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Motif Finding: Summary of 
Approaches
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Lecture Outline
• Flashback: Gene regulation, the cis-region, and 

tying function to sequence
• Motivation
• Representation

– simple motifs
– weight matrices

• Problem: Finding motifs in sequences
• Approaches

– enumerative (combinatorial)
– statistical

• Comparison of approaches
• Higher Order Motifs and Approaches
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Motif Finding Motivation

Clustering genes based on 
their expressions groups 
co-expressed genes

Assuming co-expressed genes are co-
regulated, we look in their promoter regions 
to find conserved motifs, confirming that 
the same TF binds to them
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Motifs vs Transcription Factor 
Binding Sites

• Motifs:
– statistical or computational entities
– predicted

• Transcription Factor Binding Sites (or more 
generally cis-regulatory elements) 
– biological entities
– Real

• The hope is that TFBS are conserved, or otherwise 
significant computationally, so motifs can be used 
to find them 
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Finding Motifs in a Set of 
Sequences

GTGGCTGCACCACGTGTATGC...ACGATGTCTC
ACATCGCATCACGTGACCAGT...GACATGGACG
CCTCGCACGTGGTGGTACAGT...AACATGACTA
CTCGTTAGGACCATCACGTGA...ACAATGAGAG
GCTAGCCCACGTGGATCTTGT...AGAATGGCCT
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Finding Motifs in a Set of 
Sequences

GGCTGCACCACGTGTATGC...ACGATGTCTCGC
ATCGCATCACGTGACCAGT...GACATGGACGGC
TCGCACGTGGTGGTACAGT...AACATGACTAAA
CGTTAGGACCATCACGTGA...ACAATGAGAGCG
TAGCCCACGTGGATCTTGT...AGAATGGCCTAT
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Finding Motifs in a Set of 
Sequences

 TCTGCACCACGTGTATGC...ACGATGTCTCGC
 ATCGCATCACGTGACCAGT...GACATGGACGGC
  GCCTCGCACGTGGTGGTACAGT...AACATGAC
 GGACCATCACGTGA...ACAATGAGAGCG  
GCTAGCCCACGTGGATCTTGT...AGAATGGCC

Protein binding
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Phylogenetic Footprinting

• Finding overrepresented short sequences in 
cis-regions

• Based on multiple alignment but short 
sequences don’t have to be completely 
conserved

• Ex. FootPrinter (Blanchette and Tompa 
2003)
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Motif Finding Problem
Given n sequences, find a motif (or 

subsequence) present in many
    This is essentially multiple alignment. The 

difference is that multiple alignment is global
– longer overlaps 
– constant site sizes and gaps
– NP-complete!

http://www.botany.utexas.edu/facstaff/facpages/mbrown/cyano/image6CO.JPG
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Definition and 
Representation
• Motifs: Short sequences
• IUPAC notation
• Regular Expressions

– consensus motif
ACGGGTA

– degenerate motif
RCGGGTM

{G|A}CGGGT{A|C}

Single-Letter Codes for Nucleotides
Symbol Meaning
G G

A A

T T or U

C C

U U or T

R G or A

Y T, U or C

M A or C

K G, T or U

S G or C

W A, T or U

H A, C, T or U

B G, T, U or C

V G, C or A

D G, A, T or U

N G, A, T, U or C
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Position Specific Information
Seqs.
ACGGG
ATCGT
AAACC
TTAGC
ATGCC

Alignment Matrix (Profile)

Pos A C G T
1 4 0 0 1
2 1 1 0 4
3 2 1 2 0
4 0 2 3 0
5 0 3 1 1

Position (Frequency) Weight Matrix

Pos A C G T   Conse
1 0.8 0 0 0.2   A
2 0.2 0.2 0 0.6   T
3 0.4 0.2 0.4 0     A|G
4 0 0.4 0.6 0     G
5 0 0.6 0.2 0.2   C
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1. Use PWM to Find the Motif in any Sequence 

Frequency Weight Matrix

Pos A C G T   Conse
1 0.8 0 0 0.2   A
2 0.2 0.2 0 0.6   T
3 0.4 0.2 0.4 0     A|G
4 0 0.4 0.6 0     G
5 0 0.6 0.2 0.2   C

Given AAATC and the Weight Matrix of the data and 
for the background (i.e. prior), we want to calculate the 
joint probability

In general this is a lot of work, because of all possible 
ways a motif can depend on its sub-words. 

E.g. TATTA=TAT.TA|TA.T.TA|T.A.T.T.A, etc.
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2. Given Sequences Find Motifs
• Methods based on Position Weight Matrices 

(alignment)
– Gibbs Sampling
– Expectation Maximization

• Other Methods
– HMMs
– Bayesian methods
– enumerative (combinatorial)
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Simple Motif Finding
• Methods based on Position Weight Matrices 

(alignment)
– Gibbs Sampling
– Expectation Maximization

• Other Methods
– HMMs
– Bayesian methods
– enumerative (combinatorial)
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Popular Software:
• MEME (EM)

http://meme.sdsc.edu/meme/website/intro.html
• AlignACE (Gibbs)

http://atlas.med.harvard.edu/

• Cister (HMM)
http://zlab.bu.edu/~mfrith/cister.shtml

• YMF (combinatorial)
http://www.cs.washington.edu/homes/blanchem/software.html

• MITRA (combinatorial)
http://www.cs.columbia.edu/compbio/mitra/

• NestedMICA
http://www.sanger.ac.uk/Software/analysis/nmica

http://www.cs.columbia.edu/compbio/mitra/
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Overall Idea
• Enumerate motifs
• Score motifs based on their over-representation in 

all sequences
• The highest scoring ones, if occurring at 

surprising rates, are meaningful
Problems: 

- How to enumerate?
- How to score motifs?
- What is surprise?
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Using PWMs, main idea

• Capture the data in PWM
• Enumerate and score all patterns, w

– suffix trees used to save space
• Update the PWM
• Scoring: over-representation

   S=observed frequency/expected frequency
w in given sequences w in genome
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MEME
• Use Expectation-Maximization Algorithm to fit a two-

component mixture model to the sequence data
• Component 1 is the motif
• Component 2 is the background
Algorithm:
• For each sequence si, (out of n)
• Start with a random PWM, Pi (i.e. alignment)
• Score every segment of si with Pi

• Update Pi=Sum all the scores with appropriate weights
• Perform EM until there is a convergence

The best 100 scoring motifs are kept overall
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Gibbs Sampler
• Use a simple leave-one-out sampling strategy
Algorithm
• Given n sequences, s1, s2,...,sn
• Randomly initialize PWM (i.e. align)
• For each sequence si, take it out from the PWM

- score each segment of si with the rest of the 
sequences
- put the sequence back

• Important feature: convergence
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YMF: Enumeration

• Use a consensus model of motifs based on 
IUPAC alphabet

• Score motifs based on their significance of 
occurrence (vs. random)

• Clean up the found motifs to remove 
redundant motifs
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Comparing the Methods

Tompa et al. (2005)
– Compared 13 different methods
– Used real sequences and searched for known 

binding sites (TRANSFAC)
• 52 data sets + 4 negative controls
• 4 organisms represented (fly, human, mouse 

and yeast)
– Scored methods based on confusion matrix 

statistics for the top motif observed
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1. Assessing Method 
Performance

Score = Total overlap / Total span (Pevzner & Sze 2000)

Predicted

Known

Score = 1, if span = overlap
Score = 0, if overlap = 0

Sequences



  

ECS 234, Filkov

Comparing a Model to Reality:

Measures of agreement:
• True Positives, True Negatives
• False Positives, False Negatives

Measures of accuracy:
• Accuracy    = (TP+TN)/(TP+TN+FP+FN)
• Sensitivity = TP/(TP+FN)
• PPV=TP/(TP+FP)
• Specificity = TN/(FP+TN)
• Correlation coefficient: 

2. Comparing Binary Predictors
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ROC Curves: Tradeoff between Sens. And Specificity (sens vs. 1-spec.)
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Multi-site Motif

• Two-site: Dimer, dyad
• Gapped Motif
• In general, a motif is an 

ordered set of binding 
sites
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Higher Order Motifs
• Nature of course is more complicated...

• Combinatorial motifs: combinations of binding 
sites to which an interacting group of TFs binds

• More realistic, but difficult to look for
• Sinha, 2002
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What is Nature Like?
Now that we are talking about realistic motifs, 
what is it that we know about them from biology?
– Combinatorial motifs are sets of simple motifs 

separated by a stretch of DNA
– Changing the order of the simple motifs within it 

doesn’t kill transcription, but changes it
– Changing the distance between the simple motifs 

usually kills transcription
– The distances between motifs are usually small (<20bp)
– The distance restriction is sometimes strict, and other 

times not
– Randomly distributed simple motifs do not activate 

transcription
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Dependence of Simple Motif Pairs on 
Distance and Order Between Them

Ohmori et al., 1997
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Finding Higher Order Motifs
Sinha (2002) reviews methods for finding 
higher order motifs, and groups the 
approaches based on their general 
relationship to simple motif finders
– find simple motifs and discover patterns made 

of these
– start with simple motifs and build higher order 

ones
– find higher order motifs from scratch (e.g. 

Marsan and Sagot, 2000)
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Models of Higher Order Motifs
• The set model {M1,M2,...,Mk}
• Tuples with distance constraints

(M1,M2,d12)
• Hidden Markov Model
• Boolean Combinations

Usually two step approaches:
- Enumerate the motif models
- Determine significance (Monte Carlo experiments)
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Tricky Business

• All these models have a lot of parameters 
(e.g. distances between motifs)

• They depend on the initial choice of 
parameters and/or an initial set of simple 
motifs

• Using these tools is more of an art than 
science so far
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Conclusions

• PWMs do well for simple motifs
• Combinatorial methods are probably doing 

better
• Should use all available tools to determine 

strong simple motifs
• Higher order motifs: 

– positive: knowing your biochemistry helps
– negative: nobody knows the biochemistry fully! 
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