
1

kinetic Tile Assembly Model



2

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly



3

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc forward rate



4

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate



5

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration



6

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

b # sticky ends bound



7

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

b # sticky ends bound

G
se

strength of 1 sticky end



8

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

b # sticky ends bound

G
se

strength of 1 sticky end

optimal growth when 
forward rate just barely 
larger than reverse rate, 
i.e., when

Gmc≈2⋅Gse
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kTAM
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Proofreading: Error-correction in the kTAM

k x k proofreading roughly turns error rate of ε into εk

glues internal to block are all unique

errors must occur in multiples of 2

Definition: error = attachment by single strength 1 glue
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Concentration programming
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Nondeterministic binding

seed 1

G1

R1

concentration 11

concentration 1

Pr[        ] = 11/12

Pr[        ] =  1/12

seed 1 G1

seed 1 R1
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Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

seed 1 S1G 11G 11G 11

seed 1 S1G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11

seed 1 G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11G 11G 11 G 11 G 11 G1

Large variance

[Becker, Rapaport, Rémila, FSTTCS 2006] concentration 11

concentration 1
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Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of 
expected length 4

seed 1 G 11G 11 S 21 S 32G 22 G 33 S3G 33 G 33G 33 G 33 G 33

seed 1 G 11G 11 S 21 S 32 G 33 S3G 33 G 33G 33G 11 G 11

seed 1 G 11G 11 S 21 S3G 33 G 33G 11 G 11 S 32 S3G 33 G 33G 22 G 22 G 22 G 22

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1
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90 stages, expected length midway in [2a-1, 2a) 

             with probability > 99% actual length in [2a-1, 2a)

1 2 4 8 16 32

Programming polymer length (improved)
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90 stages, expected length midway in [2a-1, 2a) 

             with probability > 99% actual length in [2a-1, 2a)

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)
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90 stages, expected length midway in [2a-1, 2a) 

             with probability > 99% actual length in [2a-1, 2a)

SG G SG G S GGG G G G G GG G GG G G G GG G

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[   ] ≈ 7    [   ] = [   ] ≈ 2SG S

SG SG G S GG GG GGG G

SG G SG G G S GGGG G G G G GG G G GG G G GG G

SG G SG G S GG G G G G GG G GG GG G

SG SG G SG GG
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25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2a precisely

256
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Programming a binary string
1101

13 in binary

# blue tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2a

1

0

1

0

1

0

1

1

13/16  ≤ <  14/16fraction of

≈ 132

low-order bits 
absorb error

concentration 
13.5/16

compete in 
Bernoulli trials

concentration 
1 - 13.5/16
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Temperature programming



  

Temperature programming

(Kao, Schweller, SODA 2006): Vary temperature (binding 
strength threshold) throughout assembly to control what 
assembles.

singly-
seeded set 
of tile types: 

temperature

time



  

Complexity of Temperature 
Programming

Scott Summers: A fixed set of (singly-seeded) tile 
types can assemble any finite scaled shape through 
temperature programming.

Number of tile types (a self-assembly "resource") is 
constant (maybe big), no matter the shape.

Scott wondered about two other self-assembly 
resources that might change for each shape:

● What resolution loss is required?

● What number of temperature changes are 
required?



  

Complexity of Temperature 
Programming

For shape S with n points, 
trade-off between resolution 
loss and number of 
temperature changes:

● With optimal resolution loss = 
constant (22 in Scott's paper 
although shown smaller in the 
example), need ≈ n temperature 
changes.

● With optimal number of 
temperature changes = size of 
smallest program p that prints S, 
need resolution loss ≈ t = 
running time of p.

temps = 3,2,4

small # temp. changes

temps = 3,2,4,5,3,2,4

large # temp. changes

large 
resolution loss

small resolution 
loss
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time step 4

time t: perimeter ≤ O(t)           (with high probability)
→ max attachments per time step ≤ O(t)
→ max total attachments after t steps ≤ O(t2)

Parallelism in the Model

attached tile

potential attachment location



  

time step 4

time t: perimeter ≤ O(t)           (with high probability)
→ max attachments per time step ≤ O(t)
→ max total attachments after t steps ≤ O(t2)
→ min time to assemble any shape of size N ≥ Ω(√N)

Parallelism in the Model

attached tile

potential attachment location



  

Can we speed up assembly by allowing 
large assemblies to form in parallel and 
then attach to each other in one step?

Parallelism and Time
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– growth nucleates from a single seed tile

– tiles attach one at a time



  

Hierarchical Tile Assembly Model

● seeded model

– growth nucleates from a single seed tile

– tiles attach one at a time
● hierarchical model: assembly is producible if

– base case: it is a single tile, or

– recursive case: it results from translating two 
producible assemblies so they stably attach 
without overlap
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Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)



  

Potentially Unrealistic Aspects of the 
Hierarchical Assembly Model

● Overlap restriction:

– DNA is floppy; won't stay in the plane

– Engineering problem; not fundamental



  

Potentially Unrealistic Aspects of the 
Hierarchical Assembly Model

● Overlap restriction:

– DNA is floppy; won't stay in the plane

– Engineering problem; not fundamental

More fundamental problems:

● Large assemblies assumed to 
diffuse as fast as individual tiles

● Uniform binding strength 
threshold; should be higher for 
larger assemblies



  

Potentially Unrealistic Aspects of the 
Hierarchical Assembly Model

● Overlap restriction:

– DNA is floppy; won't stay in the plane

– Engineering problem; not fundamental

artificially boost 
assembly speed

More fundamental problems:

● Large assemblies assumed to 
diffuse as fast as individual tiles

● Uniform binding strength 
threshold; should be higher for 
larger assemblies
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Our Results
● Previous result:  Assembling an n x n square requires Ω(n) 

steps in the seeded model; achievable with optimal O(log n / 
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model 
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n 

square using “nearly maximal” parallelism.



  

Definition of Hierarchical Parallelism

assembly tree = possible order of 
attachments leading to final assembly

assembly depth of tile system = maximum 
depth of any assembly tree of the tile system



  

Highly Parallel Square Assembly

● Best possible assembly depth for any shape 
with N points is log N.



  

Highly Parallel Square Assembly

● Best possible assembly depth for any shape 
with N points is log N.

● Theorem: For every positive integer n, there 
is a tile system with O(log n / log log n) tile 
types and assembly depth O(log2 n) that 
assembles an n x n square.



  

1 1
 0

1 0 1

0 1 0

0 0 1

O(log n)  x  O(log n) 
block of tiles

Idea: Blocks of size O(log n) x O(log n), 
assembled “nonparallelly”, randomly guess 
their (x,y) position in square and bind only 
to carefully selected neighboring blocks.



  

1 1
 0

1 0 1

0 1 0

0 0 1

O(log n)  x  O(log n) 
block of tiles

strength 1 
glues

bumps encode 
(x,y) address

Idea: Blocks of size O(log n) x O(log n), 
assembled “nonparallelly”, randomly guess 
their (x,y) position in square and bind only 
to carefully selected neighboring blocks.
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2u x u

u = c log n

2u x 2u

u x u

u x 2u

Handling Non-Powers-of-2
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Assembly of Each Block

1

2

n in base b ≈ log n / log log n
1 1 110 0 0 1 1 11

2

n in bit-quadrupled binary

0 1 0 0 0 0

randomly generate (x,y)-address 
and compare each coordinate to n
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Our Results
● Previous result:  Assembling an n x n square requires Ω(n) 

steps in the seeded model; achievable with optimal O(log n / 
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model 
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n 

square using “nearly maximal” parallelism.

The extra parallelism of the hierarchical model is useless for 
speeding up partial order systems.

– This construction takes superlinear time.

– Every “partial order system” requires time Ω(N) to 
assemble any shape of diameter N.
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● Assign each tile type s an initial concentration C(s) so 

that ∑
s
C(s) = 1 (finite density constraint).

● At time t = 0, each assembly α with only a single tile s 
has initial concentration [α](t) = C(s). All larger 
assemblies α have [α](t) = 0 at time t = 0.

● Each attachment α + β → γ is a chemical reaction with 
rate [α](t)∙[β](t) at time t. +

α β γ
● Concentrations evolve by mass-action kinetics:

d[α] / dt   =   ∑
γ + β → α

[γ](t)∙[β](t)   –   ∑
α + β → γ

[α](t)∙[β](t)
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Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with 

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

● States = assemblies σ
p
, ω, and all possible 

intermediates

● Transition from α to γ if there is a producible 
assembly β such that α + β → γ, with time-dependent 
rate [β](t)

● Unique sink state of the Markov chain is ω

● time relative to p = expected time to reach ω from σ
p

● time = max
p
 time relative to p

α

γ

σ
p

ω
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Assembly Time Lower Bound

● partial order system: in the terminal assembly, 
each pair of adjacent binding tiles have an 
assembly order precedence relationship (one 
always binds first, or at the same time)

● Theorem: Any partial order system whose 
terminal assembly has diameter N requires 
time Ω(N).
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Why Partial Order Systems?

a

E[time to attach to a] ≥ 3

E[time to attach to any of a,b,c,d] ≥ 3 / 4

b

c

d

concentration ≤ 1/3

Any path in partial order 
DAG must assemble in order

longest path has length ≥ 
diameter of shape

by concentration argument, path 
takes time k to grow by k tiles

Argument breaks if a single 
assembly of size k could attach 
to many positions, any one of 
which suffices to proceed to 
terminal assembly.
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Removing Tiles

● aTAM is monotone: stably attached tiles do not detach
– "Computation of a shape" with tiles may take a lot of space

– Need large resolution loss to compute within the shape

– kinetic model allows detachment but not controllable

● RNase model (Abel, Benbernou, Damian, Demaine, 
Demaine, Flatland, Kominers, Schweller)

– make some tile types from RNA and some from DNA

– after some time, add RNase enzyme to dissolve RNA tiles

– only subassemblies made of DNA tiles remain
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process each point of S into a 
block of DNA tiles designed to 

bind to its neighbors in S

S = (1,2), (2,2), (3,2), (1,1), (3,1)

execute p

growth

Shape-Building with Small Resolution 
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, 
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S), 
that assembles S at scale 
factor ≈ log n, with one 
step of dissolving RNA tiles

program p that prints S

(1,2) (3,2)(2,2)

DNA tiles: 

RNA tiles: 

(1,1) (3,1)

S =



  

Shape-Building with Small Resolution 
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, 
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S), 
that assembles S at scale 
factor ≈ log n, with one 
step of dissolving RNA tiles

(1,2) (3,2)(2,2)

DNA tiles: 

RNA tiles: 

dissolve RNA

(1,1) (3,1)

S =



  

Shape-Building with Small Resolution 
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, 
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S), 
that assembles S at scale 
factor ≈ log n, with one 
step of dissolving RNA tiles

(1,2) (3,2)(2,2)

DNA tiles: 

RNA tiles: 

dissolve RNA

(1,1) (3,1)

S =


	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	page2 (7)
	Slide 9
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	Slide 15
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page8 (1)
	page8 (2)
	page8 (3)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	page12 (8)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	page13 (9)
	page13 (10)
	page13 (11)
	page13 (12)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	Slide 73
	page25 (1)
	page25 (2)
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	page27 (1)
	page27 (2)
	page27 (3)
	page27 (4)
	page27 (5)
	page28 (1)
	page28 (2)
	page28 (3)
	page29 (1)
	page29 (2)
	page29 (3)
	Slide 92
	page31 (1)
	page31 (2)
	page32 (1)
	page32 (2)
	page32 (3)
	page32 (4)
	page32 (5)
	Slide 100
	page34 (1)
	page34 (2)
	page34 (3)
	page34 (4)
	page34 (5)
	page35 (1)
	page35 (2)
	page35 (3)
	page35 (4)
	page36 (1)
	page36 (2)
	page36 (3)
	page36 (4)
	page37 (1)
	page37 (2)
	page37 (3)
	page37 (4)
	page37 (5)
	page37 (6)
	page37 (7)
	page38 (1)
	page38 (2)
	page39 (1)
	page39 (2)
	page39 (3)
	page39 (4)
	page39 (5)
	page39 (6)
	page40 (1)
	page40 (2)
	page40 (3)
	page40 (4)
	Slide 133
	Slide 134
	page43 (1)
	page43 (2)
	page43 (3)
	page43 (4)
	page43 (5)
	page43 (6)

