respectively. To compute all three of

these numbers, we embed two extra sampling counters into the double counter, in addition to

the sampling counter described in Section 4.3.2, to create a quadruple counter. This requires

8 sampling tiles instead of 2, in order to represent each of the possible outcomes of conducting

three simultaneous Bernoulli trials, each trial used for estimating one of m1, m2, or m3.

Given i ∈ {1, 2, 3}, let bi ∈ {0, 1} denote the outcome of the ith of three simultaneous

Bernoulli trials, and let pi(bi) denote the probability we would like to associate with that
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outcome. As noted in Section 4.3.2.2, the values of the ci’s are given by pi(1) = mi2l+2l−1

2a , and

pi(0) = 1− pi(1).

Since each of the three simultaneous Bernoulli trials is independent, we can calculate the

appropriate concentration of the tile representing the three outcomes by multiplying the three

outcome probabilities together. Then the required concentration of the tile representing out-

comes b1, b2, b3 is given by p1(b1) · p2(b2) · p3(b3).

Once the values m1, m2, and m3 are computed, we must remove the c least significant

(bottom) bits from the bottom of the primary counter. Since c is a constant depending only

on δ, it can be encoded into the tile types. We must then remove the bottom half of the

remaining bits.8 At this point, the concatenation of the bits on the tiles represent the binary

expansion of n. Rather than expand them out to use three times as many tiles, we simply

translate each of them to an octal digit, giving the octal representation of n, with one octal

digit per tile replacing the three bits per tile. Finally, this representation of n is rotated 90

degrees counter-clockwise, used as the initial value for a decrementing, upwards-growing, base-

8 counter, and used to fill in an n×n square using the standard construction [32]. Rotating n to

face up starts the counter 2k+2 tiles from the bottom of the construction so far. Furthermore,

testing whether the counter has counted below 0 requires counting once beyond 0, using 2

more rows than the starting value of the counter. Therefore, to ensure that exactly an n× n

square is formed, the value n − 2k − 4, rather than n exactly, is programmed into the tile

concentrations to serve as the start value of the upwards-growing counter. An outline of this

construction is shown in Figure 4.4.

4.3.4 Choice of Parameters

We now derive the settings of various parameters required to achieve a desired success prob-

ability and derive lower bounds on n necessary to allow the space required by the construction.

To ensure probability of failure at most δ, we pick r, the number of stages of stopping tiles

that must attach before the primary counter is sent the stop signal, so that 2 · 0.9421r ≤ δ
4 as

8Isolating the most significant half of the bits can be done using a tile set similar to the algorithm one might
use to program a single-tape Turing machine to compute the function 02n 7→ 0n.
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Figure 4.4: High-level overview of the entire construction, not at all to scale. For brevity, glue strengths
and labels are not shown. The double counter number estimator of Figure 4.3 is embedded with two
additional counters to create a quadruple counter estimating m1, m2, and m3, shown as a box labeled as
“Figure 4.3” in the above figure. In this example, m1 = 4, m2 = 3, and m3 = 15, represented vertically
in binary in the most significant 4 tiles at the end of the quadruple counter. Concatenating the bits of
the tiles results in the string 001101011011, the binary representation of 859, which equals n − 2k − 4
for n = 871, so this example builds an 871 x 871 square. (Actually, 871 is too small to work with our
construction, so the counter will exceed length 871, but we choose small numbers to illustrate the idea
more clearly.) Once the counter ends, c tiles (c = 3 in this example) are shifted off the bottom, and the
top half of the tiles are isolated (k = 4 in this example). Each remaining tile represents three bits of
n, which are converted into octal digits, rotated to face upwards, and then used to initialize a base-8
counter that builds the east wall of the square. Filler tiles cover the remaining area of the square.
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in (4.3.3):

r =

⌈
log δ

8

log 0.9421

⌉
.

For example, choosing r = 113 achieves probability of error δ/4 (in ensuring the counter stops

between the numbers 2a−1 and 2a) at most 0.0025.

To ensure that each of m1, m2, and m3 are computed exactly, we set c, the number of extra

bits used in the primary counter beyond 2k, such that e−2c−2/3 + e−2c−2/2 ≤ δ
4 , as in (4.3.4),

or more simply, such that 2 · 0.7172c−2
≤ δ

4 ; i.e., set

c = 2 +

⌈
log

log δ
8

log 0.717

⌉
.

For example, choosing c = 7 achieves probability of error δ/4 (in ensuring that m1 is computed

correctly) at most 0.0025 (in fact, at most 0.000005).

By the union bound, the length of the sampling line and the values of m1, m2, and m3 are

computed with sufficient precision to compute the exact value of n with probability at least

1− δ. The example values of r and c given above achieve δ ≤ 0.01.

The choices of r and c imply a lower bound on the value of n necessary to allow sufficient

space to carry out the construction. Clearly the counter must reach at least value r, since there

are r different stopping stages. The more influential factor will be the value c, which doubles

the space necessary to run the counter each time it is incremented by 1. n requires ⌊log n⌋+ 1

bits to represent, but our estimation will be a string of length the next highest multiple of 3

above ⌊log n⌋+ 1. Therefore, each of m1, m2, and m3 requires

k =

⌈
⌊log n⌋+ 1

3

⌉

bits to represent. Recall that the primary counter will have height 2k + c and count to 22k+c

(so long as r ≤ 22k+c). Then, c columns are required to shift off the constant c bits from the

least significant bits of the counter, and 2k columns are required to shift off the least significant

half of the bits of the counter to isolate the k most significant bits. k columns are needed to
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translate the groups of three bits into octal and to rotate this string to face upwards for the

square-building counter.

Hence, the total length required along the bottom of the square to compute n is max{r, 22k+c}+

c+3k. Expanding out the definitions of r, k, and c derived above gives the lower bound b(n, δ)

on n described in Theorem 4.3.1.

For sufficiently large n and small enough δ, r is much smaller than 22k+c, so the latter

term dominates. For example, to achieve probability of error δ ≤ 0.01 requires n > 8,000,000.

According to preliminary experimental tests, in practice, a smaller value of c is required than

the theoretical bounds we have derived. For example, if the desired error probability is δ = 0.01,

setting c = 7 satisfies the analysis given above, but in experimental simulation, c = 3 appears

to suffice for probability of error at most 0.01, and reduces the space requirements by a factor

of 27−3 = 16. In this case, n = 9000 can be computed by a construction that will stay within

the 9000 x 9000 square.

A simulated implementation of this tile assembly system using the ISU TAS Tile Assembly

Simulator [27] is available at http://www.cs.iastate.edu/~lnsa/software.html. The tile

set uses approximately 4500+ 9c+ 4r tile types, where r and c are calculated from δ as above.

4.4 Conclusion

We have described how a single tile set in Winfree’s abstract tile assembly model, appro-

priately “programmed” by setting tile concentrations, exactly assembles an n× n square with

high probability, for any sufficiently large n.

4.4.1 Future Work

The focus of the present chapter is on conceptual clarity. We have therefore described the

simplest (i.e., easiest to understand, but not necessarily smallest) version of the tile assem-

bly system that achieves the desired asymptotic result that an n × n square assembles with

high probability for sufficiently large n. We now observe that this theoretical result could be

improved in practice by complicating the tile set.
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Our implementation of the tile set uses approximately 4500 + 9c + 4r tiles, where, for

example, r = 113 and c = 7 are sufficient to achieve error probability δ ≤ 0.01. The tiles

are so numerous because of the need to simultaneously represent 4 bits in a tile, in addition

to information such as the significance of the bit (MSB, LSB, or interior bit), and doing

computation such as addition, which requires tiles that can handle the 28 possible input bit

+ carry signals. Putting together a few such modules of tile sets results in thousands of tiles

before too long. The number of tile types could be reduced by splitting the estimation of m1,

m2, and m3 into three distinct geometrical regions, so that each tile is required to remember

less information. This would complicate the tile set, as it would require more shifting tricks

to ensure sufficient room for all counters, and would require bringing the bits back together

again at the end, but it would likely reduce the number of tile types.

A large value of n is required to achieve a probability of success at least (1−δ) for reasonably

small δ; n > 8 · 106 is required to estimate n with 99% chance of correctness (in theory, but

apparently not in practice, as discussed in Section 4.3.4). This shortcoming can be compensated

in a number of ways.

In a similar spirit to the linear speedup theorem, more than three simultaneous Bernoulli

trials may be conducted with each sampling tile. For example, conducting 6 Bernoulli trials

with each sampling tile would estimate two bits of m1, . . . ,m3 with per sampling tile, rather

than one bit, halving the required length of the sampling line. This would result in a pro-

hibitively large tile set, however; as the number of tile types increases exponentially with the

number of simultaneous Bernoulli trials per tile type.

A conceptually simpler and practically more feasible improvement is to use 0/1-valued

tile concentrations to simulate tile type programming (i.e., designing tile types specially to

build a particular size square, as in [32]) for small values of n, by including tile types that

deterministically construct an n × n square for each small n, setting concentrations of those

tiles to be 1 and setting concentrations of all other tiles to be 0. Many of the same square-

building tile types for can be reused for different values of n (see [32]), with the different values

of n largely being dependent on ≈ log n hard-coded tiles that immediately attach to the seed.
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For singly-seeded tile systems, 3 log N + O(1) tiles are required to handle all n ≤ N : for each

i ∈ {1, . . . , log N} that represents the position of a bit of n, three tile types are required,

one representing “0 at position i”, one representing “1 at position i” (each of which has

double-strength bonds on two sides), and one representing “end of string at position i” (with a

double-strength bond on one side and a zero-strength bond on the other). Though this solution

lacks the “feel” of tile concentration programming, it is likely that real-life implementations of

tile concentration programming will need to use such hard-coding tricks for smaller structures

that lack the space to carry out the amount of sampling required to reconstruct precise inputs

solely from tile concentrations.

Improved analysis of the tail bounds could reduce the number of samples needed to guar-

antee exact estimation of the numbers. Preliminary experimental analysis suggests that these

bounds are not tight.

An alternate improvement to the tile set would be to combine the present technique with the

Kao-Schweller technique of building a sampling line inside of a square, to more efficiently use

the n2 space available to carry out the estimation. However, square-building is not necessarily

the only application of this technique, as discussed next.

The primary novel contribution of this chapter is a tile set that, through appropriate tile

concentration programming, forms a thin structure of length O(n2/3) and height O(log n),9

whose rightmost tiles encode the value of n. The number n could be used to assemble useful

structures other than squares. For the task of building a square, this construction wastes the

≈ n2 space available above the thin rectangle, but for computing other structures, it may be

advantageous that the rectangle is kept thin. For instance, biochemists routinely use filters

(e.g., Millipore Ultrafiltration Membranes) and porous resins [7] to separate proteins based on

size, in order to isolate one particular protein for study. The ability to precisely control the

size of the filter holes or resin beads would allow for more targeted filtering of proteins than

is possible at the present time. DNA is likely too reactive with amino acids to be used as the

9By partitioning n’s binary representation into t rather than three subsequences, for t ∈ N a constant, the
number of trials needed to estimate n is O(n2/t). However, the constant factors in the O() increase, making the
technique even less feasible for small values of n. But if some application requires an asymptotically very short
line, the line can be made length O(nε) for any ε > 0 using this technique.
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substrate for such a structure, so an implementation of the tile assembly model not based on

DNA would be required for such a technique.

Similarly, polyacrylamide gel electrophoresis [36], another technique for discriminating bi-

ological molecules on the basis of size, requires molecular mass size markers, which are control

molecules of known molecular mass, in order to compare against the molecule of interest on

the gel. At the present time, some naturally-occurring molecules of known mass are used, but

their masses are not controllable, and the ability to quickly and easily assemble molecules of

precisely a desired target mass would be useful in experiments requiring mass markers that

differ from the standards. Again, DNA is a special case in which this idea is unnecessary, since

precise standards have been developed for DNA gels (e.g., Novagen DNA Markers). But the

tile assembly model may one day be implemented using substances that are appropriate for a

protein gel.
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Chapter 5. A Domain-Specific Language for Programming in the Tile

Assembly Model

This chapter is joint work with Matt Patitz and was originally published as [14].

5.1 Introduction

5.1.1 Background

The current practice of the design of tile types for the aTAM and related models is not

unlike early machine-level programming. Numerous theoretical papers [18,32,37,38] focus on

the tile complexity of systems, the minimum number of tile types required to assemble certain

structures such as squares. A major motivation of such complexity measures is the immense

level of laboratory effort presently required to create physical implementations of tiles.

Early electronic computers occupied entire rooms to obtain a fraction of the memory and

processing power of today’s cheapest mobile telephones. This limitation did not stop algo-

rithm developers from creating algorithms, such as divide-and-conquer sorting and the simplex

method, that find their most useful niche when executed on data sets that would not have fit

on all the memory existing in the world in 1950. Similarly, we hope and expect that the basic

components of self-assembly will one day, through the ingenuity of physical scientists, become

cheap and easy to produce, not only in quantity but in variety. The computational scientists

will then be charged with developing disciplined methods of organizing such components so

that systems of high complexity can be designed without overwhelming the engineers producing

the design. In this chapter, we introduce a preliminary attempt at such a disciplined method

of controlling the complexity of designing tile assembly systems in the aTAM.

Simulated tile assembly systems of moderate complexity cannot be produced by hand; one
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must write a computer program that handles the drudgery of looping over related groups of

individual tile types. However, even writing a program to produce tile types directly is error-

prone, and more low-level than the ways that we tend to think about tile assembly systems.

Fowler [16] suggests that a domain-specific language (DSL) is an appropriate tool to intro-

duce into a programming project when the syntax or expressive capabilities of a general-purpose

programming language are awkward or inadequate for certain portions of the project. He dis-

tinguishes between an external DSL, which is a completely new language designed especially

for some task (such as SQL for querying or updating databases), and an internal DSL, which

is a way of “hijacking” the syntax of an existing general-purpose language to express concepts

specific to the domain (e.g. Ruby on Rails for writing web applications). An external DSL

may be as simple as an XML configuration file, and an internal DSL may be as simple as a

class library. In either case the major objective is to express “commands” in the DSL that

more closely model the way one thinks about the domain than the “host” language in which

the project is written.

If the syntax and semantics of the DSL are precisely defined, this facilitates the creation

of a semantic editor (text-based or visual), in which programs in the DSL may be produced

using a tool that can visually show semantically meaningful information such as compilation

or even logical errors, and can help the programmer directly edit the abstract components of

the DSL, instead of editing the source code directly. For example, Intellij IDEA and Eclipse

are two programs that help Java programmers to do refactorings such as variable renaming or

method inlining, which are at their core operations that act directly on the abstract syntax

tree of the Java program rather than on the text constituting the source code of the program.

We have kept such a tool in mind as a guide for how to appropriately structure the DSL for

designing tile systems.

We structure this chapter in such a way as to de-emphasize any dependence of the DSL on

Python in particular or even on object-oriented class libraries in general. The DSL provides a

high-level way of thinking about tile assembly programming, which, like any high-level language

or other advance in software engineering, not only automates mundane tasks better left to
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computers, but also restricts the programmer from certain error-prone tasks, in order to better

guide the design, following the dictum of Antoine de Saint-Exupery that a design is perfected

“not when there is nothing left to add, but nothing left to take away.”

5.1.2 Brief Outline of the DSL

We now briefly outline the design of the DSL. Section 5.2 provides more detail.

The most fundamental component of designing a tile assembly system manually is the tile

type. In our DSL, the most fundamental component is an object known as a tile template. A tile

template represents a group of tile types (each tile type being an instance of the tile template),

sharing the same input sides, output sides, and function that transforms input signals into

output signals. The two fundamental operations of the DSL are join and add transition. Both

make the assumption that each tile template has well-defined input and output sides. In a

join, an input tile template A is connected to an output tile template B in a certain direction

d ∈ {N,S,E,W}, expressing that an instance tA of A may have on its output side in direction

d an instance tB of B. This expresses an intention that in the growth of the assembly, tA will

be placed first, then tB, and they will bind with positive strength, with tA passing information

to tB . Whereas a join is an operation connecting the output side of a tile template to the input

side of another, a transition “connects” input sides to output sides within a single tile template,

by specifying how to compute information on the output side as a function of information on

the input sides. This is called adding a transition rather than setting, since the information

on the output sides may contain multiple independent output signals, and their computations

may be specified independently of one another if convenient.

This notion of independent signals is modeled already in other DSLs for the aTAM [4] and

for similar systems such as cellular automata [10]. The join operation, however, makes sense

in the aTAM but not in a system such as a cellular automaton, where each cell contains the

same transition function(s). The notion of tile templates allows one to break an “algorithm”

for assembly into separate “stages”, each stage corresponding to a different tile template, with

each stage being modularized and decoupled from other stages, except through well-defined
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and restricted signals passed through a join. There is a rough analogy with lines of code

in a program: a single line of code may execute more than once, each time executed with

the state of memory being different than the previous. Similarly, many different tile types,

with different actual signal values, generated from the same tile template, may be placed

during the growth of an assembly. Another difference between our language and that of [4]

is that our language appears to be more general; rather than being geared specifically toward

the creation of geometric shapes, our language is more low-level, but also more general.1

Additionally, [39] presents a DSL which provides a higher level framework for the modeling

of various self-assembling systems, while the focus of our DSL on the aTAM creates a more

powerful platform for the development of complex tile assembly systems.

This chapter is organized as follows. Section 5.2 describes the DSL for tile assembly pro-

gramming in more detail and gives examples of design and use. Section 5.3 concludes the

chapter and discusses future work and open theoretical questions.

A preliminary implementation of the DSL and the visual editor can be found at http:

//www.cs.iastate.edu/~lnsa.

5.2 Description of Language

The DSL is written as a class library in the Python programming language. It is designed

as a set of classes which encapsulate the logical components needed to design a tile assembly

system in the aTAM where the temperature value τ = 2.

The DSL is designed around the principal notion that data moves through an assembly

as ‘signals’ which pass through connected tiles as the information encoded in the input glues,

allowing a particular tile type to bind in a location, and then, based on the ‘computation’

performed by that tile type, as the resultant information encoded in the glues of its output

edges. (Of course, tiles in the aTAM are static objects so the computation performed by a

given tile type is a simple mapping of one set of input glues to one set of output glues which

is hardcoded at the time the tile type is created.) Viewed in this way, signals can be seen

1An extremely crude analogy would be that the progression manual tile programming → Doty-Patitz →
Becker is roughly analogous to machine code → C → Logo.
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to propagate as tiles attach and an assembly forms, and it is these signals which dictate the

final shape of the assembly. Using this understanding of tile-based self-assembly, we designed

the DSL from the standpoint of building tile assembly systems around the transmission and

processing of such signals.

We present a detailed overview of the objects and operations provided by the DSL, then

demonstrate an example exhibiting the way in which the DSL is used to design a tile set.

5.2.1 Client-side description

The DSL provides a collection of objects which represent the basic design units and a set

of operations which can be performed on them. We describe these objects and operations in

this section, without describing the underlying data structures and algorithms implementing

them.

The DSL strictly enforces the notion of input and output sides for tile types, meaning that

any given side can be designated as receiving signals (an input side), sending signals (an output

side), or neither (a blank side).

5.2.1.1 DSL objects

Tile system The highest level object is the tile system object, which represents the full

specification of a temperature 2 tile assembly system. It contains child objects representing

the tile set and seed specification, and provides the functionality to write them out to files

in a format readable by the ISU TAS simulator [27] (http://www.cs.iastate.edu/~lnsa/

software.html).

Tile In some cases, especially for tiles contained within seed assemblies, there is no com-

putation being performed. In such situations, it may be easier for the programmer to fully

specify the glues and properties of a tile type. The tile object can be used to easily create such

hardcoded tile types.
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Tile template The principle design unit in the DSL is the tile template. This object

represents a collection of tile types which share the following properties:

• They have exactly the same input, output, and blank sides.

• The types of signals received/transmitted on every corresponding input/output side are

identical.

• The computation performed to transform the input signals to output signals can be

performed by the same function, using the values specific to each instantiated tile type.

Logically, a tile template represents the set of tile types which perform the same computa-

tion on different values of the same input signal types.

Tile set template A tile set template contains all of the information needed to generate

a tile set. It contains the sets of tile and tile template objects included in the tile set, as

well as the logic for performing joins, doing error checking, etc. The tile set template object

encapsulates information and operations that require communication between more than one

tile template object, such as the join operation, whereas a tile template is responsible for

operations that require information entirely local to the tile template, such as add transition.

Signal A signal is simply the name of a variable and the set of allowable values for it.

For example, a signal used to represent a binary digit could be defined by giving it the name

bit and the allowable values 0 and 1.

Transition Transitions are the objects which provide the computational abilities of tile

templates. A transition is defined as a set of input signal names, output signal names, and a

function which operates on the input signals to yield output signals. The logic of a function can

be specified as a table enumerating all input signals and their corresponding outputs, a Python

expression, or a Python function, yielding the full power of a general purpose programming

language for performing the computations. An example is shown in Figure 5.1a.
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carry=(0,1)

bit=(0,1)

carry=(0,1)

bit=(0,1)

calc(bit b, carry c)
{

retb = (b+c)mod 2
retc = floor((b+c)/2)
return (retb,retc)

}

(a) Transition: The function calc takes
bit/carry values as input from the bottom/right,
and computes new bit/carry values which are
then output on the top/left.

bit=(0,1)
tt2 tt1

(b) Join: The tile template on the right (tt1) is send-
ing the signal bit with allowable values (0, 1) to the
tile template on the left (tt2).

Figure 5.1: Logical representations of some DSL objects

5.2.1.2 DSL operations

Join The primary operation between tile templates, which defines the signals that are

passed and the paths that they take through an assembly, is called a join. Joins are performed

between the complementary sides (north and south, or east and west) of two tile templates

(which need not be unequal), or a tile and a tile template. If one parameter is a tile, then all

signals must be given just one value; otherwise a set of possible values that could be passed

between the tile templates is specified (which can still be just one). A join is directional,

specifying the direction in which a signal (or set of signals) moves. This direction defines the

input and output sides of the tile templates which a join connects. An example is shown in

Figure 5.1b.

Add transition Transition objects can be added to tile template objects, and indicate

how to compute the output signals of a tile template from the input signals. If convenient, a

single transition can compute more than one output signal by returning a tuple. Each output

signal of a tile template with more than one possible value must have a transition computing



55

it.

Add chooser There may be multiple tile templates that share the same input signal

values on all of their input sides. Depending on the join structure, the library may be able to

use annotations (see below) to avoid “collisions” resulting from this, but if the tile templates

share joins, then it may not be possible (or desirable) for the library to automatically calculate

which tile template should be used to create a tile matching the inputs. In this case, a user-

defined function called a chooser must be added so that the DSL can ensure that only a single

tile type is generated for each combination of input values. This helps to avoid accidental

nondeterminism.

Set property Additional properties such as the display string, tile color, and tile type

concentrations can be set using user-defined functions for each property.

5.2.2 Additional features

The DSL provides a number of additional, useful features to programmers, a few of which

will be described in this section. First, the DSL performs an analysis of the connection structure

formed between tile templates by joins and creates annotations, or additional information in

the form of strings, which are appended to glue labels. These annotations ensure that only

tile types created from tile templates which are connected by joins can bind with each other

in the directions specified by those joins, preventing the common error of accidentally allowing

two tiles to bind that should not because they happen to communicate the same information

in the same direction as two unrelated tiles.

Although some forms of ‘accidental’ nondeterminism are prevented by the DSL, it does

provide methods by which a programmer can intentionally create nondeterminism. Specifically,

a programmer can either design a chooser function which returns more than one output tile

type for a given set of inputs, or one can add auxiliary inputs to a tile template, which are

input signals that do not come from any direction.
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The DSL provides additional error-checking functionality. For example, each tile template

must have either one strength-2 input or two strength-1 inputs. As another example, the

programmer is forced to specify a chooser function if the DSL cannot automatically determine

a unique output tile template, which is a common source of accidental nondeterminism in tile

set design.

5.2.3 Example construction

In this section, we present an example of how to use the DSL to produce a tile assembly

system which assembles a log-width binary counter. In order to slightly simplify this example,

the seed row of the assembly, representing the value 1, will be two tiles wide instead of one. All

other rows will be of the correct width, i.e. a row representing the value n will be ⌈log2(n + 1)⌉

tiles wide.

Figure 5.2a shows a schematic diagram representing a set of DSL objects, namely tiles, tile

templates and joins, which can generate the necessary tile types. It is similar in appearance

to how such a diagram appears in the visual editor. The squares labeled lsbseed and msbseed

represent hard-coded tiles for the seed row. The other squares represent tile templates, with

the names shown in the middle. The connecting lines represent joins, which each have a

direction specified by a terminal arrow and a signal which is named (either bit or carry) and

has a range of allowable values (either 0, or 1, or both). The dashed line between lsbseed and

msbseed represents an implicit join between these two hard-coded tile types because they were

manually assigned the same glues.

In addition to the joins, transition functions must be added to the lsb, interior, and msb tile

templates to compute their respective output signals, since each has multiple possible values

for those signals (whereas grow, for instance, which always outputs carry=1 to its west and

bit=0 to its north, so needs no transitions). Finally, since the tile templates msb and grow

have overlapping input signal values of bit=1 from msb on the south and carry=1 from interior

on the east, a chooser function must be supplied to indicate that an instance of grow should

be created for the signals bit=1 and carry=1, and an instance of msb should be created in the
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(a) Schematic diagram depicting the tile templates and joins which
are used to generate a tile set that self-assembles a log-width bi-
nary counter. All east-west joins pass the carry signal and south-
north joins pass the bit signal (although some of them are re-
stricted to subsets of the allowable values (0, 1)). Transitions are
not shown explicitly, but, for example, the tile template interior

would have a transition as shown in Figure 5.1a.
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(b) First 9 rows of the assembly of a
log-width binary counter. Each tile
is labeled with its bit value on top
and the name of the tile template
from which it was generated on the
bottom.

Figure 5.2: Schematic diagram and partial assembly of generated tile types for log-width counter.
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other three circumstances. Figure 5.2b shows a partial assembly of tiles generated from the

tile template diagram of Figure 5.2a, without glue labels shown explicitly.

5.3 Conclusion and Future Work

We have described a domain-specific language (DSL) for creating tile sets in the abstract

Tile Assembly Model. This language is currently implemented as a Python class library but

is framed as a DSL to emphasize its role as a high-level, disciplined way of thinking about the

creation of tile systems.

5.3.1 Semantic Visual Editor

The DSL is implemented as a Python class library, but one thinks of the “real” programming

as the creation of visual tile templates and the joins between them, as well as the addition of

signal transitions. We have implemented a visual editor that removes the Python programming

and allows the direct creation of the DSL objects and execution of its operations. It detects

errors, such as a tile template having only one input side of strength 1, while temporarily

allowing the editing to continue. Other types of errors, that do not aid the user in being

allowed to persist, such as the usage of a single side as both an input and output, are prohibited

outright. Many improvements in error detection and handling remain to be implemented and

support remains to be added for several features of the DSL.

One can therefore create a tile set by directly drawing the tile templates as shown in Figure

5.2a, while receiving helpful tips from a semantically-aware editor about errors.

5.3.2 Avoidance of Accidental Nondeterminism

Initially, our hope had been to design a DSL with the property that it could be used

in a straightforward way to design a wide range of existing tile assembly systems, but was

sufficiently restricted that it could be guaranteed to produce a deterministic TAS, so long as

nondeterminism was not directly and intentionally introduced through chooser functions or

auxiliary inputs. Unfortunately, it is straightforward to use the DSL to design a TAS that
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begins the parallel simulation of two copies of a Turing machine so that if (and only if) the

Turing machine halts, two “lines” of tiles are sent growing towards each other to compete

nondeterministically, whence the detection of such nondeterminism is undecidable. A common

cause of “accidental nondeterminism” in the design of tile assembly systems is the use of a single

side of a tile type as both input and output; this sort of error is prevented by the nature of the

DSL in assigning each tile template unique, unchanging sets of input sides and output sides.

However, we cannot see an elegant way to restrict the DSL further to automatically prevent

or statically detect the presence of the sort of “geometric nondeterminism” described in the

Turing machine example. The development of such a technique would prove a boon to the

designers of tile assembly systems. Conversely, consider Blum’s result [6] that any programming

language in which all programs are guaranteed to halt requires uncomputably large programs to

compute some functions that are trivially computable in a general-purpose language. Perhaps

an analogous theorem implies that any restriction statically enforcing determinism also cripples

the Tile Assembly Model, so that accidental nondeterminism in tile assembly, like accidental

infinite loops in software engineering, would be an unavoidable fact of life, and time is better

spent developing formal methods for proving determinism rather than hoping that it could be

automatically guaranteed.

5.3.3 Further Abstractions

To better handle very large and complex constructions, it would be useful to support further

abstractions, such as grouping sets of tile templates and related joins into “modules” which

could then be treated as atomic units. These modules should have well-defined interfaces which

allow them to be configured and combined to create more complicated, composite tile sets.

5.3.4 Other Self-Assembly Models

The abstract Tile Assembly Model is a simple but powerful tool for exploring the theoretical

capabilities and limitations of molecular self-assembly. However, it is an (intentionally) overly-

simplified model. Generalizations of the aTAM, such as the kinetic Tile Assembly Model
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[46,47], and alternative models, such as graph self-assembly [30], have been studied theoretically

and implemented practically. We hope to leverage the lessons learned from designing the aTAM

DSL to guide the design of more advanced DSLs for high-level programming in these alternative

models.
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Chapter 6. Limitations of Self-Assembly at Temperature One

This chapter is joint work with Matt Patitz and Scott Summers and was originally published

as [15].

6.1 Introduction

Despite its deliberate over-simplification, the TAM is a computationally and geometrically

expressive model at temperature 2. The reason is that, at temperature 2, certain tiles are not

permitted to bond until two tiles are already present to match the glues on the bonding sides,

which enables cooperation between different tile types to control the placement of new tiles.

Winfree [45] proved that at temperature 2 the TAM is computationally universal and thus can

be directed algorithmically.

In contrast, we aim to prove that the lack of cooperation at temperature 1 inhibits the

sort of complex behavior possible at temperature 2. Our main theorem concerns the weak

self-assembly of subsets of Z2 using temperature 1 tile assembly systems. Informally, a set

X ⊆ Z2 weakly self-assembles in a tile assembly system T if some of the tile types of T are

painted black, and T is guaranteed to self-assemble into an assembly α of tiles such that X is

precisely the set of integer lattice points at which α contains black tile types. As an example,

Winfree [45] exhibited a temperature 2 tile assembly system, directed by a clever XOR-like

algorithm, that weakly self-assembles a well-known set, the discrete Sierpinski triangle, onto

the first quadrant. Note that the underlying shape (set of all points containing a tile, whether

black or not) of Winfree’s construction is an infinite canvas that covers the entire first quadrant,

onto which a more sophisticated set, the discrete Sierpinski triangle, is painted.

We show that under a plausible assumption, temperature 1 tile systems weakly self-assemble
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only a limited class of sets. To prove our main result, we require the hypothesis that the tile

system is pumpable. Informally, this means that every sufficiently long path of tiles in an

assembly of this system contains a segment in which the same tile type repeats (a condition

clearly implied by the pigeonhole principle), and that furthermore, the subpath between these

two occurrences can be repeated indefinitely (“pumped”) along the same direction as the first

occurrence of the segment, without “colliding” with a previous portion of the path. We give a

counterexample in Section 6.2 (Figure 6.1) of a path in which the same tile type appears twice,

yet the segment between the appearances cannot be pumped without eventually resulting in

a collision that prevents additional pumping. The hypothesis of pumpability states (roughly)

that in every sufficiently long path, despite the presence of some repeating tiles that cannot

be pumped, there exists a segment in which the same tile type repeats that can be pumped.

In the above-mentioned counterexample, the paths constructed to create a blocked segment

always contain some previous segment that is pumpable. We conjecture that this phenomenon,

pumpability, occurs in every temperature 1 tile assembly system that produces a unique infinite

structure. We discuss this conjecture in greater detail in Section 6.5. We also prove that if

the terminal assembly of a directed tile assembly system has no glue mismatches between

neighboring tiles, then the tile assembly system is pumpable.

A linear set X ⊆ Z2 is a set of integer lattice points with the property that there are

three vectors ~b (the “base point” of the set), ~u, and ~v (the two periods of the set), such that

X =
{

~b + n · ~u + m · ~v
∣∣∣ n,m ∈ N

}
. That is, a linear set is a “two-dimensionally periodic”

set that repeats infinitely along two vectors (linearly independent vectors in the non-degenerate

case), starting at some base point ~b. We show that any directed, pumpable, temperature 1

tile assembly system weakly self-assembles a set X ⊆ Z2 that is a finite union of linear sets,

known also as a semilinear set. Semilinear sets are computationally very simple. They have

been shown, for example, to be equivalent to those sets definable in the (very weak) theory of

Presburger arithmetic [29,40], the first-order theory of natural numbers with only the addition

operation (but lacking multiplication). They have also been shown [17] to characterize the set

of languages (of tuples of natural numbers) generated by reversal-bounded counter machines,
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which are finite-state machines without an input tape, and a finite number (two in our case since

we work in Z2) of counters – a register containing a natural number that can be incremented,

decremented, or tested for 0 – with the property that each counter can only switch between

incrementing and decrementing a bounded number of times. For completeness, we give a self-

contained proof (Observation 6.3.2) that the projection of any semilinear set onto the x-axis,

when expressed in unary, is a regular language.

It is our contention that weak self-assembly captures the intuitive notion of what it means

to “compute” with a tile assembly system. For example, the use of tile assembly systems to

build shapes is captured by requiring all tile types to be black, in order to ask what set of

integer lattice points contain any tile at all (so-called strict self-assembly). However, weak

self-assembly is a more general notion. For example, Winfree’s above mentioned result shows

that the discrete Sierpinski triangle weakly self-assembles at temperature 2 [33], yet this shape

does not strictly self-assemble at any temperature [22]. Hence weak self-assembly allows for a

more relaxed notion of set building, in which intermediate space can be used for computation,

without requiring that the space filled to carry out the computation also represent the final

result of the computation.

As another example, there is a standard construction [45] by which a single-tape Turing

machine may be simulated by a temperature 2 tile assembly system. Regardless of the seman-

tics of the Turing machine (whether it decides a language, enumerates a language, computes a

function, etc.), it is routine to represent the result of the computation by the weak self-assembly

of some set. For example, Patitz and Summers [28] showed that for any decidable language

A ⊆ N, A’s projection along the X-axis
(
the set

{
(x, 0) ∈ N2

∣∣ x ∈ A
})

weakly self-assembles

in a temperature 2 tile assembly system. As another example, if a Turing machine computes a

function f : N→ N, it is routine to design a tile assembly system based on Winfree’s construc-

tion such that, if the seed assembly is used to encode the binary representation of a number
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n ∈ N, then the tile assembly system weakly self-assembles the set





(k, 0) ∈ N2

∣∣∣∣∣∣∣

the kth least significant bit of the

binary representation of f(n) is 1





.

Our result is motivated by the thesis that if a tile assembly system can reasonably be said

to “compute”, then the result of this computation can be represented in a straightforward

manner as a set X ⊆ Z2 that weak self-assembles in the tile assembly system, or a closely

related tile assembly system. Our examples above provide evidence for this thesis, although it

is as informal and unprovable as the Church-Turing thesis. On the basis of this claim, and the

triviality of semilinear sets (shown more formally in Observation 6.3.2), we conclude that our

main result implies that directed, pumpable, temperature 1 tile assembly systems are incapable

of general-purpose deterministic computation, without further relaxing the model.

This chapter is organized as follows. Section 6.2 introduces new definitions and concepts

that are required in proving our main theorem. Section 6.3 states our main theorem, and

contains an observation with a self-contained proof justifying the suggestion that semilinear

sets are computationally very simple, based on their relationship to regular languages. Section

6.4 shows an application of our theorem, showing that, unlike the case of temperature 2, no

non-trivial discrete self-similar fractal – such as the discrete Sierpinski triangle – weakly self-

assembles at temperature 1 in a directed, pumpable tile assembly system. Section 6.5 concludes

the chapter and discusses open questions. Section 6.5 also observes that a relaxation of the

tile assembly model, allowing negative glue strengths and allowing glues with different colors

to interact, is capable of general-purpose computation. Section 6.6 is a technical appendix

containing proofs of some results.

6.2 Pumpability, Finite Closures, and Combs

Throughout this section, let T = (T, σ, 1) be a directed TAS, and α be the unique assembly

satisfying α ∈ A2[T ]. Further, we assume without loss of generality that σ consists of a single

“seed” tile type placed at the origin.
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Given, ~0 6= ~v ∈ Z2, a ~v-semi-periodic path in α originating at ~a0 ∈ dom α is an infinite,

simple path π = (~a0,~a1, . . .) in the binding graph Gα such that there is a constant k ∈ N

such that, for all j ∈ N, π[j + k] = π[j] + ~v, and α (π[j + k]) = α (π[j]). Intuitively, ~v is the

“geometric” period of the path – the straight-line vector between two repeating tile types –

while k is the “linear” period – the number of tiles that must be traversed along the path

before the tile types repeat, which is at least ||~v||1, but possibly larger if the segment from π[j]

to π[j] + ~v is “winding”.

An eventually ~v-semi-periodic path in α originating at ~a0 ∈ dom α is an infinite, simple

path π = (~a0,~a1, . . .) in the binding graph Gα for which there exists s ∈ N such that the

path π′ = (π[s], π[s + 1], . . .) is a v-semi-periodic path in α originating at π[s]. Let the initial

segment length be the smallest index s∗ such that π′ = (π[s∗ − k], π[s∗ − k + 1], . . .) is a ~v-

semi-periodic path originating at the point π[s∗ − k]. The initial segment of π is the path

π[0 . . . i∗ − 1] (for technical reasons, we enforce the initial segment of π to contain the simple

path π[0 . . . s] along with one period of π′). The tail of π is π[s∗ . . .]. Note that the tail of

an eventually ~v-semi-periodic path is simply a ~v-semi-periodic path originating at π[s∗]. An

eventually ~v-periodic path in α is an eventually ~v-periodic path in α originating at ~a0 for some

~a0 ∈ dom α. We say that π is a ~v-periodic path in α if π = (. . . ,~a−1,~a0,~a1, . . .) is a two-way

infinite simple path such that, for all j ∈ Z, α (π[j] + ~v) = α (π[j]).

Let ~w, ~x ∈ dom α, π be a simple path from ~w to ~x in the binding graph Gα, and i, k ∈ N with

0 ≤ i < k ≤ |π|. We say that π has a pumpable segment π[i . . . k] (with respect to ~v = π[k]−π[i])

if there exists a ~v-semi-periodic path π′ in α originating at π[i] and π′[0 . . . k − i] = π[i . . . k].

Intuitively, the path π has a pumpable segment if, after some initial sequence of tile types,

it consists of a subsequence of tile types which is repeated in the same direction an infinite

number of times, one after another. Figure 6.1 shows an assembly in which the same tile

type repeats along a path, but the segment between the occurrences is not pumpable.

Let c ∈ N and ~v ∈ Z2. The diamond of radius c centered about the point ~v is the set of

points defined as D (c, ~v) = { (x, y) + ~v | |x|+ |y| ≤ c }. Let ~w, ~x ∈ dom α, c ∈ N, and π be a

simple path from ~w to ~x in the binding graph Gα. We say that π is a pumpable path from ~w to
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Figure 6.1: An assembly containing a path with repeating tiles A-A that do not form a pumpable
segment, because they are blocked from infinite growth by the existing assembly. Note, however,
that any sufficiently long path from the origin (at the left) contains a pumpable segment, namely the
repeating segment 1-2-3-4-1 along the bottom row, which can be pumped infinitely to the right.

~x in α if it contains a pumpable segment π[i . . . k] for some i, k ∈ N such that 0 ≤ i < k ≤ |π|.

We say that T is c-pumpable if there exists c ∈ N such that for every ~w, ~x ∈ dom α with

~x 6∈ D(c, ~w), there exists a pumpable path π from ~x to ~w in α.

Observation 6.2.1. If a directed TAS T = (T, σ, 1) has the property that no adjacent tiles in

the terminal assembly have mismatched glues, then T is pumpable.

Proof. Let α be the unique terminal assembly of T . Let π be any path in Gα of length at least

|T |+ 1, and let ~u,~v be two positions of π with the same tile type. If T is not pumpable, then

attempting to repeat π will cause a “collision” with some other position in α; i.e., eventually

the repetition of π will result in attempting to place a tile type t at a position ~x at which

α(~x) 6= t. Let p be the tile type at the position immediately preceding ~x on the copy of π at

which this occurs. Then the glue of p on the side facing ~x must mismatch with the opposite

glue of α(~x), or else in any previous repetition of π, t and α(~x) would nondeterministically

compete to bind to p, violating the directedness of T . Since we assumed T is directed and has

no mismatches, this implies T must be c-pumpable with c = |T |+ 1.

Figure 6.2 shows, from left to right, (1) a partially complete assembly beginning from the

(dark grey) seed tile, where the dark notches between adjacent tiles represent strength 1 bonds,

and a tile selected for the example, (2) the full path leading from the seed to the selected tile,

(3) the tile types for a segment of the path, showing the repeating pattern of tile types ‘1-2-3-4’,

and (4) an extended version of the path which shows its ability to be pumped.
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Figure 6.2: A partial assembly, selected path, pumpable segment, and pumpable path

In our proof, it is helpful to consider extending an assembly in such a way that no individual

tile in the existing assembly is extended by more than a finite amount (though an infinite

assembly may have an infinite number of tiles that can each be extended by a finite amount).

We call such an extension the finite closure of the assembly, and define it formally as follows.

Let α′ ∈ A[T ]. We say that the finite closure of α′ is the unique assembly F (α′) satisfying

1. α′ ⊑ F (α′), and

2. dom F (α′) is the set of all points ~x ∈ Z2 such that every infinite simple path in the

binding graph Gα containing ~x intersects dom α′.

Intuitively, this means that if we extend α′ by only those “portions” that will eventually stop

growing, the finite closure is the super-assembly that will be produced. That is, any attempt

to “leave” α′ through the finite closure and go infinitely far will eventually run into α′ again.

If α′ is terminal, then α′ is its own finite closure. Note that in general, the finite closure of

an assembly α′ is not the result of adding finitely many tiles to α′. For instance, if infinitely

many points of α′ allow exactly one tile to be added, the finite closure adds infinitely many

points to α′. However, the finite closure of a finite assembly is always a finite assembly.

For an example of a finite closure of an assembly, see Figure 6.3. Figure 6.3c shows the

terminal assembly which consists of three rows of tiles that continue infinitely to the right

(denoted by the arrow), with a 10 tile upward projection occurring at every fourth column.
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(a) α′ (b) F (α′)

(c) α

Figure 6.3: Example of a finite closure. The dark gray points represent locations at which tiles can
attach.

Figure 6.3a shows an assembly α′ which consists of two rows of tiles continuing infinitely to the

right but with an incomplete bottom row and none of the full upward projections. Figure 6.3b

shows F (α′), which is the finite closure of α′. Notice that an infinite number of tiles were

added to α′ to create F (α′) since an infinite number of upward projections were added, each

consisting of only 10 tiles. However, also note that the bottom row is not grown because that

row consists of an infinite path and therefore cannot be part of the finite closure.

Figure 6.4: Example of a comb connected to a hard-coded assembly (dark tiles that spiral). The seed
is the tile at the center of the spiral. The comb originates at the bottom most black tile. Note that
a finite number of “attempts at teeth” (one in the above example) may be blocked before the infinite
teeth are allowed to grow.
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Let π→ be an eventually ~v-semi-periodic path in α originating at ~0 where ~0 6= ~v ∈ Z2.

Let ~u ∈ Z2 such that ~u 6= z · ~v for all z ∈ R. Suppose that there is a point ~b on the tail of

π→ such that there is an eventually ~u-semi-periodic path π↑ in α originating at ~b such that

π→ ∩ π↑ =
{
~b
}
. Define the assembly α∗ = α ↾

(
π→ ∪

⋃

n∈N

(
π↑ + n · ~v

))
. It is easy to see

that α∗ need not be a producible assembly. We say that α∗ is a comb in (with respect to π→

and π↑) if, for every n ∈ N, α∗ ↾ π↑ + n · ~v = α∗ ↾
(
π↑ + n · ~v

)
. We refer to the assembly

α∗ ↾ π as the base of α∗. For any n ∈ N, we define the nth tooth of α∗ to be the assembly

α ↾
(
π↑ + n · ~v

)
. We say that the comb α∗ starts at the point π[s] (the point at which the

eventually-periodic path π→ becomes periodic). It follows from the definition that, if α∗ is a

comb in α, then α∗ ∈ A[T ].

See Figure 6.4 for an example of a comb. A comb, intuitively, is a generalization of the

assembly in which an infinite periodic one-way path (the base) grows along the positive x-axis,

and once per period, an infinite periodic path (a tooth) grows in the positive y direction,

creating an infinite number of “teeth”. The generalizations are that (1) the base and teeth

need not run parallel to either axis, and (2), the teeth may have some initial hard-coded tiles

before the repeating periodic segment begins. Also, it is possible at temperature 1 to build

multiple combs with the same base, but with different teeth, growing in either direction.

6.3 Main Result

We show in this section that only “simple” sets weakly self-assemble in directed, pumpable

tile assembly systems at temperature 1. We now formally define “simple.”

Definition 6.3.1. A set X ⊆ Z2 is linear if there exist three vectors ~b, ~u, and ~v such that

X =
{

~b + n · ~u + m · ~v
∣∣∣ n,m ∈ N

}
.

A set is semilinear if it is a finite union of linear sets.

Note that a set that is periodic along only one dimension is also linear, since this corresponds

to the condition that exactly one of the vectors ~u or ~v is equal to ~0 (or if ~u = ~v). Similarly, if
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~u = ~v = ~0, then the definition of linear is equivalent to A being a singleton set. The following

observation (as well as, for example, [17]) justifies the intuition that semilinear sets constitute

only the computationally simplest subsets of Z2.

Observation 6.3.2. Let A ⊆ Z2 be a semilinear set. Then the unary languages

LA,x =
{

0|x|
∣∣∣ (x, y) ∈ A for some y ∈ Z

}

and

LA,y =
{

0|y|
∣∣∣ (x, y) ∈ A for some x ∈ Z

}

consisting of the unary representations of the projections of A onto the x-axis and y-axis,

respectively, are regular languages.

A proof of Observation 6.3.2 is included in the technical appendix. The following theorem

is the main result of this chapter.

Theorem 6.3.3. Let T = (T, σ, 1) be a directed, pumpable TAS. If a set X ⊆ Z2 weakly

self-assembles in T , then X is a semilinear set. Conversely, every semilinear set weakly self-

assembles at temperature 1.

A proof of the forward direction of Theorem 6.3.3 is given in the technical appendix. The

proof idea of Theorem 6.3.3 is as follows. Suppose that α ∈ A2[T ]. Note that α is unique

since T is directed. Either α is an infinite “grid” that fills the plane, or there exists finitely

many linear combs and paths that, taken together, “cover” every point in X (in the sense that

each such point is in the finite closure of one of these combs or paths).

The reason for this is that each comb is defined by two vectors ~u (the base) and ~v (the

teeth), and these vectors form a “basis” for the space of points located within the cone formed

by the base and the first tooth of the comb. While the vectors do not reach every point in this

cone, they reach within a constant distance of every point in the cone, and the doubly periodic

regularity of the teeth and base enforces doubly periodic regularity in between the teeth as

well. Of course, not all combs have teeth, in which case the comb is just a periodic path.
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We associate each black tile with some periodic path or comb that begins in a fixed radius

about the origin (utilizing the fact that a path cannot go far from the origin without having

pumpable segments that can be used to construct a periodic path or comb). The finite number

of combs and periodic paths originating within this radius tells us that the number of semilinear

sets of (locations tiled by) black tiles that they each define is finite.

6.4 An Application to Discrete Self-Similar Fractals

In this section, we use Theorem 6.3.3 to show that no discrete self-similar fractal weakly

self-assembles in any temperature 1 tile assembly system that is pumpable and directed. Since

Winfree [45] showed that one particular discrete self-similar fractal, the discrete Sierpinkski

triangle, self-assembles at temperature 2, this provides a concrete example of computation

that is possible (and simple) at temperature 2, but impossible at temperature 1, assuming

directedness and pumpability.

Definition 6.4.1. Let 1 < c ∈ N, and X ( N2 (we do not consider N2 to be a self-similar

fractal). We say that X is a c-discrete self-similar fractal, if there is a set V ⊆ {0, . . . , c− 1}×

{0, . . . , c− 1} with

V 6∈ {{(i, i) | 0 ≤ i < c}, {(i, 0) | 0 ≤ i < c}, {(0, i) | 0 ≤ i < c}}

such that

X =
∞⋃

i=0

Xi,

where Xi is the ith stage satisfying X0 = {(0, 0)}, and Xi+1 = Xi ∪
(
Xi + ciV

)
. In this case,

we say that V generates X.

Definition 6.4.2. X ( N2. We say that X is a discrete self-similar fractal if it is a c-discrete

self-similar fractal for some c ∈ N.

The following observation is clear by Definition 6.4.1.

Observation 6.4.3. No discrete self-similar fractal is a semilinear set.
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Theorem 6.4.4. Let X ( N2 be a discrete self-similar fractal.

1. X does not weakly self-assemble in any tile assembly system that is pumpable and directed.

2. X does not strictly self-assemble in any tile assembly system that is pumpable and di-

rected.

Proof. (1) follows directly from Observation 6.4.3. To prove (2), note that if a set X ⊆ Z2

weakly self-assembles then, by definition, X strictly self-assembles.

6.5 Conclusion

We have studied the class of shapes that self-assemble in Winfree’s abstract tile assembly

model at temperature 1. We introduced the notion of a pumpable temperature 1 tile assembly

system and then proved that, if X weakly self-assembles in a pumpable, directed tile assembly

system, then X is necessarily “simple” in the sense that X is merely a semilinear set, a

finite union of simple, “two-dimensionally periodic” sets. We used this result to prove that

no discrete self-similar fractal weakly/strictly self-assembles in any pumpable, directed tile

assembly system. Finally, we conjecture that our results hold in the absence of the pumpability

hypothesis.

Conjecture 6.5.1. Let T = (T, σ, 1) be a directed tile assembly system and α ∈ A2[T ]. If

dom α is infinite, then T is pumpable.

It is always possible to produce long paths in which the presence of a segment with two

repetitions of a tile type does not imply that the segment is pumpable. However, in every

case we consider, there is always a previous segment of the path that is pumpable. Proving

Conjecture 6.5.1 would imply that every directed tile set weakly self-assembles a semilinear

set.

We also leave open the question of whether the hypothesis of directedness may be removed.

We use the property of directedness at many points in our proof, but in some cases, a more

careful and technically convoluted argument could be used to show that the tile set need not
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be directed. Intuitively, an undirected tile set T that weakly self-assembles a set X ⊆ Z2 is

deterministic in that all terminal assemblies of T “paint” exactly the points in X black, but is

nondeterministic in the sense that different terminal assemblies of T may place different tiles

in the same location (including different black tiles at locations in X), and may even place

non-black tiles at locations in one terminal assembly that are left empty in other terminal

assemblies. Undirected tile assembly systems that weakly self-assemble a unique set X exist,

but in every case that we know of, the undirected tile set may be replaced by a directed tile

set self-assembling the same set.

If the hypothesis of directedness and pumpability could be removed from the entire proof,

then our main result would settle the case of computation via self-assembly at temperature 1,

by showing that every temperature 1 tile assembly system weakly self-assembles a semilinear

set if it weakly self-assembles any set at all. As indicated in the introduction, we interpret this

statement to imply that general-purpose computation is not possible with temperature 1 tile

assembly systems.

Finally, we make the observation that universal computation at temperature 1 is possi-

ble by changing the underlying model of self-assembly. There is a different sense in which

undirected temperature 1 tile assembly systems may be considered to achieve “universal com-

putation”. Adleman has devised a nondeterministic temperature 1 tile assembly system, cited

as a personal communication in Rothemund’s Ph.D. thesis [31], which does something similar

to the following (the exact construction described next is reconstructed from conversations

and may differ in details from Adleman’s original construction, although the ideas are im-

plicit in [2]). It simulates a single-tape Turing machine in the standard way, by assembling a

space-time diagram of the configuration history of the Turing machine, with the growth front

of the assembly crawling back and forth across the representation of the tape at time t (the

tth row of the assembly), in order to construct the tape at time t + 1. Each cell encodes a

value consisting of a tape symbol, the boolean value “Is the tape head here?”, and if the tape

head is present, what the state is. In order to read the value of a cell, the tile assembly sys-

tem nondeterministically guesses the value. Any nondeterministic choice failing to correctly
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predict the value terminates the growth of the assembly, while correctly guessing continues

the growth. Hence, many assemblies will be produced, but there is a unique largest assembly

(infinite if the computation of the Turing machine is infinite), which represents the result of the

computation. However, this construction does not weakly self-assemble any set representing

the result of the computation, as the definition of weak self-assembly, while not requiring the

tile assembly system to be directed, does require a unique set to be weakly assembled. So

the question of whether nondeterministic computation can achieve universal computation has

been answered, but in a weaker form than via the mechanism of weak self-assembly.

In addition, a construction that was personally communicated by Matthew Cook (also

mentioned briefly in [31]), which is based on Adleman’s nondeterministic construction, estab-

lishes that the aTAM is computationally universal with respect to directed, temperature 1 tile

assembly systems that place tiles in three spatial dimensions. In fact, Cook’s construction only

uses two integer planes, “stacked” one on top of the other, to simulate an arbitrary Turing

machine (no such directed two-dimensional universality result is known at the time of this

writing).

Moreover, we show that universality can also be achieved if negative glue strengths and

interaction between differently colored glues (a so-called non-diagonal strength function) are

allowed.

Theorem 6.5.2. For every single-tape Turing machine M , there is a tile set T with negative,

non-diagonal glue strengths, which simulates M in the following way. Given an input string

x, define Tx = (T, σx, 1) to be the temperature 1 TAS where σx is the seed assembly satisfying

dom σx = {0, . . . , |x|− 1}×{0} that encodes the initial configuration of M . Then Tx simulates

the computation of M(x), with the configuration of M(x) after n steps represented by the line

y = n in the terminal assembly of Tx.

A proof sketch of Theorem 6.5.2 is given in the technical appendix. Intuitively, by in-

troducing negative glue strengths, we allow for the cooperation that is impossible with only

nonnegative glue strengths. The difference with temperature 2 is that, at temperature 2, one

may enforce that no tile appears at a certain position until two neighbors are present. At
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temperature 1 and with negative glue strengths, on the contrary, we do not enforce that two

tiles are present before a position can be given a tile. However, we enforce that if the wrong

tile binds in this position, eventually the error is corrected by the presence of a neighboring

tile which forces the removal of the incorrect tile using negative glue strengths.

6.6 Technical Appendix

This appendix contains proofs of results that were not given in the main text, and some

definitions required only for those proofs.

Proof. (of Observation 6.3.2) Let B ⊆ Z2 be a linear set. It is routine to verify that B’s

projection along the x-axis is a (singly) periodic set; i.e., a set

Bx = { x ∈ Z | (x, y) ∈ B for some y ∈ Z }

such that there is a number v ∈ N such that, for all x ∈ Z, x ∈ Bx =⇒ x + v ∈ Bx.

It is well-known that a unary language L ∈ {0}∗ is regular if and only if the set N =

{ n ∈ N | 0n ∈ L } of lengths of strings in L is eventually periodic. Therefore the language

LB,x =
{

0|n|
∣∣ n ∈ Bx

}
is regular. A symmetric argument establishes that LB,y is a regular

language as well, so the theorem holds for any linear set. Since A is a finite union of linear

sets, the theorem follows by the closure of the regular languages under finite union.

We will now prove a series of technical lemmas that will reveal “order” in the seemingly

disordered realm of temperature 1 (a.k.a., non-cooperative) self-assembly.

Definition 6.6.1. Let α1, α2 be assemblies. We say that α1 and α2 are consistent if, for all

~v ∈ dom α1 ∩ dom α2, α1 (~v) = α2 (~v).

Definition 6.6.2. Let α1, α2 be consistent assemblies. The union of α1 and α2, written as

α1 ∪ α2, is the unique assembly α1 ∪ α2 satisfying, dom (α1 ∪ α2) = dom α1 ∪ dom α2 and

α1 ⊑ α1 ∪ α2 and α2 ⊑ α1 ∪ α2.



76

Observation 6.6.3. Let T = (T, σ, 1) be a directed TAS. If α1 and α2 are consistent, connected

assemblies, and α1 ∈ A[T ], then α1 ∪ α2 ∈ A[T ].

The next lemma states that, if we wish to show that the existence of a semi-periodic path in

the assembly implies a periodic path (i.e., it is not only one-way infinite but two-way infinite,

bisecting the plane), it suffices to show that a translation – along the path – of the assembly

connecting the seed to the path, are consistent with the path, so long as the translation is

sufficiently far to achieve maximal intersection between the assembly and the path.

Lemma 6.6.4. Let T = (T, σ, 1) be a directed TAS, ~0 6= ~v ∈ Z2, α be the unique assembly

satisfying α ∈ A2[T ], and ~a ∈ dom α. Let π→~a be a ~v-periodic path in α originating at ~a,

and let π~0,~a be a simple finite path in Gα from ~0 to ~a. Let c > |π~0,~a| be a positive integer. If
(
α ↾ π~0,~a

)
+ c · ~v is consistent with α ↾ π→~a , then there is a (two-way infinite) ~v-periodic path

in Gα containing ~a.

Proof. Since c >
∣∣∣π~0,~a

∣∣∣, dom
((

α ↾ π~0,~a

)
+ c · ~v

)
∩ π→~a is maximal over all c ∈ N. Since

(
α ↾ π~0,~a

)
+ c · ~v is consistent with α ↾ π→~a , extending the tiles of π→~a in the direction −~v will

intersect π~0,~a only at each position where the existing tile in α ↾ π~0,~a agrees with the extension.

Therefore such an extension will not be blocked by α ↾ π~0,~a, and π→~a is merely one half of a

(two-way) periodic path in α.

The next lemma states that if two parallel semi-periodic paths are connected through their

pumpable segments in “another way besides the trivial way” (since all points are connected

by some path in the binding graph), then this connection can be exploited to show that the

paths must actually form two-way periodic paths that bisect the plane.

Lemma 6.6.5. Let T = (T, σ, 1) be a directed TAS, ~0 6= ~v ∈ Z2, α be the unique assembly

satisfying α ∈ A2[T ], ~a ∈ dom α and π~0,~a be a simple finite path from ~0 to ~a in α. If π→~a is a

~v-semi-periodic path in Gα originating at ~a, ~d ∈ dom α such that π→~d
is a z · ~v-semi-periodic

path in α originating at ~d, for some z ∈ R+, and there is a simple path from some point ~c on

the tail of π→~a to ~d in Gα, denoted as π
~c,~d

, with π
~c,~d
∩
(
π~0,~a ∪ π→~a ∪ π→~d

)
=
{
~c, ~d
}
, then there

exists a ~v-periodic path in α containing ~a.
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Intuitively, we prove Lemma 6.6.5 by showing that an appropriately translated copy of the

simple (finite) path from the seed to the origination point of π→~a is consistent with π→~a . See

Figure 6.5 for a visual depiction of (a simple example of) the hypothesis of Lemma 6.6.5 and

Figure 6.6 for an illustration of the conclusion of Lemma 6.6.5.

π→~a

~a
~c

~d

π→~d

Figure 6.5: An example of the hypothesis of Lemma 6.6.5. The seed tile is at the center of the “spiral.”
The path π

~c,~d
is represented by the dark tiles that form the “bridge” between the tail of π→

~a (the lowest

~v-periodic path) and some point on π→

~d
(the upper ~v-periodic path).

Proof. Let c ∈ N such that c >
∣∣∣π~0,~a

∣∣∣. By Lemma 6.6.4, it suffices to show that
(
α ↾ π~0,~a

)
+c ·~v

is consistent with α ↾ π→~a . If consistency holds, then we are done, so assume otherwise. This

means that there is a point

~b ∈
(
π~0,~a + c · ~v

)
∩ π→~a ,

satisfying the following two conditions.

1.
((

α ↾ π~0,~a

)
+ c · ~v

)(
~b
)
6=
(
α ↾ π→~a

) (
~b
)
, and

2. ~b is the “closest” point to ~a + c · ~v on the path π~0,~a + c · ~v.

Moreover, the assumption that π~c,~d ∩
(
π~0,~a ∪ π→~a ∪ π′

)
=
{
~c, ~d
}
, along with the existence of

the ~v-periodic path π→~d
, can be used to show that there exists a simple cycle C in Gα that

contains the point ~b such that not every simple (finite) path from ~0 to (any point in) C goes

through ~b. This means that it is possible to define an assembly sequence where (the tile placed

at) the input neighbor of ~b is the same as the (tile placed at) the output neighbor of ~b− c ·~v in
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the assembly sequence resulting in α ↾ π~0,~a. Since T is directed, these must be the same tiles,

whence there can be no “first” point of inconsistency between
(
α ↾ π~0,~a

)
+c ·~v and α ↾ π→~a .

π↔~a

~a

Figure 6.6: An example of the conclusion of Lemma 6.6.5. The path π→

~a is a (two-way infinite)
~v-periodic path, which means that (copies of) the path π~0,~a can be translated in the ±~v direction.

Definition 6.6.6. Let α be an assembly. We say α is doubly periodic if there exist ~u,~v ∈ Z2

such that ~u 6= ~v, ~u 6= ~0, ~v 6= ~0, and for all ~a ∈ Z2, α(~a) = α(~a + ~u) = α(~a + ~v), where

α(~a) = α(~b) if both α(~a) and α(~b) are both undefined.

In other words, α is doubly periodic if its values form a repeating “grid” of parallelogram

patterns on Z2, infinite in all directions. It is easy to see that, if α is doubly periodic, then for

any set of tile types B ⊆ T , dom α(B) (the set that weakly self-assembles) is a union of four

linear sets of integer lattice points.

The following technical lemma shows that, if a tail of a tooth of a comb connects to the

base through a path other than the “natural” one, then the entire assembly is doubly periodic.

This allows us to assume, in the proof of our main theorem, that the teeth of a comb are not

interconnected in “inconvenient” ways.

Lemma 6.6.7. Let T = (T, σ, 1) be a directed TAS, α ∈ A2[T ], and α∗ be a comb in α. If the

tail of the nth tooth is connected to (any point in) the (n + 1)st tooth (for n > 1) via a simple

finite path that does not go through any point on the nth tooth, then α is doubly periodic.

The proof idea of Lemma 6.6.7 is as follows. Suppose that α is the unique terminal assembly

satisfying α ∈ A2[T ]. Since the tails of two different teeth of the comb α∗ are connected via
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Figure 6.7: An example of a comb having two teeth connected via a simple path that does not go
through the finite closure of the base. The seed tile is the tile in the center of the “spiral”.

a simple path, we can build an assembly sequence whose result, denoted as α#, is an infinite,

plane-filling, doubly periodic assembly. We then show that this assembly is consistent with the

tiles near the seed, which means it must be a producible assembly. Finally, since T is directed

and α# ⊑ α, we conclude that α is doubly periodic. Figure 6.7 illustrates (a simple example

of) the hypothesis of the lemma.

Proof. Let α∗ be a comb in α with respect to π→ and π↑, and ~a be the starting point of

α∗. Assume that, for non-zero vectors ~u 6= ~v, π→ is an eventually ~u-semi-periodic path in α

originating at ~0, and π↑ is an eventually ~v-semi-periodic path in α originating at ~b ∈ π→ with

π→ ∩ π↑ =
{
~b
}

.

The hypothesis says that, for some 1 < n ∈ N, there is a simple finite path from some point

~c on the tail of π↑+ n · ~u to some point ~d ∈ π↑+ (n + 1) · ~u that does not go through any point

in π↑ + n · ~u except for the first point on π
~c,~d

. Denote this path as π
~c,~d

. Lemma 6.6.5 tells us

that there exists a (two-way infinite) ~v-periodic path in α containing the point ~̂b = ~b + n · ~u.

Denote this path as π
l

~̂b
.

Let π→
~̂b

be the ~u-semi-periodic path in Gα originating at ~̂b. Since π
l

~̂b
is ~v-periodic and

π
l

~̂b
∩ π→ 6= ∅, it must be the case that there is a ~u-semi-periodic path, denoted as π→

~̂b+~v
, in α
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originating at the point ~̂b+~v. Let π
~0,̂~b

be a finite simple path from ~0 to ~̂b in Gα. If we (re)define

~c = ~̂b, ~d = ~̂b+~v, and note that there is a simple (finite) path from ~c on the tail of π→ (because

n > 1) to ~d ∈ π→
~̂b+~v

, denoted as π
~c,~d

, in Gα with π
~c,~d
∩

(
π

~0,̂~b
∪ π→

~̂b
∪ π→

~̂b+~v

)
=
{
~c, ~d
}

, then we can

again use Lemma 6.6.5 to conclude that there is a (two-way infinite) ~v-periodic path containing

~̂b, hence also containing ~a since those points differ by a multiple of ~v. Denote this path as π↔~a .

If π~0,~a is the initial segment of π→, then the assembly α ↾

(
π~0,~a ∪ π↔~a ∪ π

l
~b

)
∈ A[T ].

Figure 6.8: A finite sub-assembly of α#.

Define the assembly α# as follows.

dom α# =
⋃

n∈Z

((α ↾ π↔~a ) + n · ~v) ∪
⋃

n∈Z

((
α ↾ π

l
~b

)
+ n · ~u

)
.

Our goal is to show that α# ∪
(
α ↾ π~0,~a

)
∈ A[T ], which will nearly complete the proof since

α# is doubly periodic.

Let αalmost-# be the largest assembly satisfying αalmost-# ⊑ α# such that dom αalmost-# ∩

π~0,~a = ∅ and Gαalmost-#
is connected. Note that the assembly αalmost-# ∪

(
α ↾ π~0,~a

)
∈ A[T ].

See Figure 6.9 for an example of how the assembly αalmost-# is constructed.

In order to prove that α# ∪
(
α ↾ π~0,~a

)
∈ A[T ], it suffices to show that α ↾ π~0,~a and α# are

consistent, since α ↾ π~0,~a ∈ A[T ] and π~0,~a∩dom α# 6= ∅. Note that, by the way we constructed
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(a) α# ∪
(
α ↾ π~0,~a

)
(b) α# −

(
α ↾ π~0,~a

)
(c) αalmost−#

Figure 6.9: The black tiles are the path π~0,~a. Since α# −
(
α ↾ π~0,~a

)
may have a finite number of

disconnected “islands”, we remove these as well to get the largest connected subassembly of α#.

α#, not every point in π~0,~a can be a point of inconsistency between α# and α ↾ π~0,~a. Fix n∗ ∈ N

such that π~0,~a∩
(
π~0,~a + (n∗ · ~u + n∗ · ~v)

)
= ∅, which exists by the finiteness of π~0,~a. Since there

exists at least one point ~s ∈ π~0,~a ∩ dom α# such that α#(~s) =
(
α ↾ π~0,~a

)
(~s), we can conclude

that
(
αalmost-# ∪

(
α ↾ π~0,~a

))
∪
((

α ↾ π~0,~a

)
+ n∗ · ~u + n∗ · ~v

)
∈ A[T ]

because T is directed and every point in π~0,~a + n∗ · ~u + n∗ ·~v ∩ dom αalmost-# is reachable from

~0 via at least two simple finite paths. Thus, α# and α ↾ π~0,~a must be consistent. Since α# is

trivially doubly periodic, it follows that α# ∪
(
α ↾ π~0,~a

)
∈ A[T ].

Since α# ⊑ α, it suffices to show that the tiles added to α# to create α are doubly peri-

odic. Since α# forms an infinite grid that partitions Z2 into infinitely many identical “parallelo-

grams”, bordered by the same tiles
(
those forming a single period of π↔~a and π

l
~b
, respectively

)
,

then by the directedness of T , each of these parallelograms must have the same tiles in the

same positions relative to the borders of the parallelogram. Since the parallelogram borders

are doubly periodic, the contents within the borders are doubly periodic as well, whence α is

doubly periodic.

The following lemma states that if there is a path from an assembly α′ to a point not on

the finite closure of α′, then there is an eventually periodic path, originating from the same

point as the first path, that intersects α′ only at the first point.
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Lemma 6.6.8. Let T = (T, σ, 1) be a pumpable directed TAS, α be the unique assembly

satisfying α ∈ A2[T ], α′ ⊑ α, and ~x ∈ dom α. If ~x 6∈ F (α′) and there is a finite simple path

in Gα that goes through some point ~s ∈ α′ to ~x, then, for some ~0 6= ~v ∈ Z2, there exists an

eventually ~v-semi-periodic path π in Gα, originating at ~s, with π ∩ dom α′ = {~s}.

Proof. Let ~r ∈ dom α′ be a point connected to ~x by a simple finite path π~r,~x satisfying

π~r,~x ∩ dom α′ = {~r}. Let ~p0 be the point on π~r,~x closest to ~x such that Gα has an infinite

simple path π~p0,∞ starting at ~p0 that does not contain the point immediately before ~p0 on

π~r,~x. Let ~p1 ∈ dom α ∩
(
π~p0,∞ −D (c, ~p0)

)
, and π~r,~p0,~p1

be a simple path in Gα from ~r to ~p1

that goes through ~p0. Since T is pumpable, and
(
π~p0,∞ −D (c, ~p0)

)
, π~r,~p0,~p1

is a pumpable

path. Let π~r,~p0,~p1
[i . . . k], for 0 ≤ i < k ≤

∣∣π~r,~p0,~p1

∣∣, be the first pumpable segment of π~r,~p0,~p1
,

and ~v = π~r,~p0,~p1
[k] − π~r,~p0,~p1

[i]. The lemma follows by letting ~s = π~r,~p0,~p1
[i], and π be the

~v-semi-periodic path originating at the point ~s defined by the pumpable segment.

The next lemma states that if two teeth in a comb are connected in an “inconvenient”

way (i.e., other than the trivial ways in which any two points in a stable assembly must be

connected), then the entire assembly is an (two-way, two-dimensional) doubly periodic grid.

Lemma 6.6.9. Let T = (T, σ, 1) be a pumpable directed TAS, α be the unique assembly

satisfying α ∈ A2[T ], and α∗ be a comb in α. If there exists ~x ∈ dom α such that there is a

simple finite path from ~0 to ~x that goes through the tail of some tooth of α∗, then ~x ∈ F (α∗)

or α is doubly periodic.

Proof. Let π↑ be the first tooth of α∗. Assume that ~x 6∈ F (α∗). It suffices to show that α is

doubly periodic. Let ~r be an element of the tail of n · ~u + π↑ for some n ∈ N, such that there

exists a simple path in Gα from ~r to ~x, denoted as π~r,~x, with π~r,~x ∩ dom α∗ = {~r}. Such a

point ~r exists because ~x 6∈ F (α∗). By Lemma 6.6.8, there exists an eventually ~w-semi-periodic

π in Gα, originating at ~r with π ∩ dom α∗ = ∅.

If ~w 6= z · ~v for some z ∈ R+, then the ~w-semi-periodic path it defines intersects a tooth

of α∗ and, by Lemma 6.6.7, α is doubly-periodic. Therefore assume that ~w = z · ~v for some

z ∈ R+. Let ~a = π[s] - the point at which π becomes periodic. Lemma 6.6.5 tells us that there



83

exists a (two-way infinite) ~w-periodic path in α containing the point ~a. Denote this path as

π
l
~a. Let ~b be the closest point to ~a on the path π

l
~a that intersects the base of α∗. Let π̂↑ be

the ~w-semi-periodic path originating at ~b that does not intersect any teeth of α∗. Then we can

form a new comb α̂∗ with respect to π→ and π̂↑. Finally, we can apply Lemma 6.6.7 to either

α∗ or α̂∗ in order to conclude that α is doubly periodic.

The following observation is helpful in the proof of our main theorem, and states the obvious

fact that combs define linear sets.

Observation 6.6.10. Let T = (T, σ, 1) be a directed pumpable TAS in which the set X ⊆ Z2

weakly self-assembles, and let α be the unique terminal assembly satisfying α ∈ A2[T ]. If

α∗ ∈ A[T ] is a comb in α, then the set X ∩ dom α∗ is a semilinear set.

Proof. (of Theorem 6.3.3) Assume the hypothesis. Let c ∈ N testify to the c-pumpability of

T . We denote by D1, D2, and D3 the diamonds of radius c, 2c, and 3c, respectively, around

the origin.

We show that each ~x ∈ X outside of D2 is part of the finite closure of some periodic path

or comb originating in D3. Therefore, the union of the black tiles of the finite closure of each

comb starting in D3, each periodic path starting in D3, and each singleton set containing a

black tile in D3, is the union proving the theorem. There are only a finite number of points in

D3, though each could be the origination point of multiple combs or periodic paths. However,

if any such point has an infinite number of combs or periodic paths originating from it, then

some will intersect at a different point, creating a cycle between the tails of two teeth of combs,

and Lemma 6.6.7 tells us that X is doubly periodic. Otherwise, only a finite number of combs

and periodic paths can originate in D3, each one defining a term in the union, showing that

the union is finite. Recall that a singleton set and a semi-periodic path are linear sets, and

Observation 6.6.10 allows us to conclude that the remaining terms representing combs are

linear as well.

Let ~x ∈ X −D1, and α be the unique assembly satisfying α ∈ A2[T ]. Since ~x 6∈ D1, and

because T is c-pumpable, there exists a c-pumpable path from ~0 to ~x in α. Denote this path
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as π~0,~x. Let π~0,~x[i . . . k], for 0 ≤ i < k ≤
∣∣∣π~0,~x

∣∣∣, be the first pumpable segment of π~0,~x, and

~u = π~0,~x[k] − π~0,~x[i]. Let π→π~0,~x[i] be the ~u-semi-periodic path in Gα originating at π~0,~x[i], and

π→ = π~0,~x[0 . . . i] ∪ π→π~0,~x[i].

If ~x ∈ dom F (α ↾ π→) then we are done because F (α ↾ π→) contains a sub-assembly

whose domain is the semi-periodic path π→π~0,~x[i], which starts in D1 ⊂ D2, so assume that

~x 6∈ dom F (α ↾ π→). The path π→ is the base of the comb we will now construct.

Since ~x 6∈ dom F (α ↾ π→) and because there is a simple finite path in Gα from some point

~s on the tail of π→ to ~x, Lemma 6.6.8 tells us that there is a ~v-semi-periodic path π in Gα

originating at ~s with π ∩ π→ = ∅. Assume that ~u 6= z · ~v for any z ∈ R. In this case, let

π↑ = π. The assembly α ↾ π↑ is a tooth of some comb with base α ↾ π→. Now define the

following assembly.

α∗ = α ↾

(
π→ ∪

⋃

n∈N

(
n · ~u + π↑

))
.

It is clear from the definition that α∗ is a comb in α (starting at some point in D2) with respect

to π→ and π↑. By Lemma 6.6.9, it follows that ~x ∈ F (α∗) or α is doubly periodic.

We have shown that, assuming ~u 6= z ·~v for any z ∈ R, every point ~x ∈ X−D1 is contained

in the finite closure of some comb or periodic path originating at a point in D2 (unless α is

doubly periodic). Furthermore, since D2 is finite, there are at most a finite number of combs.

The theorem follows by Observation 6.6.10.

Recall that π is an eventually ~v-semi-periodic path in Gα, and we earlier assumed that

~u 6= z · ~v for any z ∈ R. Now assume that ~u = z · ~v for some z ∈ R. Suppose z < 0. In this

case, let π← = π. If ~x ∈ F (α ↾ (π→ ∪ π←)), then we are done since π← originates within D2.

If not, then it must be the case that there is a point ~s′ on the tail of π← such that there is a

simple finite path from ~s′ to ~x in Gα. Then Lemma 6.6.8 tells us that there is an eventually

~w-semi-periodic path π′ in Gα originating at ~s′ with π′ ∩ (π← ∪ π→) = ∅. Let πր = π′.

We now have three eventually periodic paths in Gα, π←, π→, and πր, whose respective

tails are all disjoint. Moreover, at least two of these paths must either be “parallel,” or two of

them are neither parallel nor anti-parallel, and the argument assuming ~u 6= z · ~v for any z ∈ R
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applies. If they are parallel, then by Lemma 6.6.5, the base π→ forms a periodic path that

cuts the plane into two half-planes. Using reasoning that is similar to the above arguments, it

is easy to verify that this implies that α is either

1. the finite closure of a (two-way infinite) periodic path bisecting the plane (hence a semi-

linear set),

2. (1) unioned with the finite closure of a comb (with a two-way infinite base) covering one

of the half planes formed by the periodic bisection, or

3. (1) unioned with two-way infinite combs on both sides of the bisection, each covering one

of the half planes.

In each case, it is clear that the set formed is a semilinear set.

To show the reverse direction, that every semilinear set weakly self-assembles in some

temperature 1 tile assembly system (in fact, in a directed, pumpable TAS), let X =
⋃k

i=1 Xi

be semilinear, with each Xi a linear set. If the “cones” formed by each Xi do not overlap,

it is easy to create a TAS that grows hard-coded paths from the seed to each base point of

the cone, each of which assembles a comb that weakly assembles the linear set. Consider then

if Xi and Xj do have their cones overlap (note that this may not necessarily mean the sets

themselves intersect, only that they “interleave”).

Then either one cone is contained in the other, or they intersect but each have a region not

contained in the other. In either case, the union of the two cones can be partitioned into at

most three cones, each of which can be weakly assembled. In the first case, supposing Xi’s cone

is contained in Xj ’s cone, the three regions are the portion of Xj to the clockwise direction of

Xi, the portion where they intersect, and the portion of Xj to the counterclockwise direction

of Xi. The middle portion will need two kinds of black tiles, one for Xi and one for Xj , but in

this portion, the set will still be semilinear with periods equal to the least common multiple of

the original periods. In the second case, that Xi and Xj have their cones intersect but neither

is contained in the other, the three regions are “only Xi”, “Xi and Xj”, and “only Xj”. In
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either case we have partitioned the union of two cones into three non-overlapping cones, each

of which can be weakly assembled by three distinct combs.

This argument is easily extended to the case that more than two linear sets overlap at once.

Since only a finite number of linear sets compose X, we have shown that X can be decomposed

into a finite number of non-overlapping sets, each of which can be weakly assembled, and each

of which is reachable from the origin without intersecting the others. It follows that X weakly

self-assembles at temperature 1.

Proof. (Sketch of Theorem 6.5.2) We modify the temperature 2 (“wedge”) construction of [28]

as follows. In that construction, a row connects to the row to the north, representing the next

configuration of M , via a double bond at the tile representing the tape head, with a tape head

“propagation” tile placed to the north (propagating information about the next tape head

position). Once the tape head propagation tile is in place, the remainder of the row can fill in,

copying the bit from the tile to the south, and with the tile immediately to the left or right of

the first tile representing the new tape position. In the revised construction, the bottommost

row representing the initial configuration contains strength-1 bonds on the north side, allowing

the data on the tape to be copied to the next row, even if the tape head propagation tile has

not been placed yet. The tiles copied to the north (and subsequent tiles to the north of them)

have bonds to the west and east that do not interact (have strength 0 with each other). The

tape head propagation tile is designed to have a strength -1 interaction with the west (resp.

east) side if the tape head moves left (resp. right). This “unlocks” the vertical column that

may have grown over the new tape head position, removing it so that the tape head tile may

now be placed there. The glue strengths on the west (resp. east) side have strength -1 with

all glues except for the correct tape head tile, and strength 0 with the tape head tile, which,

together with the strength 1 bond from the tile to the south, is enough to allow the tape head

tile to bind. Other than the old and new tape head positions, all other tiles in a given row

are simply copied from the south with no interaction with neighbors to the west or east. To

ensure that the tape head propagation tile is not itself disconnected due to its strength -1 bond

with its west or east neighbor, it has a strength 2 bond with the tape head tile to its south.
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Otherwise, instead of unlocking the vertical column where the tape head is supposed to go,

the tape head propagation tile might be removed instead.
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