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Gene Networks II

• Graph Theoretic Models

• Boolean Networks

• Bayesian Networks
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1. Graph Theoretic Models

1. Definitions

2. Chen et al 1999: Qualitative gene networks from 

time-series data

1. Parsimony: # Regulators is small

2. Can we capture regulatory relationships well with 

correlation arguments?

3. Wagner 2001: Causal networks from perturbation 

data

1. Parsimony: # Relationships is minimal

2. Direct vs. indirect relationships

3. A perturbation model to detect direct relationships
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Graph Theory (Static Graph) Models

Network: directed graph G=(V,E), where V is set of vertices, and E set 

of edges on V.

• The nodes represent genes and an edge between vi and vj symbolizes a 

dependence between vi and vj.

• The dependencies can be temporal (causal relationship) or spatial (cis-

trans specificity).

• The graph can be annotated so as to reflect the nature of the dependencies 

(e.g. promoter, inhibitor), or their strength.

Properties: 

• Fixed Topology (doesn’t change with 

time)

• Static

• Node States: Deterministic
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A Simple Static Graph Model From 

Microarray Data (Chen et al. 1999)

• Motivation
– Time-series data of gene expressions in yeast

– Is it possible to elucidate regulatory relationships from the up/down 
patterns in the curves?

– Could one select a gene network from many candidates, based on a
parsimony argument?

• Grand Model
– Nodes = genes

– Edges = relationships and labeled A, I, N from the data

– The graph is a putative regulatory network, and has too many edges

– Since the model over-fits the data, there is a need for additional 
assumptions

– Parsimony argument: few regulators, many regulatees

– Solve using a meta-heuristic: simulated annealing, genetic algorithms etc.
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Nodes: genes

Edges: regulatory relationships (A, I, N)

Goal: A labeling of genes as A or I

Assumptions:

– # of regulators is small

– each acts as either A or I (approx.)
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Signal Analysis: putative regulation
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Reduce the time-series data set to a 
graph Gai where each edge is labeled 
A, I.
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The Maximum Gene Regulation Problem

Given a directed graph Gai with labeled edges A 
(activation) or I (inhibition), label each vertex A or I, 
so as to maximize the number of vertices with both 
input A and I labels (regulatees), while minimizing the 
number of regulators  (after deleting all edges whose 
label differs from their parent vertex).

This problem is computationally intractable (i.e. NPThis problem is computationally intractable (i.e. NP--

complete), as are some simpler variants of it.complete), as are some simpler variants of it.
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A system for inferring gene- regulation 

networks:

• Filter (thresholding)

• Cluster (average link clustering)

• Curve Smoothing (peak identification)

• Inferring Regulation Scores

• Optimizing regulation assignment

Yeast genome microarray data, Cho et al (1998)Yeast genome microarray data, Cho et al (1998)
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Inferring Regulation Scores

Peaks of activity scored against other peaks 

based on time-lag during the cell cycle
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Optimizing the Graph

Goal:Given a directed graph Gai with edges 

labeled A or I and weighted, output a labeling 

of vertices which optimizes:

count(I))C(count(A)[A])v[I]max(v)f(G i

)V(Gv

iai

aii

+−⋅= ∑
∈

General optimization technique (Simulated Annealing)
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count(I))C(count(A)[A])(v)[I](v)f(G i

)V(Gv

iai

aii

+−⋅= ∑
∈

maxmax

Simulated Annealing

• Simulated annealing is a random, iterative search technique which 
simulates the natural process of metal annealing

• Problem: Minimize a function f(x)

• Solution: Get closer to the solution iteratively by randomly 
accepting worse solutions, with the acceptance probability 
decreasing with time

Algorithm: Given f(x) and x

1. Initialize temperature to T

2. DO: generate x’, a random transition from x

3. Calculate ∆∆∆∆f=f(x’)-f(x)

4. If ∆∆∆∆f<0, accept x’(i.e. x=x’)

5. Else 

- accept x’ with P = exp(- ∆∆∆∆f/T)

- (reject x’ with 1-P)

6. Update T, T=ααααT, αααα=1-εεεε

7. UNTIL (2) ∆∆∆∆f converges
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Computational Results

Repeated runs Repeated runs 

(random starts) (random starts) 
produce different A/I produce different A/I 

networksnetworks

P is the P is the percperc. of time . of time 
a network is labeled a network is labeled 

consistentlyconsistently

P
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A network @ P=95%

Observations:Observations:

•• an activator / an activator / 

inhibitor pair that inhibitor pair that 

regulate 15 other regulate 15 other 

clustersclusters

••cell cycle regulatorcell cycle regulator

••DNA replicationDNA replication
••amino acid synthesisamino acid synthesis
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How Well Can We Capture Relationships by 

Correlation?

• Experiments performed on 4 different data sets of time series 

expression

• < 20% of regulatory relationships could be predicted by correlating 

pairs of curves (Filkov et al. 2001)

• Time-shift between curves does not change matters
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Direct vs. Indirect Relationships

• How can we distinguish between direct and indirect 
relationships in a network based on microarray data?

• Additional assumptions needed

• In the previous model: optimize f(grade,#regulators)

• Next: minimize # relationships

A

B

C

Direct:

A ⇒B

B ⇒C

Indirect

A ⇒C
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Perturbation Static Graph Model (Wagner, 2001)

• Motivation: perturbing a gene network one gene 
at a time and using the effected genes in order to 
discriminate direct vs. indirect gene-gene 
relationships

• Perturbations: gene knockouts, over-expression, 
etc.

Method: 

1. For each gene gi, compare the control experiment 
to perturbed experiment (gene gi) and identify 
the differentially expressed genes

2. Use the most parsimonious graph that yields the 
graph of 1. as its reachability graph 
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A single gene perturbation affects multiple genes. The question 

is which of them directly?
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Parsimony Assumptions

• The direct relationship graph:

– is random (ER graphs)

– is scale-free (Power law)

– has the smallest number of edges

• Based on the first two assumptions above, the author investigated 
the sparseness of the yeast gene regulatory network, based on gene 
knockout experiments (Hughes et al, 2000)

• Results: the yeast regulatory networks are sparse (~1 connection per 
gene, even fewer if they are scale-free)
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Reconstructing the Network

• The best graph of all is the one with the least 

relationships

• Problem: Given a transitive closure of a graph 

calculate its transitive reduction, i.e. the graph 

with the same transitive closure, and the smallest 

number of edges

• Problem is easily solvable in polynomial time

• Data needed: n perturbation experiments. If 

n=6200+ this is unfeasible!
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Graph Theoretic Models
Summary

• Characteristic of these models is the underlying graph 
structure

• The graphs may annotated to reflect the qualitative 
properties of the genes, i.e. activators, inhibitors

• Edges may be annotated to reflect the nature of the 
relationships between genes, e.g. =>,�, etc

• Depend on a “regulation grade” between genes

• Time-series data yield graphs of causal relationships

• Perturbation data also yield graphs of causal relationships

• Parsimony arguments allow for consideration of biological 
principles, e.g. small number of regulatory genes, but

• They are overall very naïve biologically
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2. Boolean Network Models

• Kaufmann, 1970s studied organization and dynamics 

properties of (N,k) Boolean Networks 

• Found out that highly connected networks behave 

differently than lowly connected ones

• Similarity with biological systems: they are usually 

lowly connected

• We study Boolean Networks as a model that yields 

interesting complexity of organization and leave out 

the philosophical context
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Boolean Functions

• True, False: 1,0

• Boolean Variables: x, can be true or false

• Logical Operators: and, or, not

• Boolean Functions: k input Boolean 
variables, connected by logical operators, 1 
output Boolean value

• Ex: f(x,y)=(x AND y) OR (NOT x)

• Total number, B, of Boolean functions of k 
variables: 22k 

(k =1, B=4; k=2, B=16; etc.)
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Boolean Networks

Boolean network: a graph G(V,E), annotated with a set of 

states X={xi | i=1,…,n}, together with a set of Boolean 

functions B={bi | i=1,…,k},                                .

Gate: Each node, vi, has associated to it a function , with inputs 

the states of the nodes connected to vi.

Dynamics: The state of node vi at time t is denoted as xi(t). 

Then, the state of that node at time t+1 is given by:

),...,,()1( 21 kiiiii xxxbtx =+

where xij are the states of the nodes connected to vi.

{0,1}{0,1}:ib
k

→
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General Properties of BN:

• Fixed Topology (doesn’t change with time)

• Dynamic

• Synchronous

• Node States: Deterministic, discrete (binary)

• Gate Function: Boolean

• Flow: Information
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Wiring Diagrams and Truth Tables
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Network States and Transitions

• State: Values of all 

variables at given 

time

• Values updated 

synchronously

• State Transitions: 

Input → Output

• Ex. (100 → 000 →

001 → 001 . . .)
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BN Dynamics

• Trajectories: 

series of state 

transitions

• Attractors:

repeating 

trajectories

• Basin of 

Attraction: all 

states leading 

to an attractor

Wuensch, PSB 1998

One attractor basin for a BN n=13, k=3. The cycle is of size 7
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Previous basin of attraction is one of 15 possible ones for n=13 and k=3. 

Total of 8192 states, and attractors with periods ranging from 1 to 7 (Pictures 

come from DDLab Galery, Wuensche, Santa Fe Institute)
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Why Are BNs Good for Biology? Simulation

• Complex behavior (synergistic behavior)

– Attractor steady states which can be interpreted as 
memory for the cell

– Stability and reproducibility

– Robustness

• The range of behaviors of the system is completely known 
and analyzable (for smaller networks) and is much smaller 
than the range of the individual variables

• Organizational properties: 

– high connectivity (k>5) yields chaotic behavior

– Low connectivity (k=2) attractor number and median 
attractor length are O(Sqrt(n))

• Simple to implement and use
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BN and Biology

1 Continuous gene expression values are discretized as being 

0 or 1 (on, off), (each microarray is a binary vector of the 

states of the genes);

2 Successive measurements (arrays) represent successive 

states of the network i.e. X(t)->X(t+1)->X(t+2)…

3 A BN is reverse engineered from the input/output pairs: 

(X(t),X(t+1)), (X(t+1),X(t+2)), etc.

From mRNA measures to a Regulation Network:
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Reverse Engineering of BNs

• Fitting the data: given observations of the states of 

the BN, find the truth table

• In general, many networks will be found

• Available algorithms:
– Akutsu et al.

– Liang et al. (REVEAL)
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Formal Problem

• An example is a pair of observations (Ij,Oj).

• A node is consistent with an example, if there is a 
Boolean function such that Oj=f(Ij)

• A BN is consistent with (Ij,Oj) if all nodes are 
consistent with that example. Similarly, a BN is 
consistent with EX={(I1,O1),…,(Im,Om)} if it is 
consistent with each example

• Problem: Given EX, n the number of nodes in 
the network, and k (constant) the max indegree
of a node, find a BN consistent with the data.
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Algorithm (Akutsu et al, 1999)

The following algorithm is for the case of k=2, for 

illustration purposes. It can easily be extended to 

cases where k>2

• For each node vi

– For each pair of nodes vk and vh and 

• For each Boolean function f of 2 variables (16 poss.)

– Check if Oj(vi)=f(Ij(vk),Ij(vh)) holds for all j.
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Analysis of the Algorithm

• Correctness: Exhaustive

• Time: Examine all Boolean functions of 2 
inputs, for all node triplets, and all examples

• For k inputs ( k in front is the 2 above, time 
to access the k input observations)

• This is polynomial in n, if k is constant.

)22( 322

mnO ⋅⋅⋅

)2( 12
mnkO

k
k

⋅⋅⋅
+
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Better Algorithms?

• If in-degree is fixed to at most k, 

– the best known deterministic algorithms run in 

O(mnk) time

– Randomized: O(mw-2nk+mnk+w-3), where w is 

the exponent in matrix multiplication, currently 

w<2.376 (Akutsu et al., 2000) 

• If in-degree is close to n, the problem is NP-

complete (Akutsu et al., 2000)
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Data Requirement

• How many examples (I,O) do we need to 
reconstruct a Boolean Network?

• If in-degree unbounded 2n

• If in-degree<k, information theoretic aruments
yield the following bounds:

– Upper bound 

– Lower bound 

• Experiments show that the constant in front of the 
log n is somewhere in between, i.e. k2k

)log)2(2( 2
nkO

k
⋅+⋅ α

)log2( nKk
+Ω
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Limitations

• BNs are Boolean! Very discrete

• Updates are synchronous

• Only small nets can be reverse engineered 

with current state-of-the-art algorithms
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Summary

• BN are the simplest models that offer 
plausible real network complexity

• Can be reverse engineered from a small 
number of experiments O(log n) if the 
connectivity is bounded by a constant. 2n

experiments needed if connectivity is high

• Algorithms for reverse engineering are 
polynomial in the degree of connectivity

ECS289A, UCD SQ’05, Filkov

3. Bayesian (Belief) Network Models
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Why Bayesian Networks?

• Bayesian Nets are graphical (as in graph) 
representations of precise statistical relationships 
between entities

• They combine two very well developed scientific 
areas: Probability + Graph Theory

• Bayesian Nets are graphs where the nodes are 
random variables and the edges are directed causal 
relationships between them, A→B

• They are very high level qualitative models, 
making them a good match for gene networks 
modeling
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Bayesian Networks (G,θ)

(1) An annotated directed acyclic graph G(X,E), where the 

nodes are random variables Xi ∈∈∈∈ X, with values xi

(2) conditional distributions θθθθi= P(Xi | ancestors(Xi)) 

defined for each Xi.

A Bayesian network uniquely specifies a joint distribution:

))Parents(X|P(X)X,...,X,P(X i

n

1i

in21 ∏
=

=

From the joint distribution one can do inferences, and 

choose likely causalities
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General Properties of BNs

• Fixed Topology (static BNs)

• Nodes: Random Variables

• Edges: Causal relationships

• DAGs

• Allow testing inferences from the model and the 

data
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P(S|C) P(R|C)

P(W|S,R)

Joint: P(C,R,S,W)=P(C)*P(S|C)*P(R|C)*P(W|S,R)

Independencies: I(S;R|C), I(R;S|C)

Dependencies: P(S|C), P(R|C), P(W|S,R)

KP Murphy’s web site: 

http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html

Example

ECS289A, UCD SQ’05, Filkov

Example, contd.

Which event is more likely, wet grass 

observed and it is because of 

– sprinkler: 

P(S=1|W=1)=P(S=1,W=1)/P(W=1)=0.430

– rain:

P(R=1|W=1)=P(R=1,W=1)/P(W=1)=0.708

Algorithms exist that can answer such 

questions given the Bayesian Network
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Learning the Network

• Given data we would like to come up with 
Bayesian Network(s) that fit that data well

• Algorithms exist that can do this efficiently 
(though the optimal ones are NP-complete)

• Heuristics are typically used

• Problem: Given a training set D=(x1,x2,...,xn) of 

independent instances of the random variables 

(X1,X2,...,Xn), find a network G (or equivalence 

class of networks) that best matches D. 
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Parameter Fitting and Model Selection 

• Parameter Fitting: If we know G and we 

want θ

– Parametric assignments optimized by 

Maximum Likelihood 

• Model Selection: G is unknown

– Discrete optimization by exploring the space of 

all Gs

– Score the Gs
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Choosing the Best Bayesian Network: 

Model Discrimination

• Many Bayesian Networks may model given 

data well

• In addition to the data fitting part, here we 

need to discriminate between the many 

models that fit the data

• Scoring function: Bayesian Likelihood

• More on this later (maybe)
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E1: Bayesian Networks and 

Expression Data

• Friedman et al., 2000

• Learned pronounced features of equivalence 

classes of Bayesian Networks from time-

series measurements of microarray data

• The features are:

– Order

– Markov Blanket
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Data and Methods

• Data set used: Spellman et al., 1998

– Objective: Cell cycling genes

– Yeast genome microarrays (6177 genes)

– 76 observations at different time-points

• They ended up using 800 genes (250 for some 

experiments)

• Learned features with both the multinomial and 

the linear gaussian probability models

• They used no prior knowledge, only the data
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Robustness Analysis: Thresholds

Comparing results on real vs. random data

Multinomial
Markov

Order

ECS289A, UCD SQ’05, Filkov

Robustness: Scaling
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Robustness: Discrete vs. Linear
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Biological Analysis

• Order relations and Markov relations yield 

different significant pairs of genes

• Order relations: strikingly pronounced 

dominant genes, many with interesting known 

(or even key) properties for cell functions

• Markov relations: all top pairs of known 

importance, some found that are beyond the 

reach of clustering (see CLN2 fig.2 for 

example)

ECS289A, UCD SQ’05, Filkov
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Ex2: Bayesian Networks and 

Perturbation Data

• Pe’er et al. 2001

• Similar study as above, but on a different, and 
bigger data set.

• Hughes et al. 2000

– 6000+ genes in yeast

– 300 full-genome perturbation experiments
• 276 deletion mutants

• 11 tetracycline regulatable alleles of essential genes

• 13 chemically treated yeast cultures

• Pe’er et al. chose 565 significantly differentially 
expressed genes in at least 4 profiles
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Results

• Biologically meaningful pathways learned 

from the data!

Iron homeostasis Mating response

Read the paper.....

ECS289A, UCD SQ’05, Filkov

Limitations

• Bayesian Networks:

– Causal vs. Bayesian Networks

– What are the edges really telling us?

– Dependent on choice of priors

– Simplifications at every stage of the pipeline: analysis 
impossible

• Friedman et al. approach:

– They did what they knew how to do: priors and other 
things chosen for convenience

– Meaningful biology?

– Do we need all that machinery if what they discovered 
are only the very strong signals?
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B
O

N
U

SBackground:Background:

1. Bayes Probability

2. Graphs

3. Bayes Nets

4. Learning Bayes Nets

5. BN and Causal Nets

6. BN and Regulatory Networks
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Bayes Logic

• Given our knowledge that an event may 

have been the result of two or more causes 

occurring, what is the probability it 

occurred as a result of a particular cause?

• We would like to predict the unobserved, 

using our knowledge, i.e. assumptions, 

about things
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Conditional Probabilities

If two events, A and B are independent:

P(AB)=P(A)P(B)

If they are not independent:

P(B|A)=P(AB)/P(A)

or

P(AB)=P(B|A)*P(A)
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Bayes Formula
• P(AB)=P(B|A)*P(A)

• P(AB)=P(A|B)*P(B)

Observation

Possible causes

Prior probabilities 

(assumptions)Posterior

Joint distributions

Thus P(B|A)*P(A)=P(A|B)*P(B) and

P(B|A)=P(A|B)*P(B)/P(A)

∑
=

⋅

⋅
= n

j
j

BP
j

BAP

i
BP

i
BAP

A
i

BP

1
)()|(

)()|(
)|(

If Bi, i=1,...,n are mutually exclusive events, then
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Joint Probability

• The probability of all events:

P(AB)=P(A)*P(B|A) or

P(ABCD)=P(A)*P(B|A)*P(C|AB)*P(D|ABC)

…

• For n variables it can take up to 2n terms to 

write it out!
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Conditional Independencies

• Recall P(AB)=P(A)*P(B) if A is independent 

of B

• Similarly, we have the conditional 

Independence: A is independent of B, given C

P(A;B|C) =P(A|C)*P(B|C)
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Graphs

• X={X1, X2, ..., Xn} – the set of nodes

• Pa(Xi) – the set of parents of node Xi

• Des(Xi) ⊆ X– the set of descendant nodes Y 
s.t. there is a directed path from Xi to Y

• Xi is an ancestor to all Des(Xi)

• NonDes(Xi) ⊆ X – non descendant nodes of 
Xi, i.e. X\Des(Xi)

• Note that all ancestors of Xi are also in 
NonDes(Xi)

ECS289A, UCD SQ’05, Filkov

3. Bayesian Nets (BNs)

(G,θθθθ)

ECS289A, UCD SQ’05, Filkov

• BNs Encode Joint Prob. Distribution on all 

nodes

• The joint distribution follows directly from 

the graph

• Markov Assumption: Each variable is 

independent of its non-descendents, given 

its parents

• Bayesian Networks implicitly encode the 

Markov assumption.



23

ECS289A, UCD SQ’05, Filkov
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...)X,...,X,P(X)X,...,X,X|P(X)X,...,X,X|P(X

)X,...,X,P(X)X,...,X,X|P(X)X,...,X,P(X

The joint probability can be expanded by the 

Bayes chain rule as follows:

ECS289A, UCD SQ’05, Filkov

Let X1, X2, ..., Xn be topologically sorted, i.e. Xi is 

before all its children. Then, the joint probability 

becomes:

which is what the joint distribution simplifies to.

Notice that if the parents (fan in) are bound by k, 

the complexity of this joint becomes n2k+1

Pa(x))|(xP)x...,x,x|(xP)x...,x,P(x i

n

1i

1i2,1i

n

1i

n2,1 ∏∏
=

−

=

==
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4. Learning Bayesian Networks
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• Problem: Given a training set 

D=(x1,x2,...,xn) of independent instances of 

the random variables (X1,X2,...,Xn), find a 

network G (or equivalence class of 

networks) that best matches D. 

ECS289A, UCD SQ’05, Filkov

Equivalence Classes of Bayesian 

Networks

• A Bayesian Network G implies a set of 

independencies, I(G), in addition to the ones 

following from Markov assumption

• Two Bayesian Networks that have the same 

set of independencies are equivalent

• Example G: X→Y and G’:X←Y are 

equivalent, since I(G)=I(G’)=∅
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Equivalence Classes, contd.

• v-structure: two directed edges converging into the 
same node, i.e. X→Z←Y

• Thm: Two graphs are equivalent iff their DAGs
have the same underlying undirected graphs and the 
same v-structures

• Graphs in an equivalence class can be represented 
simply by Partially Directed Graph, PDAG where

– a directed edge, X→Y implies all members of the 
equivalence class contain that directed edge

– an undirected edge, X—Y implies that some DAGs in the 
class contain X→Y and others X←Y.

• Given a DAG, a PDAG can be constructed 
efficiently 
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Model Selection

• Propose and compare models for G

• Comparison based on a scoring function

• A commonly used scoring function is the 

Bayesian Score which has some very nice 

properties.

• Finding G that maximizes the Bayesian 

Score is NP-hard; heuristics are used that 

perform well in practice.
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Scoring Bayesian Networks

• The Scoring Measure is the posterior probability of the 

graph, given the data (D={x1,...,xn}:

S(G:D)=log P(G|D)=log P(D|G)+log P(G)+C

• P(G) (resp. P(D|G)) averages the probability of the 

data over all possible Gs (resp. over all possible 

parametric assignments to G)
 

… 

P(G) 

 

…  

P(G) 

Example for maximizing P(G) (from David Danks, IHMC)
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Properties of a Well-Chosen S(G:D) 

• graphs that capture the exact properties of 

the network (i.e. all dependencies in the 

distribution) very likely score higher than 

ones that do not (given large # of samples)

• Score is decomposable:

∫= θθθ dGPGDPGDP )|(),|()|(

∑
=

=
n

i

DXiPaXiibutionScoreContrDGS
1

):)(,():(
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Issues in Scoring

• Which metric: 

– Bayesian Dirichlet equivalent: captures P(G|D),

– Bayesian Information Criterion: approx.

• Which data discretization? Hard, 2,3,4?

• Which Priors?

• Which heuristics?

– simulated annealing

– hill climbing

– GA, etc.
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Optimizing S(G:D)

• Once the priors are specified, and the data is 

given, the Bayesian Network is learned, i.e. 

the network with the highest score is chosen

• But Maximizing this scoring function is an 

NP-hard problem

• Heuristics: local search of the space of all 

Gs by adding/subtracting edges, and 

reversing directions
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5. Closer to the Goal: Causal 

Networks



27

ECS289A, UCD SQ’05, Filkov

1. We want “A is a cause for B” (Causal)

2. We have “B independent of non-descendants 

given A” (Bayesian)

3. So, we want to get from the second to the first, 

i.e. from Bayesian to stronger, causal networks

Bayesian vs. Causal Nets
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Difference between Causal and Bayesian 

Networks:

• X→Y and X←Y are equivalent Bayesian Nets, 

but very different causally 

• Causal Networks can be interpreted as Bayesian if 

we make another assumption

• Causal Markov Assumption: given the values of a 

variable’s immediate causes, it is independent of 

its earlier causes (Example: Genetic Pedigree)

• Rule of thumb: In a PDAG equivalence class, 

X→Y can be interpreted as a causal link
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6. Putting it All Together: BNs and 

Regulatory Networks

Spellman et al., 2000

Pe’er et al. 2001
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How do We Use BNs for 

Microarray Data?

• Random Variables denote expression levels 
of genes

• The result is a joint probability distribution 
over all random variables

• The joint can be used to answer queries:

– Does the gene depend on the experimental 
conditions?

– Is this dependence direct or not?

– If it is indirect, which genes mediate the 
dependence?
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Putting it all Together: Issues

In learning such models the following

issues come up:

1. Dimensionality curse: statistical robustness

2. Algorithmic complexities in learning from 

the data

3. Choice of local probability models (priors) 
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Dimensionality Curse

Problem: We are hurt by having many more 

genes than observations (6200 vs. tens or 

hundreds)

Solution:

• Bootstrap: features robust to perturbations

• Partial Models: features present in many 

models

• Combine the two
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Partial Models

• Instead of trying to learn a model that 

explains the whole data characterize 

features common to high-scoring models

• The intuition is that preserved features in 

many high-scoring networks are 

biologically important

• Simple features considered: pair-wise 

relations 
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Partial Model Features

• Markov Relations

– Is Y in the Markov Blanket of X?

– Markov Blanket is the minimal set of variables that 
shield X from the rest of the variables in the model

– Formally, X is independent from the rest of the network 
given the blanket

– It can be shown that X and Y are either directly linked 
or share parenthood of a node

– In biological context, a MR indicates that X and Y are 
related in some joint process

• Order Relations

– Is X an ancestor of Y in all networks of a given class?

– An indication of causality!

ECS289A, UCD SQ’05, Filkov
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Bootstrap: Are the Features Trustworthy?

• To what extent does the data support a given 
feature?

• The authors develop a measure of confidence in 
features as the likelihood that a given feature is 
actually true

• Confidence is estimated by generating slightly 
“perturbed” versions of the original data set and 
learning from them

• Thus, any false positives should disappear if the 
features are truly strong

• This is the case in their experiments
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Efficient Learning Algorithms

• The solution space for all these problems is 
huge: super-exponential

• Thus some additional simplification is 
needed

• Assumption: Number of parents of a node is 
limited

• Trick: Initial guesses for the parents of a 
node are genes whose temporal curves 
cluster well
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Local Probability Models

• Multinomial and linear gaussian

• These models are chosen for mathematical 

convenience

• Pros. et cons.:

– Former needs discretization of the data. Gene 

expression levels are {-1,0,1}. Can capture 

combinatorial effects

– Latter can take continuous data, but can only 

detect linear or close to linear dependencies
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