ECS 20: Discrete Mathematics for Computer Science Sections: 1, 2, 3
UC Davis — Vladimir Filkov February 8, 2005

Midterm

Instructions: Please answer the questions succinctly and thoughtfully. Good luck.

Name:

ID:

On part | you got | out of

20
30
14
24

100

M| Ot =] wo| b

ECS 20 Midterm 1
1 Definitions [12 points]
Finish the definitions as best as possible.

1. (4 pts.) For two compound propositions P and @, P = @ if

2. (4 pts.) Wesay f(z)is O(g(z)) if

3. (4 pts.) Two integers a and b are mutually prime when

2 True or False [20 points]

Put an X through the correct box. Scoring: correct choice +4 pts., wrong choice —2

pts., no choice 0 pts.

1. The logical operators {A, V} are logically complete. | True| |False|
2. If f(z) is ©(z®) then f(z) is O(a?). | True| |False|
3. “y/2is rational” — “1 > 2”. |True| |False|
4. There exists a bijection from A x A to . | True| |False|
5. [z]] = |[z]]. | True| |False|

ECS 20 Midterm 2

3 Short Problems [30 points]

1. (6 pts.) P(P(¢)) =7

2. (12 pts.) Show that 15[35%%9 — 35!

3. (12 pts.) Prove that for all positive integers n

LS S S 1 o
(4n=3)(4n+1) 4n+1

1-5 5-9 9-13

ECS 20 Midterm 3

4 Logical Operator Completeness [15 points]

A set of operators S is logically complete if for any compound proposition P one can find
a compound proposition () written with the same variables but only with the operators
from S such that P <> @) is a tautology.

The set of operators {V, A, =} is known to be logically complete. Given that, we showed in
class that the set of operators {A, =} is also logically complete, by showing that whenever
“pVq” is seen in a compound proposition it can be substituted by an expression involving
the other two operators.

Show that the set of operators {V,—} is also complete.

ECS 20 Midterm 4

5 Algorithms for Primality Testing [24 points]

In this part you will be asked to write a few simple algorithms for testing primality and
analyze their running time based on two different assumptions for the running time of
individual arithmetic operations. Read the questions carefully and answer meaningfully.
For full points you must justify your answers whenever possible.

1. (6 pts) Write an algorithm that takes as input a positive integer n > 2 and determines
if n is prime or not by testing its divisibility with all numbers smaller than n.

If you assume that all operations, including integer addition, subtraction, division, and
multiplication (i.e. a+b, a — b, a - b, a div b, a mod b) take a constant time to execute,
what is the worst-case running time of this algorithms in terms of n? (Use the big-Oh
notation, and to keep it simple count only the loops).

2. (6 pts) Keeping all assumptions the same as above, write an algorithm that tests a
number for primality and has asymptotically better worst-case running time than the
one you wrote in 1. above. What is its worst-case complexity in terms of n? Show
explicitly that this algorithm has asymptotically better worst-case running time than
the first one. (Hint: use a result from divisibility we showed in class.)

ECS 20 Midterm 5

3. (12 pts) The assumption that arithmetic operations take constant time is of course
not sustainable neither in practice nor in theory (e.g. adding two three-digit numbers is
faster than adding two twenty-digit numbers).

A better assumption is that executing the basic arithmetic operations takes time pro-
portional to the number of digits in the larger of the two numbers involved in
the operation. Let us call this number d. Thus, for example, t4;,(a,b) = d - Cg,, where
t4iv 1S the time that the div operation takes to execute given input a and b, Cy;, is some
constant, and d is the number of digits in the max of a and b.

Redo the time complexity analysis for both algorithms above with this new assumption,
while still assuming that the time it takes for all other operations is constant. (Effectively,
this amounts to making the size of the input be the number of n’s digits instead of n itself.)

a) (3 pts) What are the worst-case running times of the algorithms as functions of n?
(For simplicity count only the time the arithmetic operations take.)

b) (7 pts) What are their worst-case running times as functions of d? Are these tight
bounds? (Hint: Express d in terms of n, and use big-Oh)

c¢) (2 pts) In practical algorithm analysis we use the second assumption about the running
time of arithmetic operations instead of the first one. Why do you think that is so?

