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Computation via molecular binding: Two models



Computation via molecular binding: Two models

DNA tile self-assembly

monomers (DNA “tiles”) bind into a crystal
lattice

lattice
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Source: Programmable disorder in random DNA tilings. Tikhomirov,
Petersen, Qian, Nature Nanotechnology 2017




Computation via molecular binding: Two models

DNA tile self-assembly DNA strand displacement
monomers (DNA “tiles”) bind into a crystal DNA complexes exchange strands with each
lattice

other by displacing binding domains

- domains
B 14 | 1
o _ 2
tile NN AT = = y
XD PR
\_ 1 2 ’
4 2 X nbind v
A== . == L
2 o
lattice
2
=
Ny o
N L > <
Source: Programmable disorder in random DNA tilings. Tikhomirov, I* 2z 3 z
Petersen, Qian, Nature Nanotechnology 2017

I



Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.
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Practice of DNA tile self-assembly

[

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982
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Practice of DNA tile self-assembly

Place many copies of DNA tile in solution...

(not the same tile motif in this image)
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Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

\ e . .
(0 Sml  Erik Winfree
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Abstract Tile Assembly Model et o
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Abstract Tile Assembly Model et o

e tile type = unit square




Abstract Tile Assembly Model

e tile type = unit square B

north glue label

e each side has a glue
with a label and south glue label
strength (0, 1, or 2) H

[99e| an|3 1sam

strength O

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Ph.D. thesis,

Caltech 1998



Abstract Tile Assembly Model

e tile type = unit square
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e each side has a glue
with a label and
strength (0, 1, or 2)

west glue labg

strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

N

Erik Winfree,

Ph.D. thesis,

Caltech 1998



Erik Winfree,

Abstract Tile Assembly Model et o

* tile type = unit square northgl.uelabel  finitely many tile types

[99e| an|3 1sam

e each side has a glue  infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) H

strength O
e tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

N




Erik Winfree,

Abstract Tile Assembly Model et o

* tile type = unit square B  finitely many tile types

north glue label

e each side has a glue

[99e| an|3 1sam

 infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) B
strength 0 e assembly starts as a single
e tiles cannot rotate copy of a special seed tile

strength 1 (weak)

strength 2 (strong)

N




Erik Winfree,

Abstract Tile Assembly Model et o

* tile type = unit square B  finitely many tile types

north glue label

[99e| an|3 1sam

e each side has a glue  infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) B
strength 0 e assembly starts as a single
e tiles cannot rotate copy of a special seed tile
strength 1 (weak)
- e tile can bind to the assembly
if total binding strength > 2

strength 2 (strong)

. (two weak glues or

one strong glue)
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Example tile set

“cooperative
binding”
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Example tile set

“cooperative
binding”




Example tile set

“cooperative
binding”




Example tile set
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Algorithmic self-assembly in action

N raw AFM image sheared image
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[Crystals that count! Ph’sical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014] 12
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Algorithmic self-assembly in action ee Damien Woods

talk on Thursday!
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[Iterated Boolean circuit computation via a programmable DNA tile array.
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]
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DNA strand displacement




DNA strand displacement

3 basic steps:

e displace

e unbind
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DNA strand displacement

3 basic steps:

e displace

e unbind
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DNA strand displacement

3 basic steps:

e bind

=

e unbind
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DNA strand displacement

3 basic steps:

e bind

=

e unbind
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DNA strand displacement

3 basic steps:
 bind

e displace
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DNA strand displacement

3 basic steps:
 bind

e displace
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DNA strand displacement implementing C = A AND

14



Science and Technology

DNA Join circuit
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Computation with DNA strand displacement

Boolean circuit computation
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[Scaling up digital circuit computation with DNA strand displacement cascades.
inan and Winfree, Science 2011]

Time (hours)

Time (hours)

KXy do%,=0001  yoy, =

X‘1 0.2
Q 0
x 2 0 2 4 6 8 10 1] 2 ) 4 [ B
Time (hours) Time (hours)
X X%, =0100 oy, =10 Ak =1001  yoy,=
1 . 4 . . . .
Y1 0

[v8] =3

\

01

"

10

Analog majority computation ", .

eI e 10
e
® =
¥ v £ os g 05
/ b @ _
(majority) (minority) e e N 0.0

—y . el e 0 5 10 - 5 ::1 5 .

10 15

’ \ ) [ Time (h) Time (h)
. "
Consensus o
R ey 1.0 4 T
network B - Lo
g0 & 05
l 7] i |
00 S e ——
X (majority) > ) P - o 5 1 o 5 1 1
Time {(h) Time (h)

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
k Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

J

0—>0 0

Classification with °

LI
o

&
el

Hopfield associative

306

08 o

|4 / F 06 - -
S04 1 o4 ///’ _—
02 Frankfin 0zl - unng
networks N e "=
2 15 Xa 0 »0011 7707 —> 1000
— 1 1 1
0.8 g B 1
- N\ au.a e 08 '/..""
| :]| 0.5 Xg 8:: / Shannon :: /,/H'.;nmy(:mnl
[Neural network / de=——] | ==
computation with DNA PN it e
| X X
strand displacement 5 X oo T o =
cascades. Qian, Winfree, 20 7 08 LT
Sp4 Motenough{ 04 rd
Bruck. Nature 2011] %ol oimain| oot/
o T i

2 4 L] 2 4
\ Tima (h) Tima (h)

_J

Chemical oscillator

Rock-paper-scissors oscilator: B + A -4 25, C + B 22 2C, A+ C 24 2A

= Signal speces adcded oL 4
— / _— — i VAnYIng amounts ko
— _— — — kickstart cacllabors
L5h Rescts Boskward  Helers ool Theswks t=-1.5h  Frocue t=0
100 nMd 100 nl TSeM b1 108 00 ikt

Time (hours)
[Enzyme-free nucleic acid dynamical systems. Srinivas,

k Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

15



Outline

Part 1: Computation via molecular binding (kinetically)

Part 2: Computation via molecular binding (thermodynamically)

Part 3: Thermodynamic self-assembly
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Kinetic models

kinetic = predicts possible/probable paths from initial configuration to
others




Kinetic models

kinetic = predicts possible/probable paths from initial configuration to
others
e tile assembly
e initial configuration = seed

e other configurations = assemblies containing seed
e transition = attachment of tile

17



Kinetic models
]

kinetic = predicts possible/probable paths from initial configuration to

others
e tile assembly

e initial configuration = seed
e other configurations = assemblies containing seed

e transition = attachment of tile
e strand displacement
e jinitial configuration = initial binding of domains on DNA strands
e other configurations = other ways of binding domains
* transition = bind|displace|unbind R ESS L 4 outout
input = .= S6
gate:output ¢ disp lace input:gate
S6 S2
S5 T, S5 \ S5
\_ T S5 T ) 82T . T86 _ \. T s 1 J
= = Junbind
T S5 T 17

Source: Scaling up digital circuit computation with DNA strand

displacement cascades. Qian and Winfree, Science 2011.



Thermodynamic models

e thermodynamic = defines free energy G(a) of each possible
configuration o and predicts that  Pr[observing o] o« e=6la)l/kT

* minimum free energy configuration = most probable configuration



Thermodynamic models

e thermodynamic = defines free energy G(a) of each possible
configuration o and predicts that  Pr[observing o] o« e=6la)l/kT

* minimum free energy configuration = most probable configuration

 How to find energy of a configuration of DNA strands?
ENERGY

7 HUMAN PERFORMANCE
k LiauiFieo




Thermodynamic models

e thermodynamic = defines free energy G(a) of each possible
configuration o and predicts that  Pr[observing o] o« e=6la)l/kT

* minimum free energy configuration = most probable configuration

dno

ENERGY

7 HUMAN PERFORMANCE
k‘ LIQUIFIED

 How to find energy of a configuration of DNA strands?
Why, it’s elementary:

Appendix A. Pseudocode for the Multistranded Partition Function Algorithm.

Initialize (Q, Q%, Q™) // O(N?) space /] Q, le I‘e(:ZlUI‘SiOII equations
Set all values to 0 except Q-1 = 1fori=1,..., N if nli+5,7—5] ==0then Q;; =1 // empty substructure
forl=1,N

else (); ; =0 // unconnected substructure

for i = 1{- Nlil+1 for d =:,7—1 // loop over all possible 3’-most pairs d-e
J=tl= for e = 1—|—l i N> 3
// Qb recursmn equations if ‘ J o P e 0 T
sl ——o if nle+1 3 i}f—} ==10 a&." % (EN). S s
Qb i‘\p{z AG h-urpm JET} if n[d,,] ==0ord==1 & W‘m ; hﬂ‘ ‘! !
1,7 [ haten. et 4 _,ﬁ . oL
ford=i+1,7-2 /; loop over all possible 3/-most pairs d-e Qi, J+ Qid—1 Qd e L & ral
fOI‘Cqu»J.j 1 lfzr;[z-l- 0’—*} ==0
if ’?EﬁL yd—3] == Umatggor’?[wr J*g] ==0 QY += cxp{f[;\C{;B‘]“ + (d—)AGEIE 4 () AGIMY/ETYQY | // single pair in Q™
Qb += exp{ AG ILT}Qd€ ) if 7?“__} ==
lf(g[bL ++2 JQ 2] == D(gandcig; []Az;qtaid)z[(r{'mﬁl 17( ;) 5/ Jln)uAlt(ﬂglcl)lll)L }1/1;»;})1) level nicks QI += Qm 1 Qd . exp{—[AG multl +(j— ,;);\.(_}'glailg_l]_ﬂcT} // more than one pair in Q™
for ¢ € Z{f _____ s : ll}‘i tl U[‘zj_ =t /) ]luup over all top-level nicks € [i4 1, j— 1] return [Qq n exp{—(L — 1)AG**°¢/ET'}] /f partition function Q(x) for ordering =
if (r;[z+ |]==0 qnd 17[177] ==0)or (i==j—1) or . . . . .
(c==iand 5[j—1] == 0) or (c == j—1 and y[i+1] == 0) then Source: Thermodynamic Analysis of Interacting Nucleic Acid Strands.
Q};+= Qi+1.cQe+1,5-1 // exterior loops Dirks, Bois, Schaeffer, Winfree, Pierce, SIAM Review 2011.

18



Simplified model: Thermodynamic binding networks



Simplified model: Thermodynamic binding networks

Goal 1: Isolate the contribution of thermodynamics alone to the
correctness of a molecular binding system

* no notion of “initial configuration” or “transitions”




Simplified model: Thermodynamic binding networks

Goal 1: Isolate the contribution of thermodynamics alone to the
correctness of a molecular binding system

* no notion of “initial configuration” or “transitions”

Goal 2: Abstract away DNA-specific details and model arbitrary molecules
with specific binding domains

* no “geometry”

e can “graft onto” kinetic models

19



Simplified model: Thermodynamic binding networks

Not a goal: be a predictive model telling us what the system will do

* |t's an adversarial model constraining the system’s misbehavior when it
violates assumptions of a more detailed molecular model.




Simplified model: Thermodynamic binding networks

Not a goal: be a predictive model telling us what the system will do

* |t's an adversarial model constraining the system’s misbehavior when it
violates assumptions of a more detailed molecular model.

Errors in practice take “illegal” transitions in kinetic model
* tile binds with strength 1 instead of 2
e strand A displaces B despite lack of toehold



Simplified model: Thermodynamic binding networks

Not a goal: be a predictive model telling us what the system will do

* |t's an adversarial model constraining the system’s misbehavior when it
violates assumptions of a more detailed molecular model.

Errors in practice take “illegal” transitions in kinetic model
* tile binds with strength 1 instead of 2
e strand A displaces B despite lack of toehold

Can we design systems so that the desired final configuration is also the
thermodynamically most stable?



Thermodynamic binding networks: Definition

monomer type = collection of domains
e.g., {a,b,b,c d*} or {d, a*}




Thermodynamic binding networks: Definition

monomer type = collection of domains
e.g., {a,b,b,c d*} or {d, a*}

configuration = matching of
complementary domains (how domains

are bound)
4 \
a b aj(b
\ /
a* b*
\ ‘ J




Thermodynamic binding networks: Definition

monomer type = collection of domains enthalpy of configuration = # bonds
e.g., {a,b,b,c d*} or {d, a*}

configuration = matching of
complementary domains (how domains

are bound)
4 \
enthalpy =2 2 b a |b
\ /
a* b*
\ J




Thermodynamic binding networks: Definition

monomer type = collection of domains enthalpy of configuration = # bonds

eg., {ab,b,cd*} or {d a¥} entropy of configuration = # free complexes
configuration = matching of (a.k.a. polymers)
complementary domains (how domains
are bound)
r \
enthalpy =2 2 b a |b
\ _/
entropy = 2 a* b*
\ J

21



Thermodynamic binding networks: Definition

monomer type = collection of domains enthalpy of configuration = # bonds

eg., {ab,b,cd*} or {d a¥} entropy of configuration = # free complexes
configuration = matching of (a.k.a. polymers)
comgolem;ntary domains (how domains energy of configuration = weighted sum of
are bound) enthalpy and entropy
r \
enthalpy =2 2 b al b

entropy = 2 a* b*
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Thermodynamic binding networks: Definition

monomer type = collection of domains enthalpy of configuration = # bonds

eg., {ab,b,cd*} or {d a¥} entropy of configuration = # free complexes
configuration = matching of (a.k.a. polymers)
gcr)éngocl)ir:;)ntary domains (how domains energy of configuration = weighted sum of
enthalpy and entropy
r N
enthalpy =2 2 b a |b
‘ \ _/
entropy = 2 a* b*
\ ‘ J
r N
enthalpy = 1 a b g /b
t — 3 * b*
entropy a* )
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Thermodynamic binding networks: Definition

monomer type = collection of domains enthalpy of configuration = # bonds

E 3 %k . .
eg. {a,bb,cd*} or {d a%} entropy of configuration = # free complexes
configuration = matching of (a.k.a. polymers)
comgolem;ntary domains (how domains energy of configuration = weighted sum of
are bound) enthalpy and entropy
r N r N
enthalpy = 2 3 a |b enthalpy =2 a bllb
\ / a |
entropy = 2 a* b* entropy = 2 3% p*
\ J \ J
r N
enthalpy = 1 a b g /b
entropy = 3 a* b*
py )
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Thermodynamic binding networks: Definition

monomer type = collection of domains enthalpy of configuration = # bonds

E 3 %k . .
eg. {a,bb,cd*} or {d a%} entropy of configuration = # free complexes
configuration = matching of (a.k.a. polymers)
comgolem;ntary domains (how domains energy of configuration = weighted sum of
are bound) enthalpy and entropy
r N r N
enthalpy = 2 3 a |b enthalpy =2 a bllb
\ / a |
entropy = 2 a* p* entropy = 2 3% p*
\ J \ J
r N r N
enthalpy =1 a b aj|b enthalpy = 2 a b
/ a | | b
entropy = 3 a* b* entropy = 3 3* p*
J \ J
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Tradeoff favoring enthalpy infinitely over entropy

monomer collection = vector ¢ € NM indicating counts of M monomer types




Tradeoft favoring enthalpy infinitely over entropy

monomer collection = vector ¢ € NM indicating counts of M monomer types

configuration of c is saturated if enthalpy is maximal (no pair of unbound complementary domains)
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Tradeoft favoring enthalpy infinitely over entropy

monomer collection = vector ¢ € NM indicating counts of M monomer types

configuration of c is saturated if enthalpy is maximal (no pair of unbound complementary domains)

configuration of c is stable if saturated and entropy is maximal (no saturated config. of ¢ has more polymers)

4 N
saturated not saturated
(stable\
b 4 ;:b ) 4 ;:b 4 E:b N
o o o
E bJ \_ _ y, E
( 0 ) 4 5 )
b* b*
_E b)) @
\. y
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Outline

Part 1: Computation via molecular binding (kinetically)
Part 2: Computation via molecular binding (thermodynamically)

Part 3: Thermodynamic self-assembly
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A modest goal

* Informal: Design monomers that self-assemble arbitrarily large polymers.
e size of a polymer = # monomers in the polymer
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* Formal: Design a set of monomer types so that, for all S € N, there is a
stable polymer of size at least S.



A modest goal

* Informal: Design monomers that self-assemble arbitrarily large polymers.
e size of a polymer = # monomers in the polymer

* Formal: Design a set of monomer types so that, for all S € N, there is a
stable polymer of size at least S.

e Easy to do in Abstract Tile Assembly Model:

size-8 polymer (assembly) formed
set of monomer types: with 8 copies of monomer

a a* #a a*Ha a*Ha a*Ha a*Ha a*Ha a*Ha a*Ha a*#




Difficulty of self-assembling large polymers
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Difficulty of self-assembling large polymers
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Difficulty of self-assembling large polymers

4 not stable! (or even saturated)
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Difficulty of self-assembling large polymers

4 not stable! (or even saturated) )
a* a* a* a*
a* a* a* a*
\_ J
attempt 2:
4 )
W] [y 7
\ /
x y* z

—

-

more complexes = higher entropy = more stable
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Difficulty of self-assembling large polymers

4 not stable! (or even saturated) )
a* a* a* a*
a* a* a* a*
attempt 2:
not stable! )

—

-

more complexes = higher entropy = more stable
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N\ J
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Difficulty of self-assembling large polymers

~N

4 not stable! (or even saturated)
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An even more modest goal

Original goal: Design a set of monomer types so that, for all S € N, there is a stable
polymer of size at least S.
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An even more modest goal

Revised goal: For all S € N, design a set of M monomer types using D domain types
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Revised goal: For all S € N, design a set of M monomer types using D domain types

with a stable polymer of size at least S.

How large can we make S relative to D and M?

D,M = 0(1), S = arbitrarily large

d*

d*

d*

d*

U\ N\

<

d

d

d

d
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An even more modest goal

a - X0~ -y o 1\~ ad’a - A\ ~ ~ 1 I~ LA
w \ @

and O(1) domains per monomer
Re-Revised goal: For all S € N, design a set of M monomer types using D domain typesa,

with a stable polymer of size at least S.

How large can we make S relative to D and M? S = D?

D,M = 0(1), S = arbitrarily large

S=D

1 r1d; d,"d; d3*Hd; dg* 1 d,
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How large can we make S relative to D and M?

S=2b0?
/EE\
) Zdl*dK / Zdl*dK
d, d,* d, d, d,* d, d, d,* d, d, d,* d,
d,d,*d,| [d,d*d,| [d,dy*d,| [d,dy*d,| [dyds*d,| [dyds*d,| [d, dy*d,| [d, ds*d,
7 T T P I T I A O
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How large can we make S relative to D and M?

S =207 S~ 227797

d,d;*d d,d,*d
2 B 9> 2 il ¢

d, d;* d,| |d,ds*d, d, d;* d, d, d;* d, d, d;* d, d, d;* d, d, d;* d, d, d;* d,

P P VP P P P P P P P P < B P - P

27



How large can we make S relative to D and M?

S=20? S =92 7

d,d;*d d,d,*d
2 B 9> 2 il ¢

3d5* d d; d,* d,

d,d;*d,| |d,dy*d,| |d,d*d,| |d,dy*d,| |d,d*d,| |d,dy*d,| |d, dy*d

P P VP P P P P P P P P < B P - P

4 d, d;* d,
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Stable polymers have at most exponential size

Theorem: Any thermodynamic binding network with
e D domain types,
* M monomer types,
e <A domains per monomer type (note D/A < M < AP+1)

has polymers of size < 2(M+D)(AD)?P*3 = poly(DP) if A = O(1)
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Easy proof if binding
graph is acyclic (tree)

Since monomers have O(1) domains, binding
graph is bounded degree

e # nodes of tree is at most exponential in
depth (longest path length < 2-depth)

e If some path has > 2D edges, it must repeat
some ordered pair (d,d.*) or (d*,d))

e Break into two saturated polymers as shown.
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A digression into computational complexity

* INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b
Question: is there a nonnegative integer vector x such that Ax = b?

0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution... max; x; < exp(max;(A;,b;))

* Pa padimitriou’s proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
e If xis a large enough solution, thereis0<y < x,y € N™, such that Ay = 0.
e Definingz=x-y, Az=A(x—y)=Ax—Ay=Ax—-0=bh.
e So zis a strictly smaller solution than x: x cannot be the smallest solution.
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Monomers as vectors

* monomer {a, b*b* d,ddd,d* ee*}representedas(1,-2,0,3,0)
e sum of many monomers gives the number of excess domains in a fully

bound (saturated) polymer with those monomers

* i.e., 2 copies of above monomer 2:(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of
2a’s,4b*s,0c’s,6d’s,0e’s



Farkas’ Lemma

Given vectors m;, m,, ..., they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

m,

32



Farkas’ Lemma

Given vectors m;, m,, ..., they obey one of two constraints:

a) are directions of balanced forces

dc
(m;m, m;3)c=0

(counts of monomers)
m,

b) lie on one side of some hyperplane

(hyperplane .
orthogonal vector) ™,

N

h'mIZ 1 \\\‘
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How to prove exponential polymer size bound
for polymers with cycles in binding graph?

monomer collection ¢ € NM

a b c*

* *

5 b*la*l—12.¢ ¢
a* c* a a* b* c
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How to prove exponential polymer size bound
for polymers with cycles in binding graph?

e A =dXx m matrix: A,.j = monomer mj’s excess of
domain d; over d.*

monomer collection ¢ € NV

abc
* If Ac=b, then b, = total # unbound d. in any Ac=(2,1,0)
saturated configuration of x

2 )b c*

a c* c*
a b* gk —1°9
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How to prove exponential polymer size

oound

for polymers with cycles in binding grap

1K

* A=dxm matrix: A; = monomer m;’s excess of monomer collection c € NM
H %k
domain d; over d, abc
* If Ac=b, then b, = total # unbound d. in any Ac=(2,1,0)
saturated configuration of x pemmm—————— . a b c*

e If |c| > exponential in D, Papadimtriou’s proof gives

RN

us subcollection y < ¢ such that Ay = 0, (Farkas’

*
(@]
*

<
W
=3
*
W
*
x
(@)

Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

op ™ N N - —

I

I

I

I
a* c* a — a* b* c

.
a* ¢ bl 1

' b b a
[ .
a b b*

) a b* a*

————————————
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1K

A = d x m matrix: A; = monomer m;’s excess of monomer collection c € NM
H %

domain d; over d, abc

If Ac = b, then b, = total # unbound d. in any Ac=(2,1,0)

saturated configuration of x pemmm—————— . a b c*

If |c| > exponential in D, Papadimtriou’s proof gives

RN

<
W
=3
*
W
*
x
(@)

us subcollection y < ¢ such that Ay = 0, (Farkas’

*
(@]
*

Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

op ™ N N - —

|
|
]
i.e., #d.iny =#d* iny, soy is self-saturating. a* c* a : a* b* ¢
|
|
a* ¢ b : /
' b b a
[ N
a b b*
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How to prove exponential polymer size bound
for polymers with cycles in binding graph?

A = d x m matrix: A; = monomer m;’s excess of monomer collection ¢ € NM
domain d; over d.* abc

If Ac = b, then b, = total # unbound d. in any Ac=(2,1,0)
saturated configuration of x

If |c| > exponential in D, Papadimtriou’s proof gives /
us subcollection y < ¢ such that Ay = 0, (Farkas’ e
Lemma says that if this fails, then monomer vectors

all lie on one side of a hyperplane, see next slide)

i.e., #d.iny =#d* iny, soy is self-saturating. a* b* ¢

So whatever bonds were broken to separate y can
be re-bound within y.

’————————————————————————Q\
\---- (N B N B N 'N _§ N N §N §N ] --_’

————————————
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for polymers with cycles in binding graph?

A = d x m matrix: A; = monomer m;’s excess of monomer collection ¢ € NM

domain d; over d.*

If Ac = b, then b, = total # unbound d. in any
saturated configuration of x

If |c| > exponential in D, Papadimtriou’s proof gives
us subcollection y < ¢ such that Ay = 0, (Farkas’
Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

i.e., #d.iny =#d* iny, soy is self-saturating.

So whatever bonds were broken to separate y can
be re-bound within y.

By symmetry, the same bonds inz=c—ycan bere-
bound within z.

op ™ N N - —

\~—————————————————————————————————’

How to prove exponential polymer size bound

w
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If all monomer types lie on one side of hyperplane h...

e Consider “slack monomers” {d,*}, {d,*},..., adding just enough to bind to all the
excess d. domains, so saturated (fully bound) == all domains bound

e If cis count of all monomers including slack monomers (c(i) = count of m,), then
Ac = 0, where each column of A represents a monomer (counts of domains).

 dot-product h on both sides: h-Ac = h-0 = 0, distribute through: >.(h-m.)c(i) =0
e Let S be set of monomers with “small” counts, move them to one side:

= Yies(h-my)c(i) = Zies(h'mi)c(i)
* Then “small”, 2= ,cc(h-my)c(i) = 3,zs(h-m;)c(i) = 3,..c(i)

c(i) (count of i"th monomer) is above

since h-m,>1
small by definition, and h-m, = O(1)



Applying thermodynamic model to tile assembly

 Let’s incorporate the thermodynamic binding network model into the
abstract tile assembly model.

* How can we create a large assembly from a small number of tile
types?



A thermodynamically unstable tile assembly counter
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A thermodynamically stable tile assembly counter

Difference is that each row (corresponding to bits of the same significance)
has glues labeled with the row number

T _ _ = :
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Thermodynamic self-assembly at UCNC 2018

e Thermodynamically Favorable Computation via Tile Self-assembly,
Cameron Chalk, Jacob Hendricks, Matthew Patitz, and Michael Sharp
(talk on Friday!)



Conclusions

» Strong bonds (surprisingly) aren’t sufficient to self-assemble large
thermodynamically stable structures. Geometry helps!

* Kinetically self-assembling a thermodynamically stable structure has
very strong guarantees on errors:
e target structure eventually results despite arbitrary kinetic errors.

 |f it’s the only stable structure, and free energy of other structures is much
less, then it’s the only result you’ll see.

 Bad news: NP-complete to tell if a given configuration is unstable...
even NP-hard to approximate entropy of stable configuration:

[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable
configurations of thermodynamic binding networks]|



Merci!

Questions?
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