kinetic Tile Assembly Model

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

[

|

I|

"4

B —— — e
#

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

-G
re~e m forward rate

I|

B —— — e
#

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

-G
re~e m forward rate

-bG,
r.~e reverse rate

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

-G

re~e m forward rate
-bG,

r.~e reverse rate

e o tile concentration

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

-G
re~e m forward rate

-bG,
r.~e reverse rate

e o tile concentration

b # sticky ends bound

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

-G
re~e m forward rate
-b G,

r.~e * reverse rate
-G . .
e ™ tile concentration
b # sticky ends bound

G strength of 1 sticky end

Se

kinetic Tile Assembly Model (KTAM)

differences with aTAM:

tiles can attach by any positive strength glue
tiles fall off, more quickly if bound weakly

r.~e °™ forward rate
f optimal growth when

r ~e "% Leverse rate forward rate just barely
' larger than reverse rate,
‘ l.e., when
e ™ tile concentration
. Gmc 22 Gse
b # sticky ends bound

strength of 1 sticky end

Se

M—— e — P
Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue ‘

(

Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue

e X 2X2. block X
= e

11

(

Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue

e X 2X2. block X
= e

glues internal to block are all unique

12

Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue

- 2x2 block X
— et

glues internal to block are all unique

errors must occur in multiples of 2

13

Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue

1o X 2X2. block X
= e

glues internal to block are all unique

errors must occur in multiples of 2

k x k proofreading roughly turns error rate of € into &*

14

Concentration programming

————————

Nondeterministic binding

e
o]
o

T

Nondeterministic binding

/. concentration 11
\. concentration 1

-

Nondeterministic binding

18

e — — ——mre—m—
y

: . :
| Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

|

19

Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

20

Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

21

e — — ——mre—m—
y

: . :
| Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

|

1

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006]

seed 1

/l concentration 11

-4

eed 1
\ . concentration 1

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006]

expected length 12

seed 1
_

/l concentration 11
\. concentration 1

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006] /l concentration 11
-
\. concentration 1

expected length 12

Large variance

T

Programming polymer length (improved)

l concentration 3
seed 1

1S concentration 1

Programming polymer length (improved)

eeeee

. concentration 1

3 "stages", each of
expected length 4

27

T

Programming polymer length (improved)

l . l concentration 3
. concentration 1
expected length 12

A 3 "stages", each of
expected length 4

seed 1

2 S 3

28

Programming polymer length (improved)

3 "stages", each of

/\
expected length 4
1
1 1 S 2

ed
ed

seed 1

expected length 12

S
_

e
e

1 S 2

seed 1

29

(

Programming polymer length (improved)

90 stages, expected length midway in [281, 22)
W) with probability > 99% actual length in [231, 22)

30

Programming polymer length (improved)

90 stages, expected length midway in [281, 22)
W) with probability > 99% actual length in [231, 22)

[€]=7 [E]=][s]=2
G/G/s GlGlG/GscE
Glc|c|g|s|c|G|clc|s|Glc/cH
G|G|G/ S|G|G|G S8l '
12 4 8 | 16 32

31

Programming polymer length (improved)

90 stages, expected length midway in [221, 22)
) with probability > 99% actual length in [231, 22)

[l] = 7 [I]—[S]z2

16 : 32
S

[€]] =

[l]—[]

32

Programming polymer length 22 precisely

D

Programming polymer length 22 precisely

o 1 2 3 4 5 6 7 8 128 255 (256

T

Programming polymer length 22 precisely

distance
from seed

1 1 1 1/0\
1.1, 0 0 1 1\0)
1 01 0 1 010
o 1 2 3 4 5 6 7 8 128 255 256

T

Programming polymer length 22 precisely

distance .
from seed signal to stop at
next power of two
\71-Y

111 1 (O\
11, 0 0 1 1 \0)
1 01 0 1 010
d e S
o 1 2 3 4 5 6 7 8 128 255 256

36

Programming polymer length 22 precisely I

11
0 0
distance .
e | 0]
\1 1
\? O
11 1 1(0\ 1
11,0 0 1 10 0\
1 0 1 0 1 0 10 0 1
d s
0 1 2 3 4 5 6 7 8 128

T

Programming polymer length 22 precisely

1 1
0 0
distance .
next power of o | °_|
\ 1 1
\O 0
111111 /0\ 1
1711001 1 \0) 0 \0
1,011,010 11|\0 01
d s
0 1 2 3 4 5 6 7 8 128

D

Programming a binary string

1101
13 in binary

e e

Programming a binary string |

length 22 1101 "
13 in binary

e e

Programming a binary string |

~ 13 13 in binary

T

Programming a binary string

=13 13 in binary

compete in
Bernoulli trials

concentration concentration
13.5/16 1-13.5/16

42

T

Programming a binary string

=13 13 in binary

compete in
Bernoulli trials

concentration concentration
13.5/16 1-13.5/16

43

s
——— I

Programming a binary string

length 22
~ 132
-

1101
13 in binary

0 1 1 2 2 3 4 4 5

compete in
Bernoulli trials

concentration concentration
13.5/16 1-13.5/16

44

Programming a binary string

length 22
~ 132

)‘ # blue tiles

0 1 1 2 2

compete in
Bernoulli trials

concentration concentration
13.5/16 1-13.5/16

3 4 4 5

13/16 < fraction of | < 14/16

1101
13 in binary

45

Programming a binary string

length 22 1101
~ 132 : :
13 in binary

0

13.5/16

1 1 2 2

compete in
Bernoulli trials

concentration concentration

1-13.5/16

0 O (0) # blue tiles 0 . low-order bits
1 1 \1 / 1 absorb error
4 4 5 0
/
"

13/16 < fraction of | < 14/16 \
'

46

Programming a shape

T

Programming a shape

D

Programming a shape

'

‘-------------------------------.

Programming a shape

s

Programming a shape

e =
Y : :
¢" . :

o | |

N3 ST ARy x 1 | program—_ :
"JT" \ Vi . input _»0 :
- A > | > : toP —™» ,
-4 “l | | — 1 :
<H Y = | :
< S 1 B> ' P(x,y) computes spanning :
v . ¥ » tree of shape, outputs .
EEEEEEE ' children of point (x,y) .

vy vvty : :

“ 1 1

s 1 1

\“ : :

. 1 |

A) 1 1

] |

52

Programmlng a shape

y s” i : P
ot 1'4' A A X : program—_,

il"l I > >, | compute
-~ el input_»0 P(0,0)
RN - to P —»o
- "l > — [P
-+ {‘ * — :

- - . | : P(x,y) computes spanning
Y ‘v » tree of shape, outputs
i i o ' children of point (x,y)
. :
A 1
A)
L N |
s |
hd |
<
T
——pay— S —

53

Programmlng a shape

4' 1

- 1

y . :

|

1

" |

P' !
4,‘4 ‘ A Xl
e aaa
P AR Y > I
L N |
- \ > | > |
I |

- T > | 1
- v — :
- > A :
 J 1
1] :

vy v |

1

|

1

|

1

1

1

P 4

program—__ |

input _—»~
toP —™»

compute
P(0,0)

P(x,y) computes spanning

tree of shape, outputs
children of point (x,y)

54

Programmmg a shape

’f
'f
L 4
y .
'f
'f
gy A
X
4—”—-» Y >
L N
- S > | >
- ‘vl —
- {‘* —
- > \‘ A —
'] = "
\AR Y
‘\
A Y
A Y
A Y
A 3
A 3
.

program—__ |

input _—»~
toP —™»

compute
P(0,0)

P(x,y) computes spanning

tree of shape, outputs
children of point (x,y)

55

Programmlng a shape

-----T----

56

-----T------

y ’4"' : =

JAPNTER NN X1 program—_,

- e | compute
4—1’T-> \J Y : input /'g P(0,0)
s - T ! to P ——»o e
= e L
<+ {“* * — :

-l . 1 = ! P(xy)computes spanning

\/ i] » tree of shape, outputs

{ i ‘ V‘T‘ ' children of point (x,y)
| N
\\]
A
A3
)

|
I

Programmmg a shape

-----T----

compute

P(0,-1) 57

-----T------

y ’4"' : =
JAPNTER NN X1 program—_,
i e | compute
s - ™ to P —o p
— N > | >] compute
ESRAE : P(1,0
-+ {“* * T 1 ()
-l . 1 HE=| ! P(xy)computes spanning
\/ i] tree of shape, outputs
{ i ‘ 5 ' children of point (x,y)
\‘ :
\‘]
A
A\
3

|
[

Programmmg a shape

-----T----

compute
P(0,-1)

Ty ’4” : =
X : program—__,
—> | | compute
] input __»0 F(0,0)
; toP —»0 P
: compute
0 P(1,0)
S, : P(x,y) computes spanning
A » tree of shape, outputs
. children of point (x,y)
\‘ :
\‘ ;
A
.

I------T------

Temperature programming

Temperature programming

(Kao, Schweller, SODA 2006): Vary temperature (binding
strength threshold) throughout assembly to control what
assembles.

temperature

singly-
seededset ® E [
of tile types: [[@

Complexity of Temperature
Programming

Scott Summers: A fixed set of (singly-seeded) tile
types can assemble any finite scaled shape through
temperature programming.

Number of tile types (a self-assembly "resource") Is
constant (maybe big), no matter the shape.

Scott wondered about two other self-assembly
resources that might change for each shape:

What resolution loss is required?

What number of temperature changes are
required?

(Complexity of Temperature

For shape S with n points,

trade-off between resolution large # temF)’L changes

loss and number of temps =3.2.4.5324 Small resolution

.) 1)) 1))) IOSS

temperature changes. i
With optimal resolution loss = : g ; f==
constant (22 in Scott's paper DD E
although shown smaller in the
example), need = n temperature
changes. large
With optimal number of 5] resolution 'fss

| temperature changes = size of ~ °Mat # 16MP. changes

smallest program p that prints S, temps = 3,2,4
need resolution loss = t =
running time of p.

N

Hierarchical assembly

Parallelism in the Model

potential attachment location

. attached tile

time step O :H:

s
—

Parallelism in the Model

potential attachment location

. attached tile

| Parallelism in the Model +

potential attachment location

. attached tile

time step 2

| Parallelism in the Model

potential attachment location

. attached tile

time step 3

| Parallelism in the Model

potential attachment location

. attached tile

time step 4

Parallelism in the Model

potential attachment location

. attached tile

time step 4

time t. perimeter < O(1) (with high probability)

TN

Parallelism in the Model

potential attachment location .

. attached tile

time step 4

time t. perimeter < O(1) (with high probability)
— max attachments per time step < O({)

Parallelism in the Model

potential attachment location

. attached tile

time step 4

time t. perimeter < O({) (with high probability)
— max attachments per time step < O({)
— max total attachments after t steps < O(F)

M—— T —— —
Parallelism in the Model

potential attachment location

. attached tile

time step 4

time t. perimeter < O({) (with high probability)
— max attachments per time step < O({)
— max total attachments after t steps < O(F)

— min time to assemble any shape of size N = Q(VN)

Parallelism and Time

Can we speed up assembly by allowing
large assemblies to form in parallel and
then attach to each other in one step?

(

Hierarchical Tile Assembly Model

- seeded model

- growth nucleates from a single seed tile
- tiles attach one at a time

Hierarchical Tile Assembly Model

- seeded model

- growth nucleates from a single seed tile
- tiles attach one at a time
- hierarchical model: assembly is producible if

- base case: it is a single tile, or

- recursive case: it results from translating two
producible assemblies so they stably attach
without overlap

T

Hierarchical Tile Assembly Model

T

Hierarchical Tile Assembly Model

Cmml

T

Hierarchical Tile Assembly Model

ggeessgEy

Cmml

T

Hierarchical Tile Assembly Model

5 s

T

Hierarchical Tile Assembly Model

~ Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

STHAREEREARENRT
8 &

_ REANN "
rEEEERYEEED

~ Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

STHAREEREARENRT
8 &

- Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

- Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

- Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

y

| Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

- Overlap restriction:

- DNAIs floppy; won't stay in the plane
- Engineering problem; not fundamental

Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

Overlap restriction:

DNA is floppy; won't stay in the plane
Engineering problem; not fundamental

More fundamental problems:

Large assemblies assumed to
diffuse as fast as individual tiles

Uniform binding strength
threshold; should be higher for
larger assemblies

Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

Overlap restriction:

DNA is floppy; won't stay in the plane
Engineering problem; not fundamental

More fundamental problems:

Large assemblies assumed to)

diffuse as fast as individual tiles s
artificially boost

Uniform binding strength > assembly speed
threshold; should be higher for
larger assemblies _

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

- They asked: Can the extra parallelism in the hierarchical model

break the QQ(n) lower bound?

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

- They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

- We show:

- O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.

f

assembly tree = possible order of

attachments leading to final assembly

assembly depth of tile system = maximum
depth of any assembly tree of the tile system

) e ———— -

Definition of Hierarchical Parallelism

f

Highly Parallel Square Assembly

- Best possible assembly depth for any shape
with N points is log N.

Highly Parallel Square Assembly

Best possible assembly depth for any shape
with N points is log N.

Theorem: For every positive integer n, there
IS a tile system with O(log n / log log n) tile
types and assembly depth O(log® n) that
assembles an n x n square.

Idea: Blocks of size O(log n) x O(log n),
assembled “nonparallelly”, randomly guess
their (x,y) position in square and bind only
to carefully selected neighboring blocks.

O(log n) x O(log n)
block of tiles

uuuuu

Idea: Blocks of size O(log n) x O(log n),
assembled “nonparallelly”, randomly guess
their (x,y) position in square and bind only
to carefully selected neighboring blocks.

O(log n) x O(log n)
block of tiles

T .— strength 1
/4/ glues

bumps encode
(x,y) address

nonmanog
= 010 | M-
N B
o =5
= oi
001 &~

omoo o

0mmanoyg

00 0m o nnn |
E'_\O'IO_\3 :_\010
Eo | E_\

. — oF o

001 001

L= 8

s P
- B MIO paf= =
“E 9T oF = oF E
110 B B 1M S Om_ = F
. p -
110 :AEA . m14 —E g° -5 - oB M- -
: s = i = o
nOnno o o | u:o S ._OOM =hn ~3 2 Sk E
- e 0 110 WO_ oE m1 oBg ~ oE Mu
oa 9 110 0mnon o I v & i 0
= F 49 - 110 00mnoan . i i1 v &
B B Om =R oB T 110 1 . - u i
101 [Ela —= Eo of 50 =[5 1o 1 sa -
107 - 22 & <bE n14Ao mon i
T W O 101 [=R =)= = oE HO_Ao it
m 10 B = —E E =5 1o o
01 E:‘_ do oF =R ob b oE = 110
- 1 101°F Ele} == g0 ol 59

101 00 mm TUTI T :‘_o‘_ =210 S
0 . N IR L i
oE do 1F 101 LRl N -

1 1 ijimiig

foo P T oF S SB o' %1k 1o

o ‘_OO : o mu P 1M 1_0._ mmm

T W0 100 = = o =k 0_0._ ol
a0 - = ° P 101 0n0m m
I Im 080 ; 5 :
nnm] ;

00 nn 00 MO0 °F N o =)
oB 100 0moon o ¥ - i 0
—F o —F 100 100 nua o 0 ! 0
—B o o 100 10 4 o

011 - <B = 25 2 E 100, 1 spa -

IO 01 - g e ” o, :

1 oF °E — 1 0o

g o o Ou oB o 00 0Mmann
: - o5 T L nnmon
g Al N - ° n_ 2 |
T T S = §
011 011°F s i Is
T U 00 Al - °F .
R LRI °
ono mn N :

§ - i
= HOO‘__ - 0mmn
<t i< oB s 011

m] g 2
R =PI = = o
o u o5 =+ Lz momn
010 10 B = 5o =l g 0
010 010 F T oE g obE Yo 11 nm mn
s 01 010°F O~ -3 g ~c 011 nnomn

- o 0 010 HEo of W1 od W1 oE = 011
o8 9 010 nmmao iy 1 ¥ & i £
-F 49 - 010 n00man e e u It T "
B B Om =R oB T 010 0 i =y i

001 F =R —B Ho oF El=} ~B 033: 0 na .

TUmT O 001 F EE = go —b EhN 1o 10, e

001 001k de pg= g oB nOvo L nmmon
m 00 = =g —b H bR ot1o 010
01 E:‘_ do Om =k Ow W1 o [=| OAO
- %) 001°F do oF El=) ob Ed

001 00 nnm o h H_ i Om_ i
ob 9 001 e . . 1
: ;) N N ujigrigy 001
= EhE OM S oE E 001 0 .

R 8T °F go obB o —E nnm m

000 000 F Be —E g° 1M H1OO._ 1nm

- == = g oB nOooA nm om
o 0 000 c g = =] - 001 nnonm

00 N0 0nnn . I | & ;i ; .
0 0 ooog 00 § i : S = £ |
oB o 00 0mnnn ; ¥ m ¥

u 1] i P
T 9= 2k = Sk o 00_% 000, i :
: ﬂ o h LI monnn e
£ ;]t
—E == SE - 2k 0o 000, ;
<= =i = : i °
& 9= =B &S oF o0 00
i =
oE Ho =] 50 = = o
o= 3 SE e
So o2 =
E go

Handling Non-Powers-of-2

u=clogn

—~ | | 1 [1] f«H"*
1 1 1 1]
1 1 1 1]

HEEENI
2U X 2U =....III

2UX U

————————

Assembly of Each Block

[n in base b =log n/log log r]

| Assembly of Each Block

[n in base b =log n/ log log q [i n in bit-quadrupled binary }

nin base b=logn/loglogn

Assembly of Each Block

i n in bit-quadrupled binary

B

-

- randomly generate (x,y)-address

and compare each coordinate to n

.. »

00‘001111‘1111‘0000

J

Assembly of Each Block

n in bit-quadrupled binary

nin base b=logn/loglog n

1]

4) s
rotate x,y, place bumps and glues : randomly generate (x,y)-address
] B <1 - and compare each coordinate to n

X e LA I PR R N I A T P B R PR R |-
A RITERF SRRy PR AR R AR AR P
P S 8 S SO S S W O W R
10 |agpsafunnadannnalen sofanian & ECEEY T -.g.- - P --§> &) ,E
AP A R SR A R - bolesdedenien cdefei q, .:
10 |assspunnsfunnnduunnduansafen sapuans - --é.- --g -é.- -? :%; -
10 |ansnfsnsnapunsspannnfunnnsfunnnsha sshanen H L --§ ------- - ..§> e;; r.
11 apsaduunnsfasnnshusnsfannnfunnnsfennnahe snfennen --§-- ----- -.§> _§‘ -
11 |peadusnsduunnafennnafennnnpannadonnnsfaannafs snfanans -é.- £ ..§> _;; | ::‘
11 |ssnpunnnfunnndeunnduunnaphossnfannagesnncuanns > --§> J;L L I:
3 OV O O B O O OO PO OO A SRR
00 |aasfuunsdunnnslannnapunantannndennnsfannnapananhsnnntusnndunnnsl --§> a;;- I:
e e e e e e

1

2

Assembly of Each Block

nin base b=logn/loglogn n in bit-quadrupled binary

1]

4 r) s
rotate x,y, place bumps and glues : randomly generate (x,y)-address
X Bl <t -- and compare each coordinate to n
X e LA I PR R N I A T P B R PR R |-
R TN AR AT Y AN R N T
B I S8 I SIS Y U
00 |aeadenanafesacleaian foadoddieduatacianaahades ..§.. ..§.. ..?..§> ‘:5 I:'
10 |psnduanaduunnafan sojungen £ -------é-- -.s.- .-§... --§> % : 4 t th 1 I
I S reng glues
10 |aenefeenadanssdannndananpuanas > .e .,:.. > ..? ? ' . X In blnary
O O OO OO 0 AL A ER A A Y J_l_r-I-_rﬁ-
10 |ansnfsnsnapunsspannnfunnnsfunnnsha sshanen L3 --§-.--:-- - ..§> e;; L P
11 apsaduunnsfasnnshusnsfannnfunnnsfennnahe snfennen --§-- ----- -.§> _§‘ - h
11 |peadusnsduunnafennnafennnnpannadonnnsfaannafs snfanans é.- £ ..§> _;‘ L ::‘
PR PR U U [AU TN PR OO N Fe] S0 4)
;; e nafsnnnshennnfunsafunnadannnapannafannsfonnadannnsun nnheian & ..§> _E._ I: v r’
e B e N TTT T CLLLr (LLrr TLrTITrrr: CLLIE I -§> (:5__ IE pu A wuan
R I R T e e o o e e --§> ,_JE;_ IE- double height’
ST not width, based < ||_v || |
OO0 O [T T 1T [T T[T T[T[O0[0[0]0 on x,y,n values \» <
1 v
2 W W JOoOO o

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

- They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

- We show:

- O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

We show:

O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.

This construction takes superlinear time.

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

We show:

O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.

This construction takes superlinear time.

Every “partial order system” requires time Q(N) to
assemble any shape of diameter N.

Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

We show:

O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.

This construction takes superlinear time.

Every “partial order system” requires time Q(N) to
assemble any shape of diameter N.

The extra parallelism of the hierarchical model is useless for
speeding up partial order systems.

W o e S ————— — —

Assembly Time Complexity Model

- Assign each tile type s an initial concentration C(s) so ‘
that 3} C(s) = 1 (finite density constraint).

Assembly Time Complexity Model

- Assign each tile type s an initial concentration C(s) so
that 3} C(s) = 1 (finite density constraint).

- Attime t = 0, each assembly a with only a single tile s
has initial concentration [a](t) = C(s). All larger
assemblies a have [a](f) = 0 attime t = 0.

Assembly Time Complexity Model

- Assign each tile type s an initial concentration C(s) so
that 3} C(s) = 1 (finite density constraint).

- Attime t = 0, each assembly a with only a single tile s
has initial concentration [a](t) = C(s). All larger
assemblies a have [a](f) = 0 attime t = 0.

- Each attachment a + B - y is a chemical reaction with

rate [o(£)-[B](¢) at time t. r + — ﬁ
o

5 Y

Assembly Time Complexity Model

- Assign each tile type s an initial concentration C(s) so
that 3} C(s) = 1 (finite density constraint).

- Attime t = 0, each assembly a with only a single tile s
has initial concentration [a](t) = C(s). All larger
assemblies a have [a](f) = 0 attime t = 0.

- Each attachment a + B - y is a chemical reaction with

rate [o(£)-[B](¢) at time t. r + — ﬁ
o

5 Y

- Concentrations evolve by mass-action kinetics:

dioj 7dt = 3 . IIOPBIO - 2

[o](®)-[BI(D)

S — — — -~ = = v T e e e

y+p - a+p -y

W Sl B —

Assembly Time Complexity Model

* Fix a position p in the unique final assembly w, with @
Initial assembly 0, with just the tile at position p

0]
p

(

Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with
Initial assembly 0, with just the tile at position p

q, changes into w by a continuous-time Markov chain

),

(

Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with m -
Initial assembly 0, with just the tile at position p P

q, changes into w by a continuous-time Markov chain

a
States = assemblies 0, W, and all possible @ @
Intermediates
gk

P

__ e — = T,

Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with
Initial assembly 0, with just the tile at position p

q, changes into w by a continuous-time Markov chain

States = assemblies 0, W, and all possible
Intermediates

Transition from o to y if there is a producible
assembly such that a + B - y, with time-dependent

rate [B](f)

Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with
Initial assembly 0, with just the tile at position p

q, changes into w by a continuous-time Markov chain

States = assemblies 0, W, and all possible
Intermediates

Transition from o to y if there is a producible
assembly such that a + B - y, with time-dependent

| rate [B](f)

Unigue sink state of the Markov chain is w

Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with
Initial assembly 0, with just the tile at position p

q, changes into w by a continuous-time Markov chain
States = assemblies 0, W, and all possible

Intermediates

Transition from a to y if there is a producible
assembly such that a + B - y, with time-dependent

rate [B](f)

Unigue sink state of the Markov chain is w

time relative to p = expected time to reach w from o,

Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with
Initial assembly 0, with just the tile at position p

q, changes into w by a continuous-time Markov chain

States = assemblies 0, W, and all possible
Intermediates

Transition from a to y if there is a producible
assembly such that a + B - y, with time-dependent

rate [B](f)

Unigue sink state of the Markov chain is w

time relative to p = expected time to reach w from o,

time = max_ time relative to p

Assembly Time Lower Bound

- partial order system: in the terminal assembly,
each pair of adjacent binding tiles have an
assembly order precedence relationship (one
always binds first, or at the same time)

Assembly Time Lower Bound

partial order system: in the terminal assembly,
each pair of adjacent binding tiles have an
assembly order precedence relationship (one
always binds first, or at the same time)

Theorem: Any partial order system whose
terminal assembly has diameter N requires

time Q(N).

Main Proof Ildea

conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

Main Proof Ildea

conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

— (t20) 2 [olD) ol = 1

Main Proof Ildea

conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

— (t20) 5 [ad(t)- o] = 1

— assembly of size k has concentration < 1/k

Main Proof Ildea

conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

— (t20) 5 [ad(t)- o] = 1

— assembly of size k has concentration < 1/k

— growing by size k in a single step takes expected time > k

Main Proof Ildea

conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

— (t20) 5 [ad(t)- o] = 1

— assembly of size k has concentration < 1/k

— growing by size k in a single step takes expected time > k

seeded hierarchical

| Main Proof Ildea

conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

— (t20) 2 [olD) ol = 1

— assembly of size k has concentration < 1/k

‘ — growing by size k in a single step takes expected time > k

| seeded hierarchical

Why Partial Order Systems?

Argument breaks if a single
assembly of size k could attach
to many positions, any one of
which suffices to proceed to
terminal assembly.

Why Partial Order Systems?

Argument breaks if a single
assembly of size k could attach
to many positions, any one of
which suffices to proceed to
terminal assembly.

f

concentration < 1/3
E[time to attach to a] > 3

E[time to attach to any of a,b,c,d] > 3/4
S e

| Why Partial Order Systems? |

Argument breaks if a single Any path in partial order
assembly of size k could attach DAG must assemble in order
to many positions, any one of
which suffices to proceed to
terminal assembly.

-

concentration < 1/3
E[time to attach to a] > 3

E[time to attach to any of a,b,c,d] > 3/4

————— —— e ——

Why Partial Order Systems?

Argument breaks if a single Any path in partial order
assembly of size k could attach DAG must assemble in order
to many positions, any one of

which suffices to proceed to ._> .-l

terminal assembly.

~

/Iongest path has length >
f diameter of shape

by concentration argument, path

. <
concentration < 1/3 _ takes time k to grow by ktiles

E[time to attach to a] > 3

E[time to attach to any of a,b,c,d] > 3/4
__ — e e e — =

Removing tiles (RNase model)

Removing Tiles

aTAM is monotone: stably attached tiles do not detach

"Computation of a shape" with tiles may take a lot of space
Need large resolution loss to compute within the shape
kinetic model allows detachment but not controllable

RNase model (Abel, Benbernou, Damian, Demaine,
Demaine, Flatland, Kominers, Schweller)

make some tile types from RNA and some from DNA
after some time, add RNase enzyme to dissolve RNA tiles
only subassemblies made of DNA tiles remain

(Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaline, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

thereisa TAS T, |T| = K(S),
that assembles S at scale

factor = log n, with one
step of dissolving RNA tiles

(Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaline, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

thereisa TAS T, |T| = K(S),
that assembles S at scale

factor = log n, with one
step of dissolving RNA tiles

program p that prints S

| RNA tiles:
DNAtiles: [B

- "

e e e S—— — —_— —

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, program p that prints S S = "
Summers (STACS 2011):

given: finite shape S, |S|=n

growth

execute p
thereis a TAS T, [T| = K(S),
that assembles S at scale

factor = log n, with one S =(1,2),(2,2), (3,2), (1,1), (3,1)
step of dissolving RNA tiles

RNA tiles:
DNAtiles: [B

(Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, program p that prints S S= "
Summers (STACS 2011):
growth
given: finite shape S, |S|=n
execute p
thereisa TAS T, |T| = K(S),
that assembles S at scale
factor = log n, with one S =(1,2), (2,2), (3,2), (1,1), (3,1)
step of dissolving RNA tiles
o - process each point of S into a
| _ block of DNA tiles designed to
RNA tiles: bind to its neighbors in S
DNAtiles: [B
\\—_ — e e SS S SEERE E

W Sl B —
Shape-Building with Small Resolution

Loss and Optimal Tile Complexity ‘

|

Demaine, Patitz, Schweller, S = "
Summers (STACS 2011):

given: finite shape S, |S|=n

thereis a TAS T, |T| = K(S), dissolve RNA
that assembles S at scale

factor = log n, with one
step of dissolving RNA tiles

RNA tiles:

DNAtiles: [B [

KRG @ i a

W Sl B —
Shape-Building with Small Resolution

Loss and Optimal Tile Complexity ‘

|

Demaine, Patitz, Schweller, S = "
Summers (STACS 2011):

given: finite shape S, |S|=n

thereis a TAS T, |T| = K(S), dissolve RNA
that assembles S at scale

factor = log n, with one
step of dissolving RNA tiles

RNA tiles:

DNAtiles: [B [

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	page2 (7)
	Slide 9
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	Slide 15
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page8 (1)
	page8 (2)
	page8 (3)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	page12 (8)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	page13 (9)
	page13 (10)
	page13 (11)
	page13 (12)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	Slide 73
	page25 (1)
	page25 (2)
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	page27 (1)
	page27 (2)
	page27 (3)
	page27 (4)
	page27 (5)
	page28 (1)
	page28 (2)
	page28 (3)
	page29 (1)
	page29 (2)
	page29 (3)
	Slide 92
	page31 (1)
	page31 (2)
	page32 (1)
	page32 (2)
	page32 (3)
	page32 (4)
	page32 (5)
	Slide 100
	page34 (1)
	page34 (2)
	page34 (3)
	page34 (4)
	page34 (5)
	page35 (1)
	page35 (2)
	page35 (3)
	page35 (4)
	page36 (1)
	page36 (2)
	page36 (3)
	page36 (4)
	page37 (1)
	page37 (2)
	page37 (3)
	page37 (4)
	page37 (5)
	page37 (6)
	page37 (7)
	page38 (1)
	page38 (2)
	page39 (1)
	page39 (2)
	page39 (3)
	page39 (4)
	page39 (5)
	page39 (6)
	page40 (1)
	page40 (2)
	page40 (3)
	page40 (4)
	Slide 133
	Slide 134
	page43 (1)
	page43 (2)
	page43 (3)
	page43 (4)
	page43 (5)
	page43 (6)

