Crystals that think about how they're growing

David Doty

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

University of Minnesota ECE Colloquium series, Oct 7, 2021

Caltech
Cnuía
Inria Paris

UC Davis

Harvard

Acknowledgements

Caltech

Inria Paris

Harvard

Damien Woods
(co-first author)

Erik Winfree

co-authors

Felix Zhou

Peng Yin

Joy Hui

UC Davis
C Davis

lab/science help

Constantine Evans
Sarina Mohanty Niranjan Srinivas
Deborah Fygenson Yannick Rondolez
Mingjie Dai Nikhil Gopalkrishnan
Chris Thachuk Nadine Dabby
Jongmin Kim Paul Rothemund
Bryan Wei Cody Geary
Ashwin Gopinath

Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Damien Woods†, David Doty†, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, Erik Winfree. Nature 2019. †These authors contributed equally.

Building things

Ljubljana Marshes Wheel. 5k years old
Building things by hand: use tools! Great for scale of $10^{ \pm 2} \times \llbracket$

Building things

Ljubljana Marshes Wheel. 5k years old
Building things by hand: use tools! Great for scale of $10^{ \pm 2} \times \nsubseteq$
Building tools that build things: specify target object with a computer program

Building things

Building things by hand: use tools! Great for scale of $10^{ \pm 2} \times$

Building tools that build things: specify target object with a computer program

Programming things to build themselves: for building in small wet places where our hands or tools can't reach

Our topic: self-assembling molecules that compute as they build themselves

Our topic: self-assembling molecules that compute as they build themselves

Our topic: self-assembling molecules that compute as they build themselves

Hierarchy of abstractions

\longrightarrow Bits:
Tiles:
DNA:

Boolean circuits compute
Tile growth implements circuits
DNA strands implement tiles

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Harmonious arrangement

Odd bits

1

0

1

0

0

1

Odd bits

move 1's
to here

Odd bits

Odd bits

a.k.a. parity

Parity

Parity

Parity

Parity

Circuit model

gate: function with two input bits i_{1}, i_{2} and two output bits o_{1}, O_{2}

Circuit model

gate: function with two input bits i_{1}, i_{2} and two output bits o_{1}, O_{2}

Circuit model

gate: function with two input bits i_{1}, i_{2} and two output bits o_{1}, O_{2}

Circuit model

Circuit model

Circuit model

Circuit model

Circuit model

Circuit model

Randomization: Each row may be assigned ≥ 2 gates, with associated probabilities, e.g., $\operatorname{Pr}\left[\mathrm{g}_{\mathrm{NN}}\right]=\operatorname{Pr}\left[\mathrm{g}_{\mathrm{XA}}\right]=1 / 2$

Circuit model

Programmer specifies layer:
gates to go in each row

Circuit model

Programmer specifies layer:
gates to go in each row

User gives n input bits

Circuit model

Programmer specifies layer:
gates to go in each row

User gives n input bits

Example circuits with same gate in every row

COPY

i_{1}	i_{2}	o_{1}	o_{2}
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Example circuits with same gate in every row

Example circuits with same gate in every row

Copy gates

Example circuits with different gates in each row

Example circuits with different gates in each row

Parity

Example circuits with different gates in each row

Parity

MultipleOf3

$$
011011_{2}
$$

Example circuits with different gates in each row

Parity

MultipleOf3

Example circuits with different gates in each row

Parity

MultipleOf3

Example circuits with different gates in each row

Parity

MultipleOf3

$$
011011_{2}=27_{10}=3 \cdot 9
$$

Randomization: "Lazy" sorting

If 1 and 0 out of order, flip a coin to decide whether to swap them.

Randomization: "Lazy" sorting

If 1 and 0 out of order, flip a coin to decide whether to swap them.

Deterministic circuits

Parity

MultipleOf3
answer yes/no question

Deterministic circuits

Parity	Mutipleof3			answer yes/no question
8	a			

Deterministic circuits

Deterministic circuits

PARITY	MultipleOf3	PALINDROME	answer yes/no question

Deterministic circuits

CyCle63	"count" as high as possible
解	

Rule110

Deterministic circuits

Parity	MultipleOf3	Palindrome	answer yes/no question
	00000000000000000 \qquad	$A g B A$	
8			

- Rule110

time \longrightarrow

Deterministic circuits

simulate cellular automata
Theorem: Rule 110 can efficiently execute any algorithm.
[Cook, Complex Systems 2004]

Randomized circuits

LazyParity

Randomized circuits

LaZYPARITY

Randomized circuits

LaZYPARITY


```
0000000,00000
008 00000&0000000
000 c00,0000080000000
00000
```

RandomWalkingBit

Randomized circuits

LAZYPARITY


```
00,000000
008 c00000,000000
0000000000000000
00000
```


DIAMONDSAREFOREVER

Randomized circuits

LAZYPARITY

RandomWalkingBit

DiAMONDSAREFOREVER
use biased coin to simulate unbiased coin

```
0000000,00000
008 000008,000000
00 0000000000000
00000
```


FAIRCOIN

```
00006000600
```

00006000600
8.0.0060.
8.0.0060.
800000001000

```
800000001000
```

0000000000000

- 00 00 080

Randomized circuits

Hierarchy of abstractions

Bits: Boolean circuits compute
\longrightarrow Tiles:
DNA: DNA strands implement tiles

Gates \rightarrow Tiles

Gates \rightarrow Tiles

Gates \rightarrow Tiles

How tiles compute while growing (algorithmic self-assembly)

How tiles compute while growing (algorithmic self-assembly)

How tiles compute while growing (algorithmic self-assembly)

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

Hierarchy of abstractions

Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
\longrightarrow DNA: DNA strands implement tiles

Structural DNA nanotechnology a.k.a. DNA carpentry

DNA as a building material

DNA as a building material

DNA as a building material

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns Nature 2006

DNA nanotechnology applications

nonbiological:

- nanoscale resolution surface placement
- X-ray crystallization scaffolding
- molecular motors
- super-resolution imaging
- molecular circuits
biological:
- smart drugs
- mRNA detection
- cell surface marker detection
- genetically encoded structures

DNA nanotechnology applications

nonbiological:

- nanoscale resolution surface placement
- X-ray crystallization scaffolding
- molecular motors
- super-resolution imaging
- molecular circuits

biological:

- smart drugs
- mRNA detection
- cell surface marker detection

- genetically encoded structures

DNA nanotechnology applications

nonbiological:

- art

Grigory Tikhomirov, Philip Petersen, and Lulu Qian. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 2017.

Ashwin Gopinath, Evan Miyazono, Andrei Faraon, Paul Rothemund. Engineering and mapping nanocavity emission via precision placement of DNA origami, Nature 2016

Other applications of DNA nanotechnology

$4 \mu \mathrm{~m}$ wide scan

zoom in

A little proposal

A little proposal

A little proposal

A little proposal

A little proposal and a little reply $\quad \underline{100 \mathrm{~nm}}$

DNA single-stranded tiles

L1.1		L1. 2		L1.3	L1.4
-					
U2.1	U2.2		U2.3	U2.4	U2.5
U3.1	1 U3.2		U3.3		U3.4
U4.1	U4.2		U4.3	U4.4	U4.5
U5.	U5.2		U5.3	U5.4	
U6.1	U6.2		U6.3	U6.4	U6.5
L6.1		L6.2		L6.3	6.4

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences.

Single-stranded tiles for making any shape

Bryan Wei, Mingjie Dai, and Peng Yin.
Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012.

A		C		E		6	H	4	
K	,	M	N	0	P		R	S	5
U		W	\times	Y	2			- 1	!
		"	\sim	Q	H	5	8		
$>$		-	*	λ		1		i	1 In
(e)		-	-	©	\cdots	-	-	-	
¢		${ }^{\text {ch }}$		\bigcirc	4	h			
,		*	*	\pm	中	\%	T		$8{ }^{8}$
-		O		者					

Uniquely addressed self-assembly versus algorithmic

Unique addressing: each DNA "monomer" appears exactly once in final structure.
single DNA origami

staple strand for position $(4,2)$
array of many DNA origamis

origami for position $(4,2)$
uniquely-addressed tiles

Uniquely addressed self-assembly versus algorithmic

Unique addressing: each DNA "monomer" appears exactly once in final structure.

Algorithmic: DNA tiles are reused throughout the structure.

single DNA origami

staple strand for position (4,2)
array of many DNA origamis

uniquely-addressed tiles

Single-stranded tile tubes

DNA-level diagram of 20-helix tube

Seeded growth

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature $=50.9^{\circ} \mathrm{C}$

Seeded growth

DNA origami seed

single-stranded tiles implementing circuit gates

need barrier to nucleation (tile growth without seed);
[tile]=100 nM;
temperature $=50.9^{\circ} \mathrm{C}$

Seeded growth

DNA origami seed
single-stranded "input-adapter"
extensions encoding 6 input bits

single-stranded tiles implementing circuit gates

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature $=50.9^{\circ} \mathrm{C}$

Seeded growth

DNA origami seed
single-stranded "input-adapter" extensions encoding 6 input bits

single-stranded tiles
implementing circuit gates

need barrier to nucleation (tile growth without seed);
hold 8-48 hours [tile]=100 nM; temperature $=50.9^{\circ} \mathrm{C}$

Seeded growth

DNA origami seed
single-stranded "input-adapter" extensions encoding 6 input bits

single-stranded tiles
implementing circuit gates

need barrier to nucleation (tile growth without seed);
hold 8-48 hours [tile]=100 nM; temperature $=50.9^{\circ} \mathrm{C}$

Seeded growth

single-stranded tiles implementing circuit gates

need barrier to nucleation (tile growth without seed); hold 8-48 hours [tile]=100 nM; temperature $=50.9^{\circ} \mathrm{C}$

Tubes to ribbons

tube

Tubes to ribbons

Tubes to ribbons

Tubes to ribbons

DNA sequence design

DNA sequence design

VS
designed sequences

correct attachment:
both domains match
incorrect attachment: only one domain matches

DNA sequence design

correct attachment:
both domains match
incorrect attachment:
only one domain matches

DNA sequence design

DNA sequence design

Bar-coding origami seed for imaging multiple samples at once

some staples of origami seed have version with a biotin

Bar-coding origami seed for imaging multiple samples at once

Bar-coding origami seed for imaging multiple samples at once

Experimental protocol

To execute circuit γ on input $x \in\{0,1\}^{*}$:

- Mix

Experimental protocol

To execute circuit γ on input $x \in\{0,1\}^{*}$:

- Mix
- origami seed (bar-coded to identify γ and x)

Experimental protocol

To execute circuit γ on input $x \in\{0,1\}^{*}$:

- Mix
- origami seed (bar-coded to identify γ and x)
- "adapter" strands encoding x

Experimental protocol

To execute circuit γ on input $x \in\{0,1\}^{*}$:

- Mix
- origami seed (bar-coded to identify γ and x)
- "adapter" strands encoding x
- tiles computing γ

Experimental protocol

To execute circuit γ on input $x \in\{0,1\}^{*}$:

- Mix
- origami seed (bar-coded to identify γ and x)
- "adapter" strands encoding x
- tiles computing γ

- Anneal $90^{\circ} \mathrm{C}$ to $50.9^{\circ} \mathrm{C}$ in 1 hour (origami seeds form)
- Hold at $50.9^{\circ} \mathrm{C}$ for 1-2 days (tiles grow tubes from seed)
- Add "unzipper" strands (remove seam to convert tube to ribbon)
- Add "guard" strands (complements of output sticky ends, to deactivate tiles)

- Deposit on mica, buffer wash, add streptavidin, AFM

Results

```
def test_parity():
    actual = parity('100101')
```



```
    assertEquals(expected, actual)
```


SORTING

Parity
Is the number of 1 's odd?

MultipleOf3

Is the input binary number a multiple of 3 ?

Recognise21
Is the binary input $=21$?

18 \% 8\% IT CT

PALINDROME

Is the input a palindrome?

ZIG-ZAG
Repeating pattern

LAZYPARITY

LeaderElection

LAZYSORTING

$n x+m$	
1.1	

Waves

RandomWalkingBit

AbsorbingRandomWalkingBit Random walker absorbs to top/bottom

FAIRCOIN
Unbiasing a biased coin

Rule110
Simulation of a cellular automaton

Prob[result=yes]

Counting to 63

Circuit with 63 distinct strings

Is there a 64-counter?

No!

Proof by Tristan Stérin, Maynooth University
Consequence of following theorem:
No Boolean function computes an odd permutation if some output bit does not depend on all input bits.

Parity tested on all inputs

$2^{6}=64$ inputs with 6 bits

$\sigma(6$-bit input $)=3$-digit barcode representing that input

Parity tested on all inputs

$2^{6}=64$ inputs with 6 bits

$\sigma(6$-bit input $)=3$-digit barcode representing that input
150 nm
$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably into many complex patterns, by processing information as they grow.

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

Next big challenge: $\underline{\text { Algorithmically control shape }}$

We "drew" interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to grow interesting shapes?

Next big challenge: $\underline{\text { Algorithmically control shape }}$

We "drew" interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to grow interesting shapes?

```
Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed \mp@subsup{\sigma}{S}{}"encoding" S,T
self-assembles }S\mathrm{ .
```


Next big challenge: $\underline{\text { Algorithmically control shape }}$

We "drew" interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to grow interesting shapes?

Theorem: There is a single set T of tile types, so that, for any finite shape S, from an appropriately chosen seed σ_{S} "encoding" S, T self-assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

Next big challenge: $\underline{\text { Algorithmically control shape }}$

We "drew" interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to grow interesting shapes?

Theorem: There is a single set T of tile types, so that, for any finite shape S, from an appropriately chosen seed σ_{S} "encoding" S, T self-assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

Next big challenge: $\underline{\text { Algorithmically control shape }}$

We "drew" interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to grow interesting shapes?

Theorem: There is a single set T of tile types, so that, for any finite shape S, from an appropriately chosen seed σ_{S} "encoding" S, T self-assembles S.

These tiles are universally programmable for building any shape.
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

Thank you!

