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kinetic Tile Assembly Model (KTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly
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kinetic Tile Assembly Model (KTAM)

differences with aTAM:

tiles can attach by any positive strength glue
tiles fall off, more quickly if bound weakly

r.~e °™ forward rate
f optimal growth when

r ~e "% Leverse rate forward rate just barely
' larger than reverse rate,
‘ l.e., when
e ™ tile concentration
. Gmc 22 Gse
b # sticky ends bound

strength of 1 sticky end
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Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue ‘
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Proofreading: Error-correction in the KTAM

Definition: error = attachment by single strength 1 glue

1o X 2X2. block X
= e

glues internal to block are all unique

errors must occur in multiples of 2

k x k proofreading roughly turns error rate of € into &*
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Concentration programming
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| Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.
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Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006]
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[Becker, Rapaport, Rémila, FSTTCS 2006]
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Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006] /l concentration 11
-
\. concentration 1

expected length 12

Large variance
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Programming polymer length (improved)
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Programming polymer length (improved)
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. concentration 1

3 "stages", each of
expected length 4
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l . l concentration 3
. concentration 1
expected length 12

A 3 "stages", each of
expected length 4
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Programming polymer length (improved)

3 "stages", each of
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expected length 4
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Programming polymer length (improved)

90 stages, expected length midway in [281, 22)
W) with probability > 99% actual length in [231, 22)

30




Programming polymer length (improved)

90 stages, expected length midway in [281, 22)
W) with probability > 99% actual length in [231, 22)
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Programming polymer length (improved)

90 stages, expected length midway in [221, 22)
) with probability > 99% actual length in [231, 22)

[l] = 7 [I]—[S]z2

16 : 32
S

[€]] =

[l]—[ ]
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Programming polymer length 22 precisely

distance
from seed
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Programming polymer length 22 precisely

distance .
from seed signal to stop at
next power of two
\71-Y
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Programming polymer length 22 precisely I
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Programming polymer length 22 precisely
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Programming a binary string

1101
13 in binary
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Programming a binary string

=13 13 in binary

compete in
Bernoulli trials
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13.5/16 1-13.5/16
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Programming a binary string

length 22
~ 132
-

1101
13 in binary

0 1 1 2 2 3 4 4 5

compete in
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Programming a binary string

length 22
~ 132

)‘ # blue tiles

0 1 1 2 2

compete in
Bernoulli trials

concentration concentration
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13/16 < fraction of | < 14/16
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13 in binary
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Programming a binary string

length 22 1101
~ 132 : :
13 in binary

0

13.5/16
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compete in
Bernoulli trials
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1 1 \1 / 1 absorb error
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'
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Programmlng a shape
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Programmlng a shape
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Programmmg a shape
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Programmlng a shape
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Programmmg a shape
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Temperature programming




Temperature programming

(Kao, Schweller, SODA 2006): Vary temperature (binding
strength threshold) throughout assembly to control what
assembles.

temperature

singly-
seededset ® E [
of tile types: [ [ @




Complexity of Temperature
Programming

Scott Summers: A fixed set of (singly-seeded) tile
types can assemble any finite scaled shape through
temperature programming.

Number of tile types (a self-assembly "resource") Is
constant (maybe big), no matter the shape.

Scott wondered about two other self-assembly
resources that might change for each shape:

What resolution loss is required?

What number of temperature changes are
required?




( Complexity of Temperature

For shape S with n points,

trade-off between resolution large # temF)’L changes

loss and number of temps =3.2.4.5324  Small resolution

. ) 1) ) 1) ) ) IOSS

temperature changes. i
With optimal resolution loss = : g ; f==
constant (22 in Scott's paper DD E
although shown smaller in the
example), need = n temperature
changes. large
With optimal number of 5 ] resolution 'fss

| temperature changes = size of ~ °Mat # 16MP. changes

smallest program p that prints S,  temps = 3,2,4
need resolution loss = t =
running time of p.

N
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time step 4
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potential attachment location

. attached tile

time step 4

time t. perimeter < O({) (with high probability)
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Parallelism in the Model

potential attachment location

. attached tile

time step 4

time t. perimeter < O({) (with high probability)
— max attachments per time step < O({)
— max total attachments after t steps < O(F)

— min time to assemble any shape of size N = Q(VN)




Parallelism and Time

Can we speed up assembly by allowing
large assemblies to form in parallel and
then attach to each other in one step?
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Hierarchical Tile Assembly Model

- seeded model

- growth nucleates from a single seed tile
- tiles attach one at a time




Hierarchical Tile Assembly Model

- seeded model

- growth nucleates from a single seed tile
- tiles attach one at a time
- hierarchical model: assembly is producible if

- base case: it is a single tile, or

- recursive case: it results from translating two
producible assemblies so they stably attach
without overlap
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Hierarchical Tile Assembly Model
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Hierarchical Tile Assembly Model
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Hierarchical Tile Assembly Model
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Hierarchical Assembly Model

- Overlap restriction:

- DNAIs floppy; won't stay in the plane
- Engineering problem; not fundamental
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Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

Overlap restriction:

DNA is floppy; won't stay in the plane
Engineering problem; not fundamental

More fundamental problems:

Large assemblies assumed to )

diffuse as fast as individual tiles s
artificially boost

Uniform binding strength > assembly speed
threshold; should be higher for
larger assemblies _
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Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

- They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

- We show:

- O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.




f

assembly tree = possible order of

attachments leading to final assembly

assembly depth of tile system = maximum
depth of any assembly tree of the tile system

) e ———— -

Definition of Hierarchical Parallelism
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Highly Parallel Square Assembly

- Best possible assembly depth for any shape
with N points is log N.




Highly Parallel Square Assembly

Best possible assembly depth for any shape
with N points is log N.

Theorem: For every positive integer n, there
IS a tile system with O(log n / log log n) tile
types and assembly depth O(log® n) that
assembles an n x n square.




Idea: Blocks of size O(log n) x O(log n),
assembled “nonparallelly”, randomly guess
their (x,y) position in square and bind only
to carefully selected neighboring blocks.

O(log n) x O(log n)
block of tiles
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Idea: Blocks of size O(log n) x O(log n),
assembled “nonparallelly”, randomly guess
their (x,y) position in square and bind only
to carefully selected neighboring blocks.

O(log n) x O(log n)
block of tiles

T .— strength 1
/4/ glues

bumps encode
(x,y) address
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Handling Non-Powers-of-2

u=clogn
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nin base b=logn/loglogn

Assembly of Each Block

i n in bit-quadrupled binary

B

-

- randomly generate (x,y)-address

and compare each coordinate to n

.................................................................................. »

00‘001111‘1111‘0000

J




Assembly of Each Block

n in bit-quadrupled binary

nin base b=logn/loglog n

1]

4 ) s
rotate x,y, place bumps and glues : randomly generate (x,y)-address
] B <1 - and compare each coordinate to n
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Assembly of Each Block

nin base b=logn/loglogn n in bit-quadrupled binary
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Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

- They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

- We show:

- O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.
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Our Results

Previous result: Assembling an n x n square requires Q(n)
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Our Results

Previous result: Assembling an n x n square requires Q(n)
steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

They asked: Can the extra parallelism in the hierarchical model
break the QQ(n) lower bound?

We show:

O(log n / log log n) tile types can assemble an n x n
square using “nearly maximal” parallelism.

This construction takes superlinear time.

Every “partial order system” requires time Q(N) to
assemble any shape of diameter N.

The extra parallelism of the hierarchical model is useless for
speeding up partial order systems.
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- Assign each tile type s an initial concentration C(s) so
that 3} C(s) = 1 (finite density constraint).

- Attime t = 0, each assembly a with only a single tile s
has initial concentration [a](t) = C(s). All larger
assemblies a have [a](f) = 0 attime t = 0.

- Each attachment a + B - y is a chemical reaction with

rate [o(£)-[B](¢) at time t. r + — ﬁ
o

5 Y

- Concentrations evolve by mass-action kinetics:

dioj 7dt = 3 . IIOPBIO - 2

[o](®)-[BI(D)

S — — — -~ = = v T e e e

y+p - a+p -y
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Assembly Time Complexity Model

Fix a position p in the unique final assembly w, with
Initial assembly 0, with just the tile at position p

q, changes into w by a continuous-time Markov chain

States = assemblies 0, W, and all possible
Intermediates

Transition from a to y if there is a producible
assembly  such that a + B - y, with time-dependent

rate [B](f)

Unigue sink state of the Markov chain is w

time relative to p = expected time to reach w from o,

time = max_ time relative to p
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Assembly Time Lower Bound

partial order system: in the terminal assembly,
each pair of adjacent binding tiles have an
assembly order precedence relationship (one
always binds first, or at the same time)

Theorem: Any partial order system whose
terminal assembly has diameter N requires

time Q(N).
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conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

— (t20) 2 [olD) ol = 1

— assembly of size k has concentration < 1/k

‘ — growing by size k in a single step takes expected time > k

| seeded hierarchical
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Why Partial Order Systems?

Argument breaks if a single Any path in partial order
assembly of size k could attach DAG must assemble in order
to many positions, any one of

which suffices to proceed to ._> .-l

terminal assembly.

~

/Iongest path has length >
f diameter of shape

by concentration argument, path

. <
concentration < 1/3 _ takes time k to grow by ktiles

E[time to attach to a] > 3

E[time to attach to any of a,b,c,d] > 3/4
\\__ — e e e — =




Removing tiles (RNase model)




Removing Tiles

aTAM is monotone: stably attached tiles do not detach

"Computation of a shape" with tiles may take a lot of space
Need large resolution loss to compute within the shape
kinetic model allows detachment but not controllable

RNase model (Abel, Benbernou, Damian, Demaine,
Demaine, Flatland, Kominers, Schweller)

make some tile types from RNA and some from DNA
after some time, add RNase enzyme to dissolve RNA tiles
only subassemblies made of DNA tiles remain
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Demaline, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

thereisa TAS T, |T| = K(S),
that assembles S at scale

factor = log n, with one
step of dissolving RNA tiles

program p that prints S

| RNA tiles:
DNAtiles: [ B
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Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, program p that prints S S = "
Summers (STACS 2011):

given: finite shape S, |S|=n

growth

execute p
thereis a TAS T, [T| = K(S),
that assembles S at scale

factor = log n, with one S =(1,2),(2,2), (3,2), (1,1), (3,1)
step of dissolving RNA tiles

RNA tiles:
DNAtiles: [ B




( Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, program p that prints S S= "
Summers (STACS 2011):
growth
given: finite shape S, |S|=n
execute p
thereisa TAS T, |T| = K(S),
that assembles S at scale
factor = log n, with one S =(1,2), (2,2), (3,2), (1,1), (3,1)
step of dissolving RNA tiles
o - process each point of S into a
| _ block of DNA tiles designed to
RNA tiles: bind to its neighbors in S
DNAtiles: [ B
\\—_ — e e SS S SEERE E
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Loss and Optimal Tile Complexity ‘

|

Demaine, Patitz, Schweller, S = "
Summers (STACS 2011):

given: finite shape S, |S|=n

thereis a TAS T, |T| = K(S), dissolve RNA
that assembles S at scale

factor = log n, with one
step of dissolving RNA tiles

RNA tiles:

DNAtiles: [ B [
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Demaine, Patitz, Schweller, S = "
Summers (STACS 2011):

given: finite shape S, |S|=n

thereis a TAS T, |T| = K(S), dissolve RNA
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factor = log n, with one
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