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Abstract

Background: TILLING (Targeting induced local lesions IN genomes) is an efficient reverse genetics approach
for detecting induced mutations in pools of individuals. Combined with the high-throughput of next-generation
sequencing technologies, and the resolving power of overlapping pool design, TILLING provides an efficient and
economical platform for functional genomics across thousands of organisms.

Results: We propose a probabilistic method for calling TILLING-induced mutations, and their carriers, from high
throughput sequencing data of overlapping population pools, where each individual occurs in two pools. We
assign a probability score to each sequence position by applying Bayes’ Theorem to a simplified binomial model
of sequencing error and expected mutations, taking into account the coverage level. We test the performance of
our method on variable quality, high-throughput sequences from wheat and rice mutagenized populations.

Conclusions: We show that our method effectively discovers mutations in large populations with sensitivity of
92.5% and specificity of 99.8%. It also outperforms existing SNP detection methods in detecting real mutations,
especially at higher levels of coverage variability across sequenced pools, and in lower quality short reads sequence
data. The implementation of our method is available from: http://www.cs.ucdavis.edu/∼filkov/CAMBa/.

Background

TILLING (Targeting Induced Local Lesions IN
Genomes) [1] is a reverse genetics approach to de-
tect effects of globally induced mutations in a pop-
ulation and identify the individuals that have mu-
tations in genes of interest. Mutations discovered
through TILLING allow the functional characteriza-
tion of genes known only by their sequence. Further-
more, because TILLING is applicable to any species
that can be mutagenized, it can be used to knock out
undesirable characters in crops [2]. A refinement of

previous approaches, TILLING-by-Sequencing (Co-
mai et al., unpublished) follows up the mutagenesis
with deep sequencing of individuals or populations of
interest. Because of the high throughput of current
sequencing technologies, deep sequencing to hundred
and thousand fold coverage is possible [3]. This al-
lows unprecedented precision when identifying the
induced mutations.

The TILLING-by-sequencing setup in one of
our labs (Comai) uses the mutagen ethyl methane-
sulphonate (EMS) or the combination of sodium
azide and methyl-nitrosourea (Az-MNU) to induce
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mutations in a population of 1500-6000 individuals.
The mutations induced will be heterozygous in 2/3
of the cases and homozygous in the rest. Units of
768 individuals arrayed in a 96 well-plate, 8 indi-
viduals per well, are then screened. The row and
column samples are pooled to yield 8 row- and 12
column-pools (for a total of 20 pools). Thus, the
row and column pools overlap in their DNA content
in such a way that each individuals DNA is present
in exactly 2 pools. This arrangement allows for the
identification of both the mutated positions and the
individuals that carry them. We call this setup bi-
dimensional pooling , and illustrate it in Fig. 1. DNA
from each of the 20 pools is PCR-amplified with
primers designed to amplify 1-1.5 DNA segments
from up to 40 genes of interest, and subsequently
sequenced using Illumina GA machines. The reads
are then mapped onto reference genomes.

Given a stretch of DNA of interest from a refer-
ence genome and a complete set of deep sequenced,
bi-dimensionally overlapping pools (20 pools in our
case) we want to identify the positions with muta-
tions along the DNA and their individual carriers.
The computational problem, then, is to identify the
position and the row- and column-pool for each mu-
tation.

Any solution to this problem would of course
focus on identifying significant differences between
the reference genome and the sequenced DNA. The
problem is complicated by the non-independent
pools of the experimental setup, the infrequency of
the mutation’s occurrences with respect to the size
of the population under study, and also by variabil-
ity, or non-uniformity in the sequencing coverage,
which is not uncommon for 2nd generation sequenc-
ing technologies [4]. For example, in our experimen-
tal setting, a mutation in a single individual is ex-
pected to cause a higher base change frequency in
one row and one column library, and many muta-
tions can be recognized in this way, by visual detec-
tion of outliers (we call this the Outlier approach).
In Fig. 2, we show the base change frequency for each
library at three positions with confirmed mutations
from mutagenized wheat and rice. From left to right,
there is apparent increased difficulty in identifying a
mutation. The accuracy of calls made by the Outlier
approach depends on the coverage, or number of nu-
cleotide calls per position per library. Given a fixed
probability of base change due to error, at high cov-
erage levels, libraries with real mutations will usu-
ally stand out clearly from the noise. As coverage

drops, a larger range of base change frequencies may
reasonably occur due to chance in the absence of a
real mutation, thus increasing the number of false
positives. The Outlier approach cannot distinguish
these cases because it does not take coverage levels
into account, so a single gene that has low cover-
age on a few libraries can cause a high overall false
positive rate.

Here we propose a new method, Coverage Aware
Mutation calling using Bayesian analysis, CAMBa,
(read like the dance) which directly considers the
pooled setup and coverage levels when calculating
mutation and noise probabilities. Using data from
two TILLING experiments, one on rice and one on
tetraploid wheat, we validate CAMBa’s efficacy in
identifying mutations, and demonstrate that it does
at least as well as other mutation calling methods,
and that it outperforms the other methods on the
rice experiment which has a lower quality and higher
variance in coverage across libraries. We also test
and confirm the hypothesis that CAMBa is insen-
sitive to lower data quality and variable sequencing
coverage across libraries dur to the overlapping pools
experimental design.

Related Work

Rigola et al. [5] use a Poisson distribution based ap-
proach to identify mutations and natural variations
in individuals using bi- and three-dimensional pool-
ing schemes coupled with high-throughput sequenc-
ing. We compare their method to CAMBa in the
Results section.

A variety of approaches exist for calling
SNPs from non-overlapping pooled samples, e.g.
VarScan [6], CRISP [7], SNPseeker [8], the MAQ
alignment tool [9], and others; and non-pooled sam-
ples, e.g. POLYBAYES [10], PolyScan [11], the
method by Stephens et al. [12], and others. Our
approach is specifically geared to working on pooled
experiments with overlap between the DNA pools,
i.e. DNA from the same individual is present in
two pools. That is not the case for these other ap-
proaches, so we could not compare them directly to
CAMBa. Moreover, these other approaches iden-
tify mutations but not the individuals in the popu-
lations that carry them. We modified some of them
(VarScan and CRISP) in order to compare them to
CAMBa and report those studies in the Results sec-
tion.

Overlapping pool designs for high-throughput re-
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sequencing have been recently proposed by Prabhu
and Pe’er [13], where they focus on optimizing over-
laps to increase design efficiency (as compared to
optimal), lower necessary sequencing coverage, de-
crease false positives and false negatives, and iden-
tify mutation carrier with lower ambiguity. They do
not provide software for testing their designs and it
is not immediately clear that their designs could eas-
ily fit into standard wet lab protocols (e.g. with re-
spect to standard well plates, etc.) Our overlapping
pooling scheme can be evaluated in their theoretical
framework, and in terms of the “code efficiency” it
is 50% worse than the theoretically optimal binary
design (although it is not clear if that optimum is
achievable in practice).

Methods
The experimental TILLING setup encompasses a 2D
well-plate, with iwell individuals pooled per well and
il individuals in each library l, the total number of
wells nw in the experiment, the reference base r at
the current position, the probabilities pc and pnc
with which the mutagen, EMS or MNU, will induce
a specific canonical (G → A or C → T ) or non-
canonical base change at a given position in a single
individual, and the fraction of induced mutations tz
for each zygosity z.

The input data, D, is comprised of a set, L, of
row and column libraries of short reads covering the
sequences of interest. The reads for each library
are aligned to their reference sequences using the
MAQ (Mapping and Assembly with Quality) align-
ment tool [9], associating each position in each till-
ing sequence with a set of nucleotide calls: either
the reference nucleotide base, r or a base change
r → m, m 6= r. In the alignment, or pileup, of
reads, for each position we count the total num-
ber of reads, i.e. coverage, in a given library, de-
noted by nl, and separately the number of reads that
have base b at that position in that library, klb (so
nl = klA + klT + klC + klG).

To find the carriers and the mutations, given the
data, D, and the well-plate experimental setup for
each sequence position we model the posterior prob-
abilities of each possible mutation in each well. We

assume that at most one individual will have a mu-
tation at any given sequence position. 1 Thus, at
most one well can have a mutation with respect to
one specific base change. We denote these possibil-
ities, or ( configurations), as cw,m, where w is the
well, and m is the base change from reference. (In
our setup, we distinguish 288 mutation possibilities
since we have 96 wells and 3 possible base changes
different than the reference). The probabilities cor-
responding to the configurations are p(cw,m|D). We
call a mutation at a given position if the probability
of at least one mutant configurations cw,m exceeds a
predefined threshold indicating that well w contains
an individual with base change m at the current po-
sition. If more than one cw,m pass the threshold,
then the one with highest probability is chosen. The
threshold is determined based on the expected num-
ber of mutations in an experiment, as described in
Sec. .

In the following we calculate the probabilities
p(cw,m|D). Since the experimental procedure makes
the expected number of heterozygous mutations
equal to twice the number of homozygous muta-
tions, we further distinguish configurations by zygos-
ity, and use cw,m,z to model the probabilities of het-
erozygous, z = het, and homozygous, z = hom, mu-
tations separately, and p(cw,m|D) = p(cw,m,het|D)+
p(cw,m,hom|D). Then, from Bayes’ Theorem we get:

p(cw,m,z | D) =
p(cw,m,z)p(D | cw,m,z)∑

c′∈C p(c′)p(D | c′)
,

where C is the set of all possible configurations
cw,m,z at the given position (288 ∗ 2 = 576 in our
setup). Since we exclude all configurations with
more than one mutant individual for the current po-
sition, the sum of the prior probabilities p(c′ | s) do
not add up to 1, but normalizing does not affect the
result.

Next, we calculate both the prior and conditional
likelihood probabilities. We model the prior proba-
bility of a base change r → m at the current position
in exactly i out of the iwell individuals in a given well
as:

1This is supported by evidence from a previous TILLING experiment in tetraploid wheat using the mutagen EMS, where
Slade et al. [2] identified 50 positions for which at least one of the 768 individuals contained a mutation but only 3 for which
there was a mutation in two individuals. In rice, which has a significantly lower expected mutagenesis rate at each possible
reference base [2, 14, 15], we expect an even smaller percentage of the positions for which there is a mutation in one individual
to have a mutation in more than one individual.
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pim =

{
B(i | iwell, pc) if r → m is canonical

B(i | iwell, pnc) if r → m is non-canonical

where B(i | iwell, pc) is the Binomial distribution,
i.e. the probability of having i successes out of iwell

trials given an individual success probability of pc.
A given well has prior probability ptm = p1m of

being a mutant well for base change m and pfm =
p0m of being a non-mutant well for base change m.
The prior probability of a given configuration cw,m,z

is the product of the prior probabilities of each well
w on each base change m, multiplied by the frac-
tion of induced mutations with the given zygosity,
if applicable. Thus, since there are three possible
base changes at the current position, m, m′, and m′′,
p(cw,m,z) = tzptmpnw−1

fm pnw

fm′p
nw

fm′′ . Note that these
probabilities are the same for all wells (i.e. they
don’t depend on w).

To calculate the likelihood p(D | cw,m,z), we use
the fact that each well w is an intersection of a row
and a column library. First, we assume that all base
change counts are conditionally independent given
nl and cw,m,z, and so we simplify the likelihood to
the individual libraries:

p(D | cw,m,z) =
∏

m∈{A,T,C,G}
m6=r
l∈L

p(klm | nl, cw,m,z).

Each term in the product on the right is the con-
ditional probability of observing klm reads having
base m at that position, given nl coverage for that
library and configuration cw,m,z. We model this with
the Binomial distribution, as a function of probabil-
ity rlmc, the expected rate of reading base change m
at the current position in library l, given configura-
tion cw,m,z:

p(klm | nl, cw,m,z) = B(klm | nl, rlmc).

We model rlmc in terms of mlc, the fraction of
mutant alleles in library l under configuration c, and
rr→m, the rate at which a base r is read as m in well
w, as: rlmc = (1 −mlc)rr→m,c + mlc. We compute
mlc from the number of individuals il in library l and
the zygosity z of the candidate mutation. Finally, we
estimate rr→m:

rr→m,c =
∑
l∈Lc

klm/
∑
l∈Lc

nl.

where Lc is the set of all libraries excluding the two
(one row and one column library) which intersect at
well w, and have mutation m at the given position.

Pre-processing

For each library, we compute a low quality cutoff for
base calls to be one standard deviation below the
mean quality of the reference base calls; we throw
out all base calls below this quality threshold. After
filtering out low quality base calls, we do not search
for candidate mutations at the current position if the
mean coverage over all but two libraries is less than
10,000, to avoid inaccurate estimates of rr→m.

The orientation bias of a specific base is the
fraction of base reads for that base coming from
reads that map to the forward rather than the re-
verse strand of the TILLING sequence. If the ref-
erence base orientation bias for a given library at
the current position is different from the orientation
bias of base change m with pvalue < 0.01, then we
set p(D | cw,m,z) = 0 to exclude each configura-
tion c for which a well represented in that library
is a mutant well for base change m. We also set
p(D | cw,m,z) = 0 for these configurations if the ref-
erence base orientation bias for the given library is
greater than 10 or less than 0.1, since a strong ref-
erence base orientation bias can make it difficult to
detect a significant difference between the orienta-
tion biases of the reference base and a given base
change. In addition, if a given library has more
base reads for the candidate base change than for
the reference base at the current position, then we
set p(D | cw,m,z) = 0 for each configuration where
a well in that library is a mutant well for any base
change.

Number of Predictions

We construct our initial estimate of the number
of real mutations in a given experiment by adding
up the probabilities of each possible induced base
change at each position across all TILLING se-
quences in all individuals, where the probability of a
given canonical or non-canonical base change is de-
termined from CEL-1 screening of an experiment on
the same organism using the same mutagen [14,15],

4



as described in the data section below. By this
method, we estimate 47 real mutations in Rice and
69 real mutations in wheat. Since CEL-1 has a sig-
nificant false negative rate, we correct our initial es-
timate using additional validation information from
the wheat experiment. When an older version of our
approach was run on the wheat experiment, 8 of the
10 predictions ranked 86 to 95 were tested and all 8
were confirmed. We drop below this ranking to give
the semi-conservative estimate of 107 real mutations.
We divide 107 by 69 to get a candidate scaling fac-
tor of 1.55. We predict the number of real mutations
for a given experiment to be 1.55 times our initial
estimate of the number of real mutations from CEL-
1 screening. The predicted number of mutations is
107, by definition, for wheat, and it is 75 for rice.
This determines our threshold.

The above approach for determining the appro-
priate threshold yields very good bounds for our data
and can be applied whenever previous CEL-1 screen-
ing experiments have been done. In the absence of
such prior experiments, one can apply the follow-
ing method, although the results may include higher
false positive rates. The false positive rate at a given
number of predictions can be estimated by running
CAMBa with input a scaled down bi-dimensional ar-
rangement using only the row pools. E.g., the row
pools in the new scheme could be half of the actual
row pools, and the new column pools could be the
other half of the original row pools. Since we ex-
pect few or no instances where the same mutation
occurs in two independent row libraries, the num-
ber of row/row calls serves as an upper bound on
the number of false positives among the row/column
candidates. Similarly, we could scale down the orig-
inal arrangement using the original column pools in-
stead of the row pools. We scale up by the ratio
of the number of row/column pools versus the num-
ber of row/row pools, and choose the largest number
of candidates for which the estimated false positive
rate is nearest to our goal threshold. As an illustra-
tion of this method, we split the wheat data set 12
column pools into two groups of 6 pools each, and
ran CAMBa on this new bi-dimensional pooled data
of 6 rows and 6 columns. At a false positive rate of
0.05, this method yields a threshold for CAMBa of
105 mutations.

We note that although CAMBa yields posterior
probabilities for each of thousands or tens of thou-
sands of positions, we never use hypothesis testing
to determine the threshold in either of the two ap-

proaches above, and thus we need not correct for
multiple hypothesis testing.

Methods for Comparison

We compare the performance of CAMBa to those
of a number of methods below. Only the Out-
lier and the Poisson outlier methods predict both
the mutated positions and the individual carriers,
whereas the others only predict the mutation po-
sitions. Hence, either they or CAMBa have been
modified to allow for the comparison. In each case
we specify the modification undertaken.

The Outlier method uses the same preprocessing
techniques as CAMBa, and is inspired by simple vi-
sual identification of a row and column library pair
that stand out from the rest in terms of the fre-
quency of a given base change. When considering
a given position in a TILLING sequence, if at least
one well has a score greater than a fixed threshold
t on some base change, then we predict a mutation
for the base change and well combination with the
highest score. For a given well w and base change
m, we find the z-score of the r → m base change
frequency for both the associated row and column
library with respect to the distribution of the r → m
base change frequencies for the remaining libraries,
and we set the score of well w on base change m to
be the lower of these two z-scores. We add 0.0001 to
the sample standard deviation to avoid division by
zero.

The Poisson outlier method is described in a
TILLING-by-sequencing pipeline by Rigola et al. [5].
This method consider only G to A and C to T
base changes for the purposes of mutation detec-
tion. Since MNU can induce any type of base change
in rice, we modified the Poisson outlier method to
search for all possible base changes when detecting
mutations in rice. Rather than following the proce-
dure for detecting natural variation, which considers
all base changes as a whole, we tested for each base
change individually, to reflect the assumption that
an individual will have at most one mutation at a
given position.

VarScan is a SNP identification method in indi-
vidual or pools of massively parallel sequence data
by Koboldt et al [6]. It identifies variants based on
read counts, base quality, and allele frequency. We
used VarScan with varying p-values (its only param-
eter setting). VarScan does not take into account
overlap in pools and it does not identify the indi-
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viduals carrying the mutations. To compare it to
CAMBa in a bi-dimensional setting, we ran VarScan
separately on the row pools and again on the col-
umn pools. We took the maximum of the row and
column p-values as the combined p-value for a muta-
tion present in both the rows and the columns. The
results were mostly unchanged when we ran VarScan
on the 20 pools together.

CRISP [7] is a statistical method for variant de-
tection in pooled DNA samples, shown to dominate
a number of other methods in direct comparison of
SNP detection [7]. Like VarScan, CRISP does not
identify the mutation carriers, so when comparing
CAMBa and CRISP by the number of candidates
that overlap with the set of confirmed mutations,
we considered only the position and base change of
each candidate. Since it does not account for pool
overlap, to compare it to CAMBa we ran CRISP
under three different scenarios: on all 20 libraries,
separately on the 8 row-pools, and separately on the
12 column-pools. We only include results for CRISP
on its default parameters, due to the non-intuitive
performance of CRISP when running it with relaxed
parameters. (As CRISP has two user-modifiable pa-
rameters, we performed two-dimensional search to
determine the threshold combination that gives us
the set of top candidates that has the highest over-
lap with the set of confirmed mutations. Unfortu-
nately, even after this optimization step, the perfor-
mance was weaker than when CRISP was run with
the default parameters. Modifying CRISP more sub-
stantially was beyond the scope of this project and
certainly beyond expectations of any practicing bi-
ologist.)

We also attempted comparisons with MAQ [9]
but we could not get any mutation predictions on
our data sets with their default settings.

Results and Discussion

Using data from two TILLING-by-sequencing exper-
iments we analyze the performance of CAMBa and
compare it to those of other approaches. We investi-
gate the effect of sequencing quality, sequencing cov-
erage variability, and the overlapping pool design on
the fidelity of our and the other methods in resolving
mutations from the data.

Two TILLING Experiments

Using the setup described earlier (768 individuals ar-
rayed evenly into a 96-well plate, 8 row and 12 col-
umn pools sequenced) a total of 13 rice genes (avg.
TILLING seq. length = 1393 bp) and 5 wheat genes
(avg. TILLING seq. length = 934 bp) of interest
were sequenced using Illumina GA machines to look
for mutations in a population of 768 individuals. The
reads on the average were of length 35 bp for the rice
and 40 bp for the wheat data. There was a signifi-
cant difference in the read quality between the two:
the rice had an average Phred quality score of 13 and
the wheat of 31. There was also a larger variance in
coverage between individual libraries in the rice data
set than in the wheat data set. Also, on average, the
coverage was 140× per individual in rice and 270×
in wheat. The full data and experiments will be de-
tailed elsewhere (Comai et al., unpublished). The
differences in quality, coverage, etc. between these
two data sets make them very good case studies for
our method.

To evaluate the performance of the mutation call-
ing algorithms, we used two sets of mutations, one
set for wheat and one for rice, which have been previ-
ously confirmed using an independent method (PCR
amplification followed by sequencing) [16]. In total
we had 39 confirmed mutations from the wheat ex-
periment and 11 from the rice experiment. 2 We note
that the confirmed mutations are a fraction of the to-
tal expected mutations in these data sets. Ideally, all
predicted mutations should be tested, but practical
resource constrains dictate limits on the validation.

Using prior TILLING experiments we determine
the probabilities of a canonical mutation, pc, non-
canonical mutation, pnc. We assume position inde-
pendent values for pc and pnc, as indicated by prior
experiments [2,14,15]. We estimate pc and pnc from
ic and inc, the induced mutation rates for canonical
and non-canonical mutations, and ptil(b), the frac-
tion of TILLING reference sequences with base b, for
each b (in prior corresponding experiments): pc =
ic/ptilG,C and pnc = inc/pnc

(
2ptilG,C + 3ptilA,T

)
.

We compute ic and inc using previously described
methods [14, 15]. Thus, we get for rice, pc =
5.6×10−6 and pnc = 4.93×10−7, and for wheat, pc =
3.88×10−6 and pnc = 0. The fraction of heterozy-
gous mutations is thet = 2/3, and homozygous mu-
tations is thom = 1/3.

2These sets of confirmed mutations come from predictions using prior iterations of our approach, and prior experimental
approaches, using CEL-1, on these data sets and all consequently confirmed with PCR amplification.
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Validation

Due to the apparent bimodality of the calculated
posterior probabilities, and their clustering around
the values of 0 and 1, we apply the following function
to transform t, the posterior probabilities returned
by CAMBa:

F (t) =

{
−
(
log10(1− t)− log10(0.5)

)
if t ≥ 0.5

log10(t)− log10(0.5) if t < 0.5

F (t) is effectively the log posterior probabil-
ity. For both the rice and wheat TILLING-by-
sequencing experiment, the predictions of CAMBa
and the other methods are compared against the cor-
responding set of confirmed mutations.

To investigate the relationship between the num-
ber of predictions and the rates of true positives and
false negatives, we ran the methods with different
parameter settings. This was especially useful in
the case of VarScan and the Poisson method, which
yielded unreasonable numbers of predictions at their
default settings (e.g., the Poisson method at a pvalue
of 0.01, recommended by its authors, yielded thou-
sands of predictions). So, for a range of values of
CAMBa’s F (t), we generated a set of predictions
for CAMBa and then set the threshold for the other
methods to return the same number of predictions.
Given an objective number of actual mutations in
a data set, this approach makes it easy to estimate
the false negatives and false positives directly. As a
good estimate of the actual mutations for each data
set, we use the above determined estimates (based
on external knowledge) of 107 mutations for wheat
and 75 for rice.

In Tables 1 and 2 we show the overlap between
the predictions of each method and the tested and
confirmed sets of mutation candidates, as well as the
overlap between the predictions of the two methods.
On the rice data set, CAMBa dominates the other
methods clearly. Increasing the threshold causes the
number of predictions for rice to increase at a greater
rate than for wheat, for all three methods. This is
likely due to the lower quality of the rice data, thus
higher amount of noise, as well as the variable se-
quencing coverage across pools, as we show below.
Interestingly, neither VarScan nor CRISP generated
any predictions on this data. At the threshold as
determined above of 75 mutations in rice, CAMBa
predicted correctly 10 out of the 11 confirmed muta-
tions. These results are strong evidence that given

lower quality data CAMBa can utilize the overlap-
ping pools experimental setup to its advantage bet-
ter than the other methods could.

On the wheat data set, we see greater overlap
between the predictions of CAMBa and the other
methods. This is consistent with the fact that the
wheat data set is of higher quality, and thus muta-
tions are easier to identify. At the threshold as de-
termined above of 107 mutations in wheat, CAMBa
predicted correctly 36 out of the 39 confirmed mu-
tations. (Looking closer in the sequence data for the
3 false negatives, we found out that one of them is
due to strand-specific bias which resulted in wrong
frequencies of base changes, and another was due to
under-sequencing; the third showed up in the table
at a much higher threshold.)

It is straight forward to estimate the false posi-
tive rate and false negative rate using these tables.
To do so, first we assume that the confirmed mu-
tations have been randomly chosen from the set of
all mutations. Thus, we scale by 107/39 the true
positives, false positives, and false negatives. For
CAMBa, in wheat this gives TP = 99, FP = 8,
and FN = 8, for a false negative rate of 7.5×10−2

i.e. sensitivity of 92.5%, and a false positive rate of
2×10−3 i.e. specificity of 99.8%. Similarly, in rice,
CAMBa has sensitivity of 93.4% and specificity of
99.96%. Interestingly, even the much lower read data
quality of the rice data (as given by the Phred qual-
ity scores above) does not seem to affect CAMBa’s
performance.

By comparison, on wheat, CRISP with default
parameters yielded (in the best of three scenarios,
see above, when run on all 20 pools) 118 predic-
tions of which 32 overlapped with the 39 confirmed
mutations. This works out to sensitivity of 82% and
specificity of 99.6% in wheat (CRISP yielded no pre-
dictions on the rice data set).

To further evaluate the reason for CAMBa’s ad-
vantage over CRISP, we also ran CAMBa in a “naive
mode” by removing the information that pools over-
lap (i.e. one dimensional pooling). We did this by
giving CAMBa a bi-dimensional arrangement of only
1 row and 12 column-pools (i.e. we used only the
column pools). CAMBa predicted 103 mutations of
which 30 overlapped with the confirmed 39. When
repeated with the 8 row-pools only there were 99
predictions of which 26 overlapped the 39 confirmed
ones. We could not run CAMBa in “naive mode” on
all 20 libraries because they were not independent.
CRISP, on the other hand, predicted 147 mutations,
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of which 30 overlapped with the 39 confirmed ones
when ran on the row-pools only, and predicted 104,
including 25 of the 39 confirmed, when ran on the
column-pools only. CRISP appears to have an ad-
vantage if we compare its run on all 20 pools versus
CAMBa on either the row- or column-pools only, but
such a comparison is not objective and the advan-
tage is in part due to CAMBa working on less data.
Neither method shows consistend advantage when
compared on the same number of pools (8 or 12) in
the one dimensional case. Overall, this is strong ev-
idence that using an overlapping experimental pool
design imparts better advantage. We could not com-
pare CAMBa to CRISP on the data sets used in the
CRISP paper [7] as the sequence data could not be
made available to us.

Coverage Variability over Libraries

CAMBa shows small performance advantage over
the other methods on the wheat experiment, which
has consistently high coverage levels across all li-
braries and between genes. In contrast, CAMBa has
a very clear advantage in the rice experiment, and
here we investigate the difference.

In Fig. 3 we show the coverage variance across
libraries for all genes in both experiments, wheat in
gray, and rice in black. It is apparent that the black
lines are overall higher on the plot than the gray
lines, especially the line for HLP1. To test the hy-
pothesis that coverage variability gives CAMBa an
advantage over the other methods, we performed two
computational studies. In the first one, we modify
the rice data set to exclude the TILLING sequences
for gene HLP1 which has both the lowest mean cov-
erage and the highest coverage variability across li-
braries in this experiment. On this modified data
set, all methods perform comparably, as shown in
Table 3.

In the second study, we gradually increase the
coverage level variance across libraries in the wheat
experiment by selectively discarding base reads. We
set the new coverage level of each library on a given
gene to be the coverage ratio of that library to the li-
brary with the highest coverage on that gene, raised
to the scaling factor s, multiplied by the coverage of
the highest coverage library for that gene. To reach
the desired coverage level for a given gene on a given
library, we discard each base call with fixed probabil-
ity. CAMBa gains a solid advantage over the Outlier
method between s = 2 and s = 3. At these levels the

coverage still is pretty high overall. The predictions
with added coverage variance at s = 3 are shown
in Table 4. This level of coverage variance would
correspond to a level of 0.7 in Fig. 3. We conclude
that the likeliest reason for the advantage we see in
CAMBa’s performance is due to its insensitivity to
coverage variability in the data, an effect of both its
explicit use of coverage in the model, and the greater
signal sensitivity imparted by the overlapping pool
design. While still possible that, on the average, low
coverage may be the culprit, the second study above
makes that unlikely.

We note that while the rice experiment uses the
mutagen MNU and the wheat experiment uses EMS,
the choice of mutagen does not seem to have a sig-
nificant effect on either the overall mutagenesis rate
or the proportion of canonical versus non-canonical
mutations [14].

Conclusions
We demonstrated that our probabilistic method,
which explicitly takes into account the bi-
dimensional, overlapping pools experimental setup,
and sequence coverage at each position for each li-
brary, can effectively discover rare mutations in large
populations, as well as the individuals that carry
them. It also has a performance advantage over
other methods for detecting mutations from high-
throughput sequencing of a TILLING population
when there is significant coverage variability over
libraries or lower quality data. More generally, it
follows from our experiments that accounting for se-
quencing coverage variability can improve mutation
detection in overlapping DNA pools. It would be in-
teresting to work out the relationship between cover-
age depth and pool size. Likewise, we demonstrated
that an overlapping pooling scheme, beyond offering
carrier identification, also yields increased sensitiv-
ity of mutation detection when the data is less than
ideal. This work implies a possible association be-
tween the amount of pool overlap (i.e. pool design
code efficiency, or dimensionality of an experimen-
tal setup) and detection sensitivity, which deserves
closer attention, especially for experiments on larger
populations.

There are several directions in which our tool
can be improved. We can add to our model an ex-
plicit account for position dependence of the mu-
tations. Also, we can extend the model to allow
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multiple mutations at any given position (because of
prior estimates of such events, we suspect that those
improvements together will yield less than 10% im-
provement). We plan to continue using and improv-
ing CAMBa in Comai’s TILLING laboratory. As
other technological issues like higher throughput and
sequence tagging get introduced into our pipeline,
the issues of coverage sufficiency and higher multi-
dimensional TILLING will be addressed.

We note that properly accounting for coverage
variability may improve results in other genomics
problems benefiting from 2nd generation sequenc-
ing, like sequence mapping, genome assembly, and
motif finding.
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Figure 1: There are 96 wells and 20 pools (12 column- and 8 row-pools) in our bi-dimensional pooling scheme.
Thus, each individual is present in two pools.

Figures
Figure 1 - Bi-dimensional arrangement of the overlapping pools experiments
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Figure 2: Three mutations ordered, left to right, by increasing difficulty to identify visually. Left and middle,
C → T mutations at positions 552 and 677, respectively, in wheat genes APHYC and AVRN, resp. Right,
an A→ G mutation at position 838 in rice gene OsRDR2.Each dot in the plots is a library pool, and on the
y-axis is the frequency of the base to which the reference has been mutated.

Figure 2 - Example base positions with mutations in the data of varying difficulty for identification
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Figure 3: Normalized variance of coverage levels across libraries in TILLING genes in rice (black) and wheat
(gray). HLP1 is on top.

Figure 3 - Variance in coverage across libraries in the data
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Predictions CAMBa Outlier Poisson
F (t) Confirmed z-score Confirmed pvalue Confirmed

308 0 11 3.92 11 3.77e-08 5
131 1 11 4.85 10 1.58e-11 2
90 1.595 11 5.54 8 2.86e-13 2
75 2 10 5.87 8 1.23e-14 2
54 3 10 6.36 6 4.96e-16 1
46 4 9 6.78 6 2.06e-17 1
40 5 7 7.17 5 1.20e-18 1

Table 1: Overlap of predictions by CAMBa, Outlier method, and Poisson outlier method, with the 11
confirmed mutations for Rice. We underscore the line associated with the suggested number of predic-
tions. VarScan returned no mutations at any threshold. CRISP did not return any predictions with default
parameters.

Table 1 - Performance comparison of CAMBa to other methods on the Rice data set
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Predictions CAMBa Outlier Poisson VarScan
F (t) Confirmed z threshold Confirmed pvalue Confirmed pvalue Confirmed

310 -10 37 1.83 37 1.42e-02 35 9.51e-07 19
172 -5 36 2.27 36 7.18e-03 35 2.51e-09 16
107 0 36 3.07 36 1.15e-03 34 5.71e-13 12
92 5 33 4.93 32 4.63e-06 32 3.52e-14 10
81 10 31 7.01 32 9.26e-08 29 5.04e-15 9
59 15 21 10.2 23 1.21e-11 22 5.90e-19 7

Table 2: Overlap of Predictions by CAMBa, Outlier method, the Poisson outlier method, and VarScan
with the 39 confirmed mutations for Tetraploid Wheat.We underscore the line associated with the suggested
number of predictions.

Table 2 - Performance comparison of CAMBa to other methods on the Wheat data set
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Predictions CAMBa Outlier
F (t) Confirmed z-score Confirmed

252 0 11 3.47 11
73 2 10 4.53 10
40 5 7 6.03 7
24 10 6 7.58 4

Table 3: Excluding HLP1 from the rice data lowers the coverage variance across libraries and CAMBa
performs comparably.

Table 3 - Effects of lowered variance in the data on CAMBa’s performance
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Predictions CAMBa Outlier
F (t) Confirmed z-score Confirmed

104 0 34 3.86 30
65 5 27 6.57 24
43 10 21 9.41 17
18 15 10 17.1 9

Table 4: When coverage variance is artificially increased in wheat, CAMBa has the advantage.

Table 4 - Effects of increased variance in the data on CAMBa’s performance

16


