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Experimental background: 
Structural DNA nanotechnology
a.k.a. DNA carpentry
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scaffold DNA strand

staple DNA strands

folded DNA origami
heat to 90C, cool to 
20C over an hour
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Nature 2006

(M13mp18 bacteriophage virus)

DNA origami
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DNA origami

100 nm

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

Atomic force 
microscope images
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DNA stacking interactions between 
blunt ends

© http://openwetware.org/wiki/Biomod/2014/Kansai/Experiment

nonspecific attractive interactions
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Stacking at edges of DNA origami

Sungwook Woo, Paul Rothemund
Programmable molecular recognition based on the geometry of DNA nanostructures
Nature Chemistry 2011
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Stacking at edges of DNA origami

scale bars: 100nm
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Programming specific macrobonds through geometric 
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Programming specific macrobonds through geometric 
arrangement of nonspecific bonds (“patches”)

staple left out to 
“deactivate” patch

unintended translations can 
result in overlap between large 
subset of patches

Sungwook Woo, Paul Rothemund
Programmable molecular recognition based on the geometry of DNA nanostructures
Nature Chemistry 2011
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Extending from 1D to 2D bonds

Thomas Gerling, Klaus F. Wagenbauer, Andrea M. Neuner, Hendrik Dietz
Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components
Science 2015 8
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Extending from 1D to 2D bonds

Thomas Gerling, Klaus F. Wagenbauer, Andrea M. Neuner, Hendrik Dietz
Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components
Science 2015

stacking 
interactions

negative stain TEM images

20
nm

3D DNA origamis
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Design of geometric 
molecular bonds, 
à la Reed-Solomon
How to engineer large sets of specific molecular bonds that 
do not bind (strongly) in unintended ways
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Desired outcomes
1) any nonzero translation 

of macrobond has 
“small” overlap with 
untranslated original

2) any translation of 
macrobond has 
“small” overlap with 
other macrobonds

11

macrobond 1

macrobond 2

3) lots of 
macrobonds!
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p(x) = 0) unless all ci = 0
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p(x) = 0) unless all ci = 0

• Consequence: since the difference p(x)-q(x) of 
two different degree d polynomials is a degree d
polynomial, p(x) = q(x) on at most d values of x

• If n is prime, addition and multiplication of 
integers modulo n defines a field 𝔽𝔽

d = 4
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Why is overlap at most d?

• b0 mod n
• 0 mod n, so (dδxad ≡ 0 mod n) ⇒ (δx = 0)
• q, then p’(x) = q(x) on at most d values of x, and we are done.
• p(x) = adxd + ad-1xd-1 + … + a1x + a0 q(x) = bdxd + bd-1xd-1 + … + b1x + b0

• Translate macrobond derived from p by vector v=(-δx,δy) (both < n): gives 
polynomial p’(x) = p(x + δx) + δy.

• Otherwise coefficients of p’ and q are the same:
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Why is overlap at most d?

• 0 mod n, i.e., δy = 0
• b0 mod n
• 0 mod n, so (dδxad ≡ 0 mod n) ⇒ (δx = 0)
• q, then p’(x) = q(x) on at most d values of x, and we are done.
• p(x) = adxd + ad-1xd-1 + … + a1x + a0 q(x) = bdxd + bd-1xd-1 + … + b1x + b0

• Translate macrobond derived from p by vector v=(-δx,δy) (both < n): gives polynomial 
p’(x) = p(x + δx) + δy.

• Otherwise coefficients of p’ and q are the same:
• p’(x) = [ad(x + δx)d + ad-1(x + δx)d-1 + … a1(x + δx) + a0] + δy
• binomial theorem says xd-1 coefficient (i.e., bd-1) is ad-1 + dδxad
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d-1 + 
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Why is overlap at most d?

• q, then their translations are unequal also
• 0 mod n, i.e., δy = 0
• b0 mod n
• 0 mod n, so (dδxad ≡ 0 mod n) ⇒ (δx = 0)
• q, then p’(x) = q(x) on at most d values of x, and we are done.
• p(x) = adxd + ad-1xd-1 + … + a1x + a0 q(x) = bdxd + bd-1xd-1 + … + b1x + b0

• Translate macrobond derived from p by vector v=(-δx,δy) (both < n): gives polynomial p’(x) 
= p(x + δx) + δy.

• Otherwise coefficients of p’ and q are the same:
• p’(x) = [ad(x + δx)d + ad-1(x + δx)d-1 + … a1(x + δx) + a0] + δy
• binomial theorem says xd-1 coefficient (i.e., bd-1) is ad-1 + dδxad
• Also, binomial theorem says constant coefficient (i.e., b0) is                                       adδx
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d-1 + … + a1δx

1 + a0 + 
δy ≡ b0 mod n
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Why is overlap at most d?

• q, then their translations are unequal also
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• p(x) = adxd + ad-1xd-1 + … + a1x + a0 q(x) = bdxd + bd-1xd-1 + … + b1x + b0

• Translate macrobond derived from p by vector v=(-δx,δy) (both < n): gives polynomial p’(x) = p(x + δx) + 
δy.
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• p’(x) = [ad(x + δx)d + ad-1(x + δx)d-1 + … a1(x + δx) + a0] + δy

• binomial theorem says xd-1 coefficient (i.e., bd-1) is ad-1 + dδxad

• So p = q, i.e., if p ≠ q, then their translations are unequal also
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