CS Preliminaries

ECS289A

Computer Science

Computational solutions to problems: algorithms
Programming the solutions: programs
Data storage and access: databases

Data Analysis: for hypothesis generation and
testing

Human-computer Interfaces: interaction with data
Building systems: hardware and software
Education

ECS289A

What is a solution to a problem:
an algorithm

* A procedure designed to perform a certain
task, or solve a particular problem

* Algorithms are recipes: ordered lists of
steps to follow in order to complete a task

* Abstract idea behind particular
implementation in a computer program

ECS289A

1. Algorithms in Bioinformatics

Theoretical Computer Scientists are
contributors to the genomic revolution

Sequence comparison
Genome Assembly
Phylogenetic Trees
Microarray design (SBH)
Data Integration

Gene network inference

ECS289A

Algorithm Design

* Recognize the structure of a given problem:

— Where does it come from?
— What does it remind of?
— How does it relate to established problems?

* Build on existing, efficient data structures
and algorithms to solve the problem

* |f the problem is difficult to solve efficiently,
use approximative algorithms

ECS289A

Problems and Solutions
In algorithmic lingo:

* Problems are very specific, general
mathematical tasks, that take variables as
input and yield variables as output.

* Particularizations (assigning values to the
variables) are called instances.

* Problem: Multiply(a,b): Given integers a
and b, compute their product a*b.

* Instance: Multiply (13, 243).

ECS289A

Algorithms produce solutions for any given
iInstance of a general problem

Multiply(a,b) :
O) Let Product = 0
1) Take the k-th rightmost digit of

b

and multiply a by it. Attach k-1 zeros

to the right, and add to Product.
2) Repeat Step 1. for all digits of
3) Product = a*b

Multiply (13, 243) = 3159

b.

ECS289A

Algorithm Analysis

* Correctness
— Exact solutions require a proof of correctness
— Heuristics: approximate solutions

* Resource Efficiency (complexity)

— Time: number of steps to follow to obtain a
solution as a function of the input size

— Space: amount of memory required for the
algorithm execution

* Best, Average, and Worst Case Analysis

ECS289A

Time / Space Complexity

* Input size: how many units of
constant size does it take to represent
the input? This is dependent on the
computational model, but can be
thought of as the storage size of the
input. The input size is usually n.

* Running time: f(n) = const., n, log n,
Poly(n), en

ECS289A

Big Oh Notation

* Asymptotic upper bound on the number of
steps an algorithm takes (in the worst case)

* f(n) = O(g(n)) iff there is a constant ¢ such
that for all large n, 0 <= f(n) <= c*g(n)

* More intuitively: f(n) is almost always less
than or equal to g(n), i.e. algorithm with t.c.
f(n) will almost never take more time than
one with t.c. of g(n)

ECS289A

Big Oh, examples

Const. =0(1)
3n = O(n)
3n = O(n?)
logn = 0(n)

Poly(n) = O(e")

O(n) time algorithm is called linear
O(Poly(n)) is polynomial
O(e") is polynomial

ECS289A

Basic Complexity Theory

* Classification of Problems based on the
time/space complexity of their solutions

* Class P: Problems with polynomial time
algorithms t.c. = O(Poly(n))

* Class NP: (non-deterministic polynomial)
Problems whose solution instances can be
verified in Poly(n) time.

ECS289A

Complexity, contd.

* NP-complete problems: a polynomial algorithm
for one of them would mean all problems in NP
are polynomial time

* But, NO polynomial time algorithms for NP
problems are known

* P # NP? Still unsolved, although strongly
suspected true.

* NP complete problems: 3-SAT, Hamiltonian
Cycle, Vertex Cover, Maximal Clique, etc.
Thousands of NP-complete problems known

* Compendium:
http://www.nada.kth.se/~viggo/problemlist/‘compendium.htmi

ECS289A

Why All That?

* Many important problems in the real world
tend to be NP-complete

* That means exact solutions are
intractable, but for very small instances

* Proving a problem to be NP-complete is
just a first step: a good algorist would use
good and efficient heuristics

ECS289A

Popular Algorithms

Sorting

String Matching

Graph Algorithms

— Graph representation: linked lists, incidence matrix
— Graph Traversal (Depth First and Breadth First)

— Minimum Spanning Trees
— Shortest Paths

Linear Programming

ECS289A

Algorithmic Techniques

Combinatorial Optimization Problems

— Find min (max) of a given function under given

constraints
Greedy — best solution locally

Dynamic Programming — best global

solution, if the problem has a nice structure
Simulated Annealing: if not much is known

about the problem. Good general technique

ECS289A

Data Structures

* Once a given problem is digested,
algorithm design becomes an engineering
discipline: having a big toolbox and
matching the tools to the task at hand

* A major part of the toolbox are data
structures:

Data representations allowing efficient
performance of basic operations

ECS289A

Basic Opperations

* Store/Search:
— Search(x)
— Delete(x)
— Insert(x)
* Priority:
— FindMIN
— FindMAX

* Set:

— UnionSet
— FindElement

ECS289A

Basic Data Structures

* Static: arrays and matrices

— Array of n elements: aJi], 0 <=i <= n-1

1 2 3 4 5
a[1] |al2] |a[3] |a[4] |a[9]
. 1 2 3 4
— Matrix of n*n elements:
mli][j], 0 <=1,) <= n-1 1 [mE] | me2 | mes) | mie
_ _ 2 | m2][1] | m[2][2] | m[2][3] | m[2][3]
* Basic operations are O(1)

3 | mE3J[1] | m[3][2] | m[3][3] | Mm[3][4]

ECS289A

Dynamic Data Structures: linked lists,
trees and balanced trees, hash tables

* No static memory allocation: items are added/deleted on
the go

* Linked Lists (basic operations are O(n)):

a \ b \ o o \ __»NIL

* Trees

@)

O/ \ . .
/\ . Balanced tree: Height is O(logn).
/o o O/ \‘O

Basic operations are O(log n)

O

ECS289A

Hash Tables

e PR P

f(key)

/4
| \
1

Keys

— |c _|_’|e _|_’|f —|"N”‘
f I PR . P o T

A good hash function f(key) yields constant search time O(1).

ECS289A

Set Data Structures
Given sets A={1,2,3,4} and B={1,3}
Operations: Find, Union
Example:
— Find(A,3) = yes
— Find(A,5) = no
— Find(B,3) = yes
— Union(A,B) = {1,2,3,4}

Very efficient: almost linear in the number

of union+find operations

ECS289A

Graphs

* Graph G(V, E). V is a set of vertices, E a

set of edges

V5E={

V ={v1,v2,v3, v4, v5, v6}

(v1, v2), (v1, vd), (v1, vb),

(v2, v3), (v2, vd), (v2, vb),
(v3, v4), (v3, vd), (v3, vb) }

ECS289A

* Linked list representation:

v1:v2, vd, vb

v2: v1, v3, v5, v6

v3: v2, v4, v5, v6

v4: v3

vo: v1, v2, v3 vi
v6: v1, v2, v3

* Adjacency Matrix Representation

V2

V2 V3 V4 V5 V6
VA1

V1 1 0 0 1 1
V2 1 1 0 1 1
V3 0 1 1 1 1
V4 0 0 1 0 0
V5 1 1 1 0 0
V6 1 1 1 0 0

V4

V5
O

V6

ECS289A

A Greedy Clustering Example

SSSSSSS

* Clustering is a very important tool in
analysis of large quantities of data

* Here we will work out a very simple
example: clustering points in a plane by
single-link hierarchical clustering

ECS289A

Clustering Points in the Plane

Problem 1: Given n points P00 Pa (X0, 95),-0, 0, (X, 0,)

in a plane, cluster them so that if the distance
between two points is less than D they are in the
same cluster

InPUt: D, DX, 1), P2 (X5, 15)5e 0 D (X5 0,)
Output: Sets (clusters) of points C,, C,, ..., C,.

O

ECS289A

Algorithm Draft

* Calculate distances between point pairs

=
N

ECS289A

* Sort the distances in ascending order

Sort

P, P d,,
Ps P, d3,2
Ps P, d3,1

v

P, Ps d7,5
Ps P, d;
P4 Ps d,s

ECS289A

Move through the sorted list of distances and add a new
point to a cluster if the distance is < D.

S &

ECS289A

Algorithm in Detall

* Data Structure for the graph: adjacency matrix

* Data Structure for the clusters: Set (Union /

Find)

P, P4 d2,1

Ps P> ds,

P P, d, 4

ECS289A

Algorithm In detall

Calculate distances O(n?)
— For all pairs i,j calculate d(i,j)

Sort adjacency table O(n? log n)

Start with n sets, p,,p,,...,p,. Build a linked-

list representation of a graph:

— Get the next smallest distance, d(i,))
—If d(i,j) >= D done

— Else Union(Find(p;),Find(p,))

Traverse the graph to find the connected

components (DFS)

ECS289A

Algorithm Analysis

* Correctness:
— All distances less than D are added

— Clusters contain all points with distance <D to
some other point in the cluster

* Time complexity:
— Bounded above by the sorting step
—0O(n? log n)

ECS289A

Discussion

* This algorithm is known as Single-Link
Hierarchical Clustering

* ltis a version of Kruskal’'s Minimum
Spanning Tree Algorithm

* |tis fast

ECS289A

Performance on Real Data

* Lousy: Chaining effects

==

ECS289A

Better Approaches:
Complete-Link Clustering

Problem 2: Given n points p.(x,,»),p,(x5,,),--5 2,(x,,)

In a plane, cluster them so that the distance
between any two points in a cluster is less than D

Input: D, 71(i:20: P2(%25 2)se5 2 (%,59,)
Output: Sets (clusters) of points C,, C,, ..., C,.

O

ECS289A

2. Bilo-databases

* A biological database is a large, organized
body of persistent data, usually associated
with computerized software designed to
update, query, and retrieve components of
the data stored within the system.

— easy access to the information
— a method for extracting only that information
needed to answer a specific biological question

* Many databases are linked through a
unique search and retrieval system, eg

NCBI's Entrez.

ECS289A

Database Interfacing

* APIs: scripts in Perl, Python, R

* Direct online:
— NCBI entrez
— KEGG
— Reactome
— efc.

ECS289A

3. Workflows

b file: shomesrfablofworkspace/kep lercvs/image_metadata_ 2. xmil
Eie Edit View Workflow Tools Window Help

>

@@ K| |CI[> Il @) =p =L [0 @
q
LS

Demonstration workflow for the Shakespeare collections

Get File parameters
o SourceDirectory: “file: home (TabioyVRE | DesagningSha ke speare | DesSha R e sources /De sSha fallsWwell =

m FilenamePatmern: "L BIPG1pglipeg UFEGH
Processing file:

“AWWETRS_D03 jog”

Single Fire Cormstant
B SowrceDireoory

Eupressiond
frn.substringd fn.lastinde w06+ 1. fnbength)

Array Elemeant

ExtractimageMetadatafctor
L PLE T T LT TT Y

KM LroStringicior

DDEDMrecior
I rLdnnotation

Filter Annotationless parameters
& Query: "annouchecksum = VX and anno.uri=""ima ge Anmotyton by~

& Panmens "X

e sults

l_— S

[]

-

ECS289A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

