# $\mathbf{Midterm}$

**Instructions:** Please answer the questions succinctly, thoughtfully and legibly. Good luck.

Name:

ID:

| On section | you got | out of |
|------------|---------|--------|
| 1          |         | 10     |
| 2          |         | 15     |
| 3          |         | 30     |
| 4          |         | 45     |
| 5          |         | 45     |
| 6          |         | 30     |
| $\sum$     |         | 175    |

ECS 120 Midterm

| 1 Definitions | [10] | $\mathbf{points}$ |  |
|---------------|------|-------------------|--|
|---------------|------|-------------------|--|

1. (4 pts.) Define formally the star (\*) operation on languages, i.e.  $A^* = \dots$ 

2. (6 pts.) State the Pumping Lemma for regular languages (formally and completely).

#### 2 A Decision Procedure

[15 pts.]

You are given a DFA D and want to determine if it accepts any words of which your name is a substring. Describe a decision procedure to do that.

#### 3 Justified True or False

[30 points]

Put an **X** through the **correct** box. Provide a **brief** (but convincing) justification. No credit will be given to correct answers that lack a proper justification. Where appropriate, **make your justification a counter-example**. Each question in this section is worth 5 points.

**1.**  $(\emptyset \circ \emptyset)^* = \emptyset^0$ 

True

False

Explain:

**2.** If L is not a regular language then L is context-free.

True

False

Explain:

**3.** If CFG  $G_1$  has fewer rules than CFG  $G_2$  then  $|L(G_1)| \leq |L(G_2)|$ .

True

False

Explain:

**6.** If  $\overline{L}$  is finite then L is regular.

Explain:

True

False

| CS | 120 Midterm                                                                                                                                                                                           |      | 3     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| 4. | $L = \{a^i b^j   i \ge j \ge 65536\}$ is a regular language.                                                                                                                                          | True | False |
|    | Explain:                                                                                                                                                                                              |      |       |
| 5. | Any Context Free Grammar can be transformed into an equivalence one rule of the form $S \to V_1 V_2 \dots V_n$ and $n$ rules of the form where $V_i$ are variables and $a_i$ are terminals.  Explain: | _    | _     |
|    |                                                                                                                                                                                                       |      |       |

## 4 Finite Automata Problems

[45 points]

1. (15 pts.) Give a DFA for the language of  $(0 \cup 01)^*$ .

- 2. (30 pts.) Determine if the following languages are regular or not and prove your claim in each case.
- a)  $\{a^nbc^{3n}|n\geq 0\}$

**b**)  $\{a^{5n}|n\geq 0\}$ 

### 5 CFG Problems

[45 pts.]

Write Context Free Grammars for the following languages:

a) (14 pts.) 
$$A = \{ab^nc^ma^{n+m}c|n, m \ge 0\}$$

**b)** (12 pts.) 
$$B = \{ab^nc^{n+m}a^mc|n, m \ge 0\}$$

c) (7 pts.) 
$$A \cup B$$

d) (12 pts.) 
$$A \cap B$$

(Hint: Consider the n's and the m's separately)

## 6 A Minimality Proof

[30 points]

a) (10 pts.) Design a DFA for the language  $\{w \in \{a,b\}^* | w \text{ starts with an } a \text{ and contains an even number of } b's\}$ .

b) (20 pts.) Find the smallest DFA for the language above and prove its minimality. (smaller=fewer states.)