
1

kinetic Tile Assembly Model

2

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

3

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc forward rate

4

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

5

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

6

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

b # sticky ends bound

7

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

b # sticky ends bound

G
se

strength of 1 sticky end

8

kinetic Tile Assembly Model (kTAM)

differences with aTAM:
● tiles can attach by any positive strength glue
● tiles fall off, more quickly if bound weakly

r f∼e
−Gmc

rr∼e
−b⋅Gse

forward rate

reverse rate

e−Gmc tile concentration

b # sticky ends bound

G
se

strength of 1 sticky end

optimal growth when
forward rate just barely
larger than reverse rate,
i.e., when

Gmc≈2⋅Gse

9

kTAM

10

Proofreading: Error-correction in the kTAM

Definition: error = attachment by single strength 1 glue

11

Proofreading: Error-correction in the kTAM

Definition: error = attachment by single strength 1 glue

12

Proofreading: Error-correction in the kTAM

glues internal to block are all unique

Definition: error = attachment by single strength 1 glue

13

Proofreading: Error-correction in the kTAM

glues internal to block are all unique

errors must occur in multiples of 2

Definition: error = attachment by single strength 1 glue

14

Proofreading: Error-correction in the kTAM

k x k proofreading roughly turns error rate of ε into εk

glues internal to block are all unique

errors must occur in multiples of 2

Definition: error = attachment by single strength 1 glue

15

Concentration programming

16

Nondeterministic binding

seed 1

G1

R1

17

Nondeterministic binding

seed 1

G1

R1

concentration 11

concentration 1

18

Nondeterministic binding

seed 1

G1

R1

concentration 11

concentration 1

Pr[] = 11/12

Pr[] = 1/12

seed 1 G1

seed 1 R1

19

Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

20

Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

21

Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

22

Concentration programming of
universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

23

Programming polymer length with concentrations

seed 1

G 11

S1

seed 1

[Becker, Rapaport, Rémila, FSTTCS 2006] concentration 11

concentration 1

24

Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

[Becker, Rapaport, Rémila, FSTTCS 2006] concentration 11

concentration 1

25

Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

seed 1 S1G 11G 11G 11

seed 1 S1G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11

seed 1 G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11G 11G 11 G 11 G 11 G1

Large variance

[Becker, Rapaport, Rémila, FSTTCS 2006] concentration 11

concentration 1

26

Programming polymer length (improved)

seed 1

G 11

S1

concentration 3

concentration 1

27

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of
expected length 4

concentration 3

concentration 1

28

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of
expected length 4

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

29

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of
expected length 4

seed 1 G 11G 11 S 21 S 32G 22 G 33 S3G 33 G 33G 33 G 33 G 33

seed 1 G 11G 11 S 21 S 32 G 33 S3G 33 G 33G 33G 11 G 11

seed 1 G 11G 11 S 21 S3G 33 G 33G 11 G 11 S 32 S3G 33 G 33G 22 G 22 G 22 G 22

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

30

90 stages, expected length midway in [2a-1, 2a)

 with probability > 99% actual length in [2a-1, 2a)

1 2 4 8 16 32

Programming polymer length (improved)

31

90 stages, expected length midway in [2a-1, 2a)

 with probability > 99% actual length in [2a-1, 2a)

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

SG SG G S GG GG GGG G

SG SG G SG GG

32
[] ≈ 7 [] = [] ≈ 1SG S

90 stages, expected length midway in [2a-1, 2a)

 with probability > 99% actual length in [2a-1, 2a)

SG G SG G S GGG G G G G GG G GG G G G GG G

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

SG SG G S GG GG GGG G

SG G SG G G S GGGG G G G G GG G G GG G G GG G

SG G SG G S GG G G G G GG G GG GG G

SG SG G SG GG

33

Programming polymer length 2a precisely

256

34

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2a precisely

256

35

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance
from seed

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2a precisely

256

36

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance
from seed

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2a precisely

signal to stop at
next power of two

256

37

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance
from seed

...
1

1

1

1

1

1

1

1

S SS

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

0 0 0 0 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2a precisely

signal to stop at
next power of two

256

38

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance
from seed

...
1

1

1

1

1

1

1

1

S SS

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

0 0 0 0 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2a precisely

signal to stop at
next power of two

256

39

Programming a binary string
1101

13 in binary

40

Programming a binary string
1101

13 in binary
seed SG G G G SGSG G SG GG S S S...

length 2a

41

Programming a binary string
1101

13 in binary
seed SG G G G SGSG G SG GG S S S...

length 2a

≈ 132

42

Programming a binary string
1101

13 in binary
seed SG G G G SGSG G SG GG S S S...

length 2a

≈ 132

concentration
13.5/16

compete in
Bernoulli trials

concentration
1 - 13.5/16

B B B B B B B B B B B B

B B

43

Programming a binary string
1101

13 in binary
seed SG G G G SGSG G SG GG S S S...

length 2a

≈ 132

concentration
13.5/16

compete in
Bernoulli trials

concentration
1 - 13.5/16

44

1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string
1101

13 in binary

blue tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2a

≈ 132

concentration
13.5/16

compete in
Bernoulli trials

concentration
1 - 13.5/16

45

1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string
1101

13 in binary

blue tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2a

1

0

1

0

1

0

1

1

13/16 ≤ < 14/16fraction of

≈ 132

concentration
13.5/16

compete in
Bernoulli trials

concentration
1 - 13.5/16

46

1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string
1101

13 in binary

blue tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2a

1

0

1

0

1

0

1

1

13/16 ≤ < 14/16fraction of

≈ 132

low-order bits
absorb error

concentration
13.5/16

compete in
Bernoulli trials

concentration
1 - 13.5/16

47

y

x

Programming a shape

48

y

x

Programming a shape

49

y

x

Programming a shape

50

y

x

Programming a shape

1
1
0
1
1
0
1
0

51

y

x

Programming a shape

P

0

0

program

input
to P

52

y

x

Programming a shape

P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

53

y

x

Programming a shape

compute
P(0,0)

P

0

-1

P

1

0
P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

54

y

x

Programming a shape

compute
P(0,0)

P

0

-1

P

1

0
P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

P 0 -1

P

1

0

55

y

x

Programming a shape

compute
P(0,0)

P

0

-1

P

1

0
P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

P 0 -1

P

1

0

56

y

x

Programming a shape

compute
P(0,0)

P

0

-1

P

1

0
P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

P 0 -1

P

1

0

57

y

x

Programming a shape

compute
P(0,0)

P

0

-1

P

1

0
P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

compute
P(0,-1)

P 0 -1

compute
P(1,0)

P

1

0

58

y

x

Programming a shape

compute
P(0,0)

P

0

-1

P

1

0
P

0

0

program

input
to P

P(x,y) computes spanning
tree of shape, outputs
children of point (x,y)

compute
P(0,-1)

P 0 -1

compute
P(1,0)

P

1

0

59

Temperature programming

Temperature programming

(Kao, Schweller, SODA 2006): Vary temperature (binding
strength threshold) throughout assembly to control what
assembles.

singly-
seeded set
of tile types:

temperature

time

Complexity of Temperature
Programming

Scott Summers: A fixed set of (singly-seeded) tile
types can assemble any finite scaled shape through
temperature programming.

Number of tile types (a self-assembly "resource") is
constant (maybe big), no matter the shape.

Scott wondered about two other self-assembly
resources that might change for each shape:

● What resolution loss is required?

● What number of temperature changes are
required?

Complexity of Temperature
Programming

For shape S with n points,
trade-off between resolution
loss and number of
temperature changes:

● With optimal resolution loss =
constant (22 in Scott's paper
although shown smaller in the
example), need ≈ n temperature
changes.

● With optimal number of
temperature changes = size of
smallest program p that prints S,
need resolution loss ≈ t =
running time of p.

temps = 3,2,4

small # temp. changes

temps = 3,2,4,5,3,2,4

large # temp. changes

large
resolution loss

small resolution
loss

63

Hierarchical assembly

time step 0

Parallelism in the Model

attached tile

potential attachment location

time step 1

Parallelism in the Model

attached tile

potential attachment location

time step 2

Parallelism in the Model

attached tile

potential attachment location

time step 3

Parallelism in the Model

attached tile

potential attachment location

time step 4

Parallelism in the Model

attached tile

potential attachment location

time step 4

time t: perimeter ≤ O(t) (with high probability)

Parallelism in the Model

attached tile

potential attachment location

time step 4

time t: perimeter ≤ O(t) (with high probability)
→ max attachments per time step ≤ O(t)

Parallelism in the Model

attached tile

potential attachment location

time step 4

time t: perimeter ≤ O(t) (with high probability)
→ max attachments per time step ≤ O(t)
→ max total attachments after t steps ≤ O(t2)

Parallelism in the Model

attached tile

potential attachment location

time step 4

time t: perimeter ≤ O(t) (with high probability)
→ max attachments per time step ≤ O(t)
→ max total attachments after t steps ≤ O(t2)
→ min time to assemble any shape of size N ≥ Ω(√N)

Parallelism in the Model

attached tile

potential attachment location

Can we speed up assembly by allowing
large assemblies to form in parallel and
then attach to each other in one step?

Parallelism and Time

Hierarchical Tile Assembly Model

● seeded model

– growth nucleates from a single seed tile

– tiles attach one at a time

Hierarchical Tile Assembly Model

● seeded model

– growth nucleates from a single seed tile

– tiles attach one at a time
● hierarchical model: assembly is producible if

– base case: it is a single tile, or

– recursive case: it results from translating two
producible assemblies so they stably attach
without overlap

Hierarchical Tile Assembly Model

Hierarchical Tile Assembly Model

Hierarchical Tile Assembly Model

Hierarchical Tile Assembly Model

Hierarchical Tile Assembly Model

Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

Hierarchical Tile Assembly Model

Overlap disallowed in attachment events (“steric protection”)

Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

● Overlap restriction:

– DNA is floppy; won't stay in the plane

– Engineering problem; not fundamental

Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

● Overlap restriction:

– DNA is floppy; won't stay in the plane

– Engineering problem; not fundamental

More fundamental problems:

● Large assemblies assumed to
diffuse as fast as individual tiles

● Uniform binding strength
threshold; should be higher for
larger assemblies

Potentially Unrealistic Aspects of the
Hierarchical Assembly Model

● Overlap restriction:

– DNA is floppy; won't stay in the plane

– Engineering problem; not fundamental

artificially boost
assembly speed

More fundamental problems:

● Large assemblies assumed to
diffuse as fast as individual tiles

● Uniform binding strength
threshold; should be higher for
larger assemblies

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model
break the Ω(n) lower bound?

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n

square using “nearly maximal” parallelism.

Definition of Hierarchical Parallelism

assembly tree = possible order of
attachments leading to final assembly

assembly depth of tile system = maximum
depth of any assembly tree of the tile system

Highly Parallel Square Assembly

● Best possible assembly depth for any shape
with N points is log N.

Highly Parallel Square Assembly

● Best possible assembly depth for any shape
with N points is log N.

● Theorem: For every positive integer n, there
is a tile system with O(log n / log log n) tile
types and assembly depth O(log2 n) that
assembles an n x n square.

1 1
 0

1 0 1

0 1 0

0 0 1

O(log n) x O(log n)
block of tiles

Idea: Blocks of size O(log n) x O(log n),
assembled “nonparallelly”, randomly guess
their (x,y) position in square and bind only
to carefully selected neighboring blocks.

1 1
 0

1 0 1

0 1 0

0 0 1

O(log n) x O(log n)
block of tiles

strength 1
glues

bumps encode
(x,y) address

Idea: Blocks of size O(log n) x O(log n),
assembled “nonparallelly”, randomly guess
their (x,y) position in square and bind only
to carefully selected neighboring blocks.

1 1
 0

1 0 1

0 1 0

0 0 1

1 1
 0

1 0 1

0 1 0

0 0 1

1 1
 0

0 1 0

0 0 1

0 1 1

0 1 0

0 1 0

0 0 1

0 0 1

0 0 0

0 0 0

0 1
 1

0 1 0

0 1
 0

0 0 1

0 0
 1

0 0 0

0 0
 0

0 1
 1

0 1 0

0 1
 0

0 0 1

0 0
 1

0 0 0

0 0 0

0 1
 1

0 1 0

0 1
 0

0 0 1

0 0
 1

0 0 0

0 0
 0

0 1
 1

0 1 0

0 1
 0

0 0 1

0 0
 1

0 0 0

0 0 0

0 1 1

0 1 0

0 1 0

0 0 1

0 0 1

0 0 0

0 0 0

0 1 1

0 1 0

0 1 0

0 0 1

0 0 1

0 0 0

0 0 0

0 1 1

0 1 0

0 1 0

0 0 1

0 0 1

0 0 0

0 0 0

1 0
 1

1 0 0

1 0
 0

0 1 1

1 0
 1

1 0 0

1 0
 0

0 1 1

0 1 1

0 1 0

0 1 0

0 0 1

0 1 1

0 1 0

0 1 0

0 0 1

1 1
 0

1 1
 0

1 0 1

1 0
 1

1 0 0

1 0
 0

0 1 1

1 1
 0

1 1
 0

1 0 1

1 0
 1

1 0 0

1 0
 0

0 1 1

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

1 1
 0

1 0 1

0 1 0

0 0 1

1 1
 0

0 1 0

0 0 1

1 1
 0

1 0 1

0 1 1

0 1 0

1 1
 0

0 1 1

0 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0
 1

1 0 1

1 0
 0

1 0 0

0 1
 1

0 1 1

0 1
 0

0 1 0

0 0
 1

0 0 1

0 0
 0

0 0
 0

1 1 0

1 1 0

1 0
 1

1 0 1

1 0
 0

1 0 0

0 1
 1

0 1 1

0 1
 0

0 1 0

0 0
 1

0 0 1

0 0
 0

0 0 0

1 1
 0

1 1
 0

1 0 1

1 0
 1

1 0 0

1 0
 0

0 1 1

0 1
 1

0 1 0

0 1
 0

0 0 1

0 0
 1

0 0 0

0 0
 0

1 1
 0

1 1
 0

1 0 1

1 0
 1

1 0 0

1 0
 0

0 1 1

0 1
 1

0 1 0

0 1
 0

0 0 1

0 0
 1

0 0 0

0 0 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

0 1 1

2u x u

u = c log n

2u x 2u

u x u

u x 2u

Handling Non-Powers-of-2

Assembly of Each Block

1

2

n in base b ≈ log n / log log n

Assembly of Each Block

1

2

n in base b ≈ log n / log log n
1 1 110 0 0 1 1 11

2

n in bit-quadrupled binary

0 1 0 0 0 0

Assembly of Each Block

1

2

n in base b ≈ log n / log log n
1 1 110 0 0 1 1 11

2

n in bit-quadrupled binary

0 1 0 0 0 0

randomly generate (x,y)-address
and compare each coordinate to n

0
0

0
0

1
0

1
0

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

1
0

1
0

0
0

0
0

1 1 110 0 0 1 1 11

2

0 1 0 0 0 0

Assembly of Each Block

1

2

n in base b ≈ log n / log log n
1 1 110 0 0 1 1 11

2

n in bit-quadrupled binary

0 1 0 0 0 0

randomly generate (x,y)-address
and compare each coordinate to n

0
0

0
0

1
0

1
0

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

1
0

1
0

0
0

0
0

1 1 110 0 0 1 1 11

2

0 1 0 0 0 0

0
0

0

0 00 0

0 1 1 1 1 01

2

0 0

0 0

0 0

1 1

1 1

1 0

1 0

0 0

0 0

0 01 11 10 0

0 0

0 0

1 1

1 1

1 0

1 0

0 0

0 0 0 1 1 0 0 01 10 00 0

rotate x,y, place bumps and glues

0
0

0
1

1
0

0
0

1
1

0
0

0
0

0
0

0
0

1
0

1
0

1
1

1
1

0
0

0
0

0
0

1
1

1
1

1
0

1
0

0
0

0
0

Assembly of Each Block

1

2

n in base b ≈ log n / log log n
1 1 110 0 0 1 1 11

2

n in bit-quadrupled binary

0 1 0 0 0 0

randomly generate (x,y)-address
and compare each coordinate to n

0
0

0
0

1
0

1
0

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

1
0

1
0

0
0

0
0

1 1 110 0 0 1 1 11

2

0 1 0 0 0 0

0
0

0

0 00 0

0 1 1 1 1 01

2

0 0

0 0

0 0

1 1

1 1

1 0

1 0

0 0

0 0

0 01 11 10 0

0 0

0 0

1 1

1 1

1 0

1 0

0 0

0 0 0 1 1 0 0 01 10 00 0

rotate x,y, place bumps and glues

0
0

0
1

1
0

0
0

1
1

0
0

0
0

0
0

0
0

1
0

1
0

1
1

1
1

0
0

0
0

0
0

1
1

1
1

1
0

1
0

0
0

0
0

double height,
not width, based
on x,y,n values

strength-1 gluesx in binary

y

x - 1

y - 1

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n

square using “nearly maximal” parallelism.

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n

square using “nearly maximal” parallelism.
– This construction takes superlinear time.

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n

square using “nearly maximal” parallelism.
– This construction takes superlinear time.

– Every “partial order system” requires time Ω(N) to
assemble any shape of diameter N.

Our Results
● Previous result: Assembling an n x n square requires Ω(n)

steps in the seeded model; achievable with optimal O(log n /
log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

● They asked: Can the extra parallelism in the hierarchical model
break the Ω(n) lower bound?

● We show:
– O(log n / log log n) tile types can assemble an n x n

square using “nearly maximal” parallelism.

The extra parallelism of the hierarchical model is useless for
speeding up partial order systems.

– This construction takes superlinear time.

– Every “partial order system” requires time Ω(N) to
assemble any shape of diameter N.

Assembly Time Complexity Model
● Assign each tile type s an initial concentration C(s) so

that ∑
s
C(s) = 1 (finite density constraint).

Assembly Time Complexity Model
● Assign each tile type s an initial concentration C(s) so

that ∑
s
C(s) = 1 (finite density constraint).

● At time t = 0, each assembly α with only a single tile s
has initial concentration [α](t) = C(s). All larger
assemblies α have [α](t) = 0 at time t = 0.

Assembly Time Complexity Model
● Assign each tile type s an initial concentration C(s) so

that ∑
s
C(s) = 1 (finite density constraint).

● At time t = 0, each assembly α with only a single tile s
has initial concentration [α](t) = C(s). All larger
assemblies α have [α](t) = 0 at time t = 0.

● Each attachment α + β → γ is a chemical reaction with
rate [α](t)∙[β](t) at time t. +

α β γ

Assembly Time Complexity Model
● Assign each tile type s an initial concentration C(s) so

that ∑
s
C(s) = 1 (finite density constraint).

● At time t = 0, each assembly α with only a single tile s
has initial concentration [α](t) = C(s). All larger
assemblies α have [α](t) = 0 at time t = 0.

● Each attachment α + β → γ is a chemical reaction with
rate [α](t)∙[β](t) at time t. +

α β γ
● Concentrations evolve by mass-action kinetics:

d[α] / dt = ∑
γ + β → α

[γ](t)∙[β](t) – ∑
α + β → γ

[α](t)∙[β](t)

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

σ
p

ω

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

σ
p

ω

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

● States = assemblies σ
p
, ω, and all possible

intermediates

α

γ

σ
p

ω

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

● States = assemblies σ
p
, ω, and all possible

intermediates

● Transition from α to γ if there is a producible
assembly β such that α + β → γ, with time-dependent
rate [β](t)

α

γ

σ
p

ω

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

● States = assemblies σ
p
, ω, and all possible

intermediates

● Transition from α to γ if there is a producible
assembly β such that α + β → γ, with time-dependent
rate [β](t)

● Unique sink state of the Markov chain is ω

α

γ

σ
p

ω

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

● States = assemblies σ
p
, ω, and all possible

intermediates

● Transition from α to γ if there is a producible
assembly β such that α + β → γ, with time-dependent
rate [β](t)

● Unique sink state of the Markov chain is ω

● time relative to p = expected time to reach ω from σ
p

α

γ

σ
p

ω

Assembly Time Complexity Model
● Fix a position p in the unique final assembly ω, with

initial assembly σ
p
 with just the tile at position p

● σ
p
 changes into ω by a continuous-time Markov chain

● States = assemblies σ
p
, ω, and all possible

intermediates

● Transition from α to γ if there is a producible
assembly β such that α + β → γ, with time-dependent
rate [β](t)

● Unique sink state of the Markov chain is ω

● time relative to p = expected time to reach ω from σ
p

● time = max
p
 time relative to p

α

γ

σ
p

ω

Assembly Time Lower Bound

● partial order system: in the terminal assembly,
each pair of adjacent binding tiles have an
assembly order precedence relationship (one
always binds first, or at the same time)

Assembly Time Lower Bound

● partial order system: in the terminal assembly,
each pair of adjacent binding tiles have an
assembly order precedence relationship (one
always binds first, or at the same time)

● Theorem: Any partial order system whose
terminal assembly has diameter N requires
time Ω(N).

Main Proof Idea
conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

Main Proof Idea
conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

→ (t ≥ 0) ∑
α
 [α](t) ∙ |α| = 1

Main Proof Idea
conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

→ (t ≥ 0) ∑
α
 [α](t) ∙ |α| = 1

→ assembly of size k has concentration ≤ 1/k

Main Proof Idea
conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

→ (t ≥ 0) ∑
α
 [α](t) ∙ |α| = 1

→ assembly of size k has concentration ≤ 1/k

→ growing by size k in a single step takes expected time ≥ k

hierarchical

Main Proof Idea
conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

→ (t ≥ 0) ∑
α
 [α](t) ∙ |α| = 1

→ assembly of size k has concentration ≤ 1/k

→ growing by size k in a single step takes expected time ≥ k

seeded

hierarchical

Main Proof Idea
conservation of mass: assemblies of size n and k attach to
create assembly of size n + k

→ (t ≥ 0) ∑
α
 [α](t) ∙ |α| = 1

→ assembly of size k has concentration ≤ 1/k

→ growing by size k in a single step takes expected time ≥ k

seeded

Why Partial Order Systems?
Argument breaks if a single
assembly of size k could attach
to many positions, any one of
which suffices to proceed to
terminal assembly.

Why Partial Order Systems?

a

E[time to attach to a] ≥ 3

E[time to attach to any of a,b,c,d] ≥ 3 / 4

b

c

d

concentration ≤ 1/3

Argument breaks if a single
assembly of size k could attach
to many positions, any one of
which suffices to proceed to
terminal assembly.

Why Partial Order Systems?

a

E[time to attach to a] ≥ 3

E[time to attach to any of a,b,c,d] ≥ 3 / 4

b

c

d

concentration ≤ 1/3

Any path in partial order
DAG must assemble in order

Argument breaks if a single
assembly of size k could attach
to many positions, any one of
which suffices to proceed to
terminal assembly.

Why Partial Order Systems?

a

E[time to attach to a] ≥ 3

E[time to attach to any of a,b,c,d] ≥ 3 / 4

b

c

d

concentration ≤ 1/3

Any path in partial order
DAG must assemble in order

longest path has length ≥
diameter of shape

by concentration argument, path
takes time k to grow by k tiles

Argument breaks if a single
assembly of size k could attach
to many positions, any one of
which suffices to proceed to
terminal assembly.

133

Removing tiles (RNase model)

Removing Tiles

● aTAM is monotone: stably attached tiles do not detach
– "Computation of a shape" with tiles may take a lot of space

– Need large resolution loss to compute within the shape

– kinetic model allows detachment but not controllable

● RNase model (Abel, Benbernou, Damian, Demaine,
Demaine, Flatland, Kominers, Schweller)

– make some tile types from RNA and some from DNA

– after some time, add RNase enzyme to dissolve RNA tiles

– only subassemblies made of DNA tiles remain

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S),
that assembles S at scale
factor ≈ log n, with one
step of dissolving RNA tiles

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S),
that assembles S at scale
factor ≈ log n, with one
step of dissolving RNA tiles

program p that prints S

DNA tiles:

RNA tiles:

S =

S = (1,2), (2,2), (3,2), (1,1), (3,1)

execute p

growth

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S),
that assembles S at scale
factor ≈ log n, with one
step of dissolving RNA tiles

program p that prints S

DNA tiles:

RNA tiles:

S =

process each point of S into a
block of DNA tiles designed to

bind to its neighbors in S

S = (1,2), (2,2), (3,2), (1,1), (3,1)

execute p

growth

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S),
that assembles S at scale
factor ≈ log n, with one
step of dissolving RNA tiles

program p that prints S

(1,2) (3,2)(2,2)

DNA tiles:

RNA tiles:

(1,1) (3,1)

S =

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S),
that assembles S at scale
factor ≈ log n, with one
step of dissolving RNA tiles

(1,2) (3,2)(2,2)

DNA tiles:

RNA tiles:

dissolve RNA

(1,1) (3,1)

S =

Shape-Building with Small Resolution
Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller,
Summers (STACS 2011):

given: finite shape S, |S|=n

there is a TAS T, |T| ≈ K(S),
that assembles S at scale
factor ≈ log n, with one
step of dissolving RNA tiles

(1,2) (3,2)(2,2)

DNA tiles:

RNA tiles:

dissolve RNA

(1,1) (3,1)

S =

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	page2 (7)
	Slide 9
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	Slide 15
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page8 (1)
	page8 (2)
	page8 (3)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	page12 (8)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	page13 (9)
	page13 (10)
	page13 (11)
	page13 (12)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	Slide 73
	page25 (1)
	page25 (2)
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	page27 (1)
	page27 (2)
	page27 (3)
	page27 (4)
	page27 (5)
	page28 (1)
	page28 (2)
	page28 (3)
	page29 (1)
	page29 (2)
	page29 (3)
	Slide 92
	page31 (1)
	page31 (2)
	page32 (1)
	page32 (2)
	page32 (3)
	page32 (4)
	page32 (5)
	Slide 100
	page34 (1)
	page34 (2)
	page34 (3)
	page34 (4)
	page34 (5)
	page35 (1)
	page35 (2)
	page35 (3)
	page35 (4)
	page36 (1)
	page36 (2)
	page36 (3)
	page36 (4)
	page37 (1)
	page37 (2)
	page37 (3)
	page37 (4)
	page37 (5)
	page37 (6)
	page37 (7)
	page38 (1)
	page38 (2)
	page39 (1)
	page39 (2)
	page39 (3)
	page39 (4)
	page39 (5)
	page39 (6)
	page40 (1)
	page40 (2)
	page40 (3)
	page40 (4)
	Slide 133
	Slide 134
	page43 (1)
	page43 (2)
	page43 (3)
	page43 (4)
	page43 (5)
	page43 (6)

