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Computation via molecular binding: Two models
DNA tile self-assembly
monomers (DNA “tiles”) bind into a crystal 
lattice
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Source: Programmable disorder in random DNA tilings. Tikhomirov, 
Petersen, Qian, Nature Nanotechnology 2017
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Computation via molecular binding: Two models
DNA tile self-assembly
monomers (DNA “tiles”) bind into a crystal 
lattice

DNA strand displacement
DNA complexes exchange strands with each 
other by displacing binding domains

4
Source: Programmable disorder in random DNA tilings. Tikhomirov, 
Petersen, Qian, Nature Nanotechnology 2017
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Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of 
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at 
en.wikipedia; Permission: PDB; Released 
under the GNU Free Documentation License.
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Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011
6

Practice of DNA tile self-assembly

(not the same tile motif in this image)



Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree

7



Abstract Tile Assembly Model
Erik Winfree, 
Ph.D. thesis, 
Caltech 1998
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Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies 
of each type

• assembly starts as a single 
copy of a special seed tile

• tile can bind to the assembly 
if total binding strength ≥ 2 
(two weak glues or              
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, 
Ph.D. thesis, 
Caltech 1998
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Algorithmic self-assembly in action

12

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image



Algorithmic self-assembly in action

12

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

[Iterated Boolean circuit computation via a programmable DNA tile array. 
Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted]
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See Damien Woods’ 
talk on Thursday!



DNA strand displacement
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DNA strand displacement

13

3 basic steps:

• bind

• displace

• unbind
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DNA strand displacement implementing     C =  A AND B

14


Science and Technology

DNA Join circuit

2014





Computation with DNA strand displacement

15

Classification with 
Hopfield associative 
networks

Chemical oscillator

Boolean circuit computation

[Scaling up digital circuit computation with DNA strand displacement cascades. 
Qian and Winfree, Science 2011]

[Neural network 
computation with DNA 
strand displacement 
cascades. Qian, Winfree, 
Bruck. Nature 2011]

Analog majority computation

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas, 
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas, 
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]
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Kinetic models
kinetic ≈ predicts possible/probable paths from initial configuration to 
others
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Kinetic models
kinetic ≈ predicts possible/probable paths from initial configuration to 
others

• tile assembly 
• initial configuration = seed
• other configurations = assemblies containing seed
• transition = attachment of tile
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Kinetic models
kinetic ≈ predicts possible/probable paths from initial configuration to 
others

• tile assembly 
• initial configuration = seed
• other configurations = assemblies containing seed
• transition = attachment of tile

• strand displacement 
• initial configuration = initial binding of domains on DNA strands
• other configurations = other ways of binding domains
• transition = bind|displace|unbind
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Source: Scaling up digital circuit computation with DNA strand 
displacement cascades. Qian and Winfree, Science 2011.
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Thermodynamic models
• thermodynamic ≈ defines free energy G(α) of each possible 

configuration α and predicts that     Pr[observing α] ∝ e–G(α)/kT

• minimum free energy configuration = most probable configuration
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Thermodynamic models
• thermodynamic ≈ defines free energy G(α) of each possible 

configuration α and predicts that     Pr[observing α] ∝ e–G(α)/kT

• minimum free energy configuration = most probable configuration
• How to find energy of a configuration of DNA strands?

Why, it’s elementary:

18

Source: Thermodynamic Analysis of Interacting Nucleic Acid Strands. 
Dirks, Bois, Schaeffer, Winfree, Pierce, SIAM Review 2011.



Simplified model: Thermodynamic binding networks
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Simplified model: Thermodynamic binding networks

Goal 1: Isolate the contribution of thermodynamics alone to the 
correctness of a molecular binding system

• no notion of “initial configuration” or “transitions”
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Simplified model: Thermodynamic binding networks

Goal 1: Isolate the contribution of thermodynamics alone to the 
correctness of a molecular binding system

• no notion of “initial configuration” or “transitions”

Goal 2: Abstract away DNA-specific details and model arbitrary molecules 
with specific binding domains

• no “geometry”
• can “graft onto” kinetic models

19



Simplified model: Thermodynamic binding networks

Not a goal: be a predictive model telling us what the system will do
• It’s an adversarial model constraining the system’s misbehavior when it 

violates assumptions of a more detailed molecular model.
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Simplified model: Thermodynamic binding networks

Not a goal: be a predictive model telling us what the system will do
• It’s an adversarial model constraining the system’s misbehavior when it 

violates assumptions of a more detailed molecular model.

20

Can we design systems so that the desired final configuration is also the 
thermodynamically most stable?

Errors in practice take “illegal” transitions in kinetic model
• tile binds with strength 1 instead of 2
• strand A displaces B despite lack of toehold



Thermodynamic binding networks: Definition
monomer type = collection of domains

e.g.,   { a, b, b, c, d*}   or   {d, a*}
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Tradeoff favoring enthalpy infinitely over entropy
monomer collection = vector c ∈ ℕM indicating counts of M monomer types
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Tradeoff favoring enthalpy infinitely over entropy
monomer collection = vector c ∈ ℕM indicating counts of M monomer types
configuration of c is saturated if enthalpy is maximal (no pair of unbound complementary domains)
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Tradeoff favoring enthalpy infinitely over entropy
monomer collection = vector c ∈ ℕM indicating counts of M monomer types
configuration of c is saturated if enthalpy is maximal (no pair of unbound complementary domains)

configuration of c is stable if saturated and entropy is maximal (no saturated config. of c has more polymers)
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A modest goal

• Informal: Design monomers that self-assemble arbitrarily large polymers.
• size of a polymer =  # monomers in the polymer
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A modest goal

• Informal: Design monomers that self-assemble arbitrarily large polymers.
• size of a polymer =  # monomers in the polymer

• Formal: Design a set of monomer types so that, for all S ∈ ℕ, there is a 
stable polymer of size at least S.

• Easy to do in Abstract Tile Assembly Model:

24

a a*

set of monomer types:
size-8 polymer (assembly) formed 
with 8 copies of monomer  

a a* a a* a a* a a* a a* a a* a a* a a*



Difficulty of self-assembling large polymers
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Difficulty of self-assembling large polymers
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a a*
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not stable! (or even saturated)
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more complexes ⇒ higher entropy ⇒ more stable
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attempt 2:

w x*

x y*

y z*

z w*

w x*

x y*

y z*

z w*

not stable! 

w x*

x y*

y z*

z w*

…

These have more polymers, and each is self-saturating
(every domain can be bound within the polymer)
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S ≈ DD,M = O(1),  S = arbitrarily large

S ≈ D2

d1 d2* d2 d3* d3 d4* d4d1*
d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^

d1 c1 d2*c1 d1* d2 c1 d3* d3 c1

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types 
with a stable polymer of size at least S.
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Stable polymers have at most exponential size

Theorem: Any thermodynamic binding network with 
• D domain types, 
• M monomer types, 
• ≤ A domains per monomer type                (note D/A ≤ M ≤ AD+1)

has polymers of size ≤ 2(M+D)(AD)2D+3 = poly(DD) if A = O(1)

28



Easy proof if binding 
graph is acyclic (tree)
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Easy proof if binding 
graph is acyclic (tree)

29

• Since monomers have O(1) domains, binding 
graph is bounded degree

• # nodes of tree is at most exponential in 
depth (longest path length ≤ 2∙depth)

• If some path has > 2D edges, it must repeat 
some ordered pair (di,di*) or (di*,di)

• Break into two saturated polymers as shown.

not stable



A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b
Question: is there a nonnegative integer vector x such that Ax = b?
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• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.
• Defining z = x – y,   Az = A(x – y) = Ax – Ay = Ax – 0 = b.
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A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b
Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).
• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig 

1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])
If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.
• Defining z = x – y,   Az = A(x – y) = Ax – Ay = Ax – 0 = b.
• So z is a strictly smaller solution than x: x cannot be the smallest solution.
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Monomers as vectors

• monomer {a,    b*,b*,    d,d,d,d,d*,    e,e*} represented as (1,-2,0,3,0)
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Monomers as vectors

• monomer {a,    b*,b*,    d,d,d,d,d*,    e,e*} represented as (1,-2,0,3,0)
• sum of many monomers gives the number of excess domains in a fully 

bound (saturated) polymer with those monomers
• i.e., 2 copies of above monomer 2∙(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of 

2 a’s, 4 b*’s, 0 c’s, 6 d’s, 0 e’s

31



Farkas’ Lemma
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32

Given vectors m1, m2, … , they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

h∙mi ≥ 1

m1

h(m1 m2 m3)c = 0
∃c (counts of monomers)

(hyperplane 
orthogonal vector)∃h

m2

m3

m1

m2

m3



How to prove exponential polymer size bound 
for polymers with cycles in binding graph?
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How to prove exponential polymer size bound 
for polymers with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of 

domain di over di*
• If Ac = b, then bi = total # unbound di in any 

saturated configuration of x

• If |c| > exponential in D, Papadimtriou’s proof gives 
us subcollection y < c such that Ay = 0, (Farkas’ 
Lemma says that if this fails, then monomer vectors 
all lie on one side of a hyperplane, see next slide)

• i.e., #di in y = #di* in y, so y is self-saturating.
• So whatever bonds were broken to separate y can 

be re-bound within y.

• By symmetry, the same bonds in z = c – y can be re-
bound within z.
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If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the 
excess di domains, so saturated (fully bound) == all domains bound

• If c is count of all monomers including slack monomers (c(i) = count of mi), then 
Ac = 0, where each column of A represents a monomer (counts of domains).

• dot-product h on both sides: h∙Ac = h∙0 = 0, distribute through: ∑i(h∙mi)c(i) = 0
• Let S be set of monomers with “small” counts, move them to one side: 

– ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i)
• Then “small”2 ≥ – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i) ≥ ∑i∉Sc(i)

34

c(i) (count of i’th monomer) is 
small by definition, and h∙mi = O(1)

above since h∙mi ≥ 1



Applying thermodynamic model to tile assembly

• Let’s incorporate the thermodynamic binding network model into the 
abstract tile assembly model.

• How can we create a large assembly from a small number of tile 
types?

35



A thermodynamically unstable tile assembly counter
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A thermodynamically stable tile assembly counter
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Difference is that each row (corresponding to bits of the same significance) 
has glues labeled with the row number



Thermodynamic self-assembly at UCNC 2018

• Thermodynamically Favorable Computation via Tile Self-assembly, 
Cameron Chalk, Jacob Hendricks, Matthew Patitz, and Michael Sharp 
(talk on Friday!)
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Conclusions

• Strong bonds (surprisingly) aren’t sufficient to self-assemble large 
thermodynamically stable structures. Geometry helps!

• Kinetically self-assembling a thermodynamically stable structure has 
very strong guarantees on errors:

• target structure eventually results despite arbitrary kinetic errors.
• If it’s the only stable structure, and free energy of other structures is much 

less, then it’s the only result you’ll see.
• Bad news: NP-complete to tell if a given configuration is unstable… 

even NP-hard to approximate entropy of stable configuration:  
[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable 
configurations of thermodynamic binding networks]
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Merci!
Questions?
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