

David Doty joint work with Bethany Doty (née Yim) Scott's Seafood on the River Sacramento, CA Oct 25, 2019

UC Davis

Acknowledgments

Pierre-Etienne Meunier Damien Woods

Chris Thachuk

Constantine Evans

Anya Mitskovets

Namita Sarraf

Paul Rothemund

Building things

Newgrange, Ireland. 5.2k years old

Building things by hand: use tools! Great for scale of $10^{\pm 2} \times 10^{\pm 2}$

Ljubljana Marshes Wheel. 5k years old

Building things

Newgrange, Ireland. 5.2k years old

Building things by hand: use tools! Great for scale of $10^{\pm 2} \times 10^{\pm 2}$

Building tools that build things:

Ljubljana Marshes Wheel. 5k years old

[slide credit: Damien Woods]

Building things

Newgrange, Ireland. 5.2k years old

Building things by hand: use tools! Great for scale of $10^{\pm 2} \times 10^{\pm 2}$

Building tools that build things:

Programming things to build themselves: for building in small wet places where our hands or tools can't reach

Cell wall Plasma membrane Cytoplasm Plasmid Pl

Mariana Ruiz Villarreal

Things that build themselves

[slide credit: Damien Woods]

...

x10

DNA nanotechnology

a.k.a. DNA carpentry

DNA as a building material

Ē

DNA as a building material

DNA strands can bind even if only part of strands are complementary:

ATCGCATTAA

scaffold DNA strand (M13mp18 bacteriophage virus)

scaffold DNA strand (M13mp18 bacteriophage virus)

scaffold DNA strand (M13mp18 bacteriophage virus)

(M13mp18 bacteriophage virus)

Ē

Paul Rothemund Folding DNA to create nanoscale shapes and patterns Nature 2006

Atomic force microscope images

DNA nanotechnology applications

nonbiological:

Ę

- nanoscale resolution surface placement
- X-ray crystallization scaffolding
- molecular motors
- super-resolution imaging
- molecular circuits

biological:

- smart drugs
- mRNA detection
- cell surface marker detection
- genetically encoded structures

DNA nanotechnology applications

nonbiological:

- nanoscale resolution surface placement
- X-ray crystallization scaffolding
- molecular motors
- super-resolution imaging
- molecular circuits

biological:

- smart drugs
- mRNA detection
- cell surface marker detection
- genetically encoded structures

DNA nanotechnology applications

nonbiological:

Ashwin Gopinath, Evan Miyazono, Andrei Faraon, Paul Rothemund, *Engineering and mapping nanocavity emission via precision placement of DNA origami*, <u>Nature</u> 2016

Grigory Tikhomirov, Philip Petersen, and Lulu Qian. *Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns*. <u>Nature</u> 2017.

IMPORTANT application of DNA nanotechnology

image: 4×10⁻⁶ m wide

IMPORTANT application of DNA nanotechnology

image: 4×10⁻⁶ m wide

zoom in

100 nm

100 nm

100 nm

100 nm

total number of proposals in 50 μL test tube:

 \approx 100 billion

100 nm

A little proposal and a little reply

100 nm

A little proposal and a little reply

100 nm

Thank you!

