Motif Finding: Summary of
Approaches




[Lecture Outline

Flashback: Gene regulation, the cis-region, and
tying function to sequence

Motivation
Representation

— simple motifs
— weight matrices

Problem: Finding motifs in sequences
Approaches

— enumerative (combinatorial)
— statistical

Comparison of approaches
Higher Order Motifs and Approaches
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http://www.cifn.unam.mx/Computational_Genomics/old_research/FIG22.gif

Motif Finding Motivation

Clustering genes based on
their expressions groups
co-expressed genes

Assuming co-expressed genes are co-
regulated, we look in their promoter regions
to find conserved motifs, confirming that
the same TF binds to them
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Motifs vs Transcription Factor
Binding Sites
* Motifs:

— statistical or computational entities
— predicted

* Transcription Factor Binding Sites (or more
generally cis-regulatory elements)
— biological entities
— Real

* The hope is that TFEBS are conserved, or otherwise
significant computationally, so motifs can be used
to find them
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Finding Motifs 1n a Set of

Sequences

GTGGCTGCACCACGTGTATGC. .
ACATCGCATCACGTGACCAGT. .
CCTCGCACGTGGTGGTACAGT. ..
CTCGTTAGGACCATCACGTGA. .
GCTAGCCCACGTGGATCTTGT. .

.ACG
.GAC

.ACA
.AGA
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Finding Motifs 1n a Set of

Sequences

GGCTGCACCACGTGTATGC. .
ATCGCATCACGTGACCAGT. .
TCGCACGTGGTGGTACAGT. ..
CGTTAGGACCATCACGTGA. .
TAGCCCACGTGGATCTTGT. .

.AC
.GA

.AC
.AG
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Finding Motifs 1n a Set of
Sequences

TCTGCAQCACGTGTATGC. . .ACG
ATCGCATCACGTGACCAGT. . .GAC
GCCTCGCACGTGGTGGTACAGT. . .AAC

GGACCATCACGTG .ACA
GCTAGCCCACGTG ATCTTGT .AGA

Protein binding
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Phylogenetic Footprinting

* Finding overrepresented short sequences 1n
CIS-regions
* Based on multiple alignment but short

sequences don’t have to be completely
conserved

* Ex. FootPrinter (Blanchette and Tompa
2003)
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Motif Finding Problem

Given n sequences, find a motif (or
subsequence) present in many

This 1s essentially multiple alignment. The
difference is that multiple alignment 1s global

— longer overlaps
— constant site sizes and gaps

— NP-complete!
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http://www.botany.utexas.edu/facstaff/facpages/mbrown/cyano/image6CO.JPG

Definition and
Representation

* Motifs: Short sequences

* JTUPAC notation

* Regular Expressions

— consensus motif
ACGGGTA

— degenerate motif
RCGGGTM

(GIA}CGGGT{A|C)

Single-Letter Codes for Nucleotides

Symbol

Z U< Wms»RZ<®SOSEP>0

Meaning

G

A

TorU

C

UorT
Gor A
T,UorC
AorC

G, TorU
GorC

A, TorU
A, C, TorU
G, T,UorC
G,CorA
G, A, TorU
G AT, UorC
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Position Specific Information

Seqs.

ACGGG
ATCGT
AAACC
TTAGC
ATGCC

—

Alignment Matrix (Profile)

Pos
1
2
3
4
5

O OoON R DT
w N ERE PP OO0
WO OO
R O O B L H

1!

Position (Frequency) Weight Matrix

Pos A C G T Conse
1 0.8 0 0 0.2 A
2 0.2 0.2 0 0.6 T
3 0.4 0.2 0.4 0 A|G
4 0 0.4 0.6 0 G
5 0 0.6 0.2 0.2 C
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1. Use PWM to Find the Motif in any Sequence

Frequency Weight Matrix

Pos A C G T Conse
1 0.8 0 0 0.2 A
2 0.2 0.2 0 0.6 T
3 0.4 0.2 0.4 0 A|G
4 0 0.4 0.6 0 G
5 0 0.6 0.2 0.2 C

Given AAATC and the Weight Matrix of the data and
for the background (1.e. prior), we want to calculate the
joint probability

In general this 1s a lot of work, because of all possible
ways a motif can depend on its sub-words.

E.g. TATTA=TAT.TA|TA.T.TA|T.A.T.T.A, etc.
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2. Given Sequences Find Motifs

* Methods based on Position Weight Matrices
(alignment)

— (G1bbs Sampling

— Expectation Maximization
* Other Methods

— HMMs

— Bayesian methods

— enumerative (combinatorial)
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Simple Motif Finding

* Methods based on Position Weight Matrices
(alignment)

— (G1bbs Sampling

— Expectation Maximization
* Other Methods

— HMMs

— Bayesian methods

— enumerative (combinatorial)
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Popular Software:
MEME (EM)

http://meme.sdsc.edu/meme/website/intro.html
AlignACE (Gibbs)
http://atlas.med.harvard.edu/
Cister (HMM)
http://zlab.bu.edu/~mfrith/cister.shtml
YMEF (combinatorial)

http://www.cs.washington.edu/homes/blanchem/software.html

MITRA (combinatorial)

http://www.cs.columbia.edu/compbio/mitra/

NestedMICA

http://www.sanger.ac.uk/Software/analysis/nmica
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http://www.cs.columbia.edu/compbio/mitra/

Overall Idea

* Enumerate motifs

* Score motifs based on their over-representation in
all sequences

* The highest scoring ones, if occurring at
surprising rates, are meaningful

Problems:
- How to enumerate?

- How to score motifs?
- What 1s surprise?

ECS 234, Filkov




Using PWMs, main idea

* Capture the data in PWM

* Enumerate and score all patterns, w

— suffix trees used to save space
* Update the PWM

* Scoring: over-representation

D —0DServeu cquen CxXpecied cquen

.~ W 1n genome
W 1n glven sequences
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MEME

*  Use Expectation-Maximization Algorithm to fit a two-
component mixture model to the sequence data

*  Component 1 1s the motif
*  Component 2 1s the background

Algorithm:

° For each sequence s, (out of n)

. Start with a random PWM, P, (i.e. alignment)

. Score every segment of s. with P,

. Update P.=Sum all the scores with appropriate weights
. Perform EM until there is a convergence

The best 100 scoring motifs are kept overall
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G1bbs Sampler

* Use a simple leave-one-out sampling strategy

Algorithm

. Given n sequences, sl, s2,...,sn

*  Randomly initialize PWM (i.e. align)

«  For each sequence s, take it out from the PWM
- score each segment of s, with the rest of the
sequences

- put the sequence back

* Important feature: convergence
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YMF: Enumeration

* Use a consensus model of motifs based on
IUPAC alphabet

* Score motifs based on their significance of
occurrence (vs. random)

* Clean up the found motifs to remove
redundant motifs

ECS 234, Filkov



Comparing the Methods

Tompa et al. (2005)
— Compared 13 different methods

— Used real sequences and searched for known
binding sites (TRANSFAC)

* 52 data sets + 4 negative controls

* 4 organisms represented (fly, human, mouse
and yeast)

— Scored methods based on confusion matrix
statistics for the top motif observed

ECS 234, Filkov



1. Assessing Method

Performance

—
[ I

Seduences e N

[ Predicted
T Known

Score = Total overlap / Total span

Score = 1, 1f span = overlap
Score = 0, if overlap =0

(Pevzner & Sze 2000)
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2. Comparing Binary Predictors

Comparing a Model to Reality:

Confusion matrix

Measures of agreement: z| TP |FN
* True Positives, True Negatives T:B Type 11 error
* False Positives, False Negatives et

Measures of accuracy: E FP TN
e Accuracy = (TP+TN)/(TP+TN+FP+FN) < | Typelemor

* Sensitivity = TP/(TP+FN)

Model Predictions (Y,N)
* PPV=TP/(TP+FP)
* Specificity = TN/(FP+TN) 1 Comparing FOCEunes
* Correlation coefficient: b
TPUIN - FNLFP g0
J(TP+ FN)(IN+ FP)(TP+ FPXIN+ FN) g5
£ o2 ]

0.1
D T

T
o o102 02 049 05 06 07 o2 o9 A

Fals e positive rate

ROC Curves: Tradeoff between Sens. And Specificity (sens vs. 1-spec.)
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Table 2 Number of data sets for which each tool predicted no motif2

ing to most of the seven measures when the
data sets of type real were removed. For exam-
ple, the correlation coefficient nCC, averaged

Tool Total (56) Fly (8) Mouse (12)  Human (26) Yeast (10) over all tools, improved by 39% from Figure
AlignACE 32 7. 5 17 3 1a to Figure 1d. This seems to say more about
ANN-Spec 3 1 0 1 1 the experimental design than about the tools
Consarsiis 37 4 3 26 4 themselvefs: itis hlc'ely that th.e data sets of type
N 3 5 : 2 o r?a] contain functwr.ml .moulfs other t.han the
: single TRANSFAC binding site on which they
Improbizer o g 0 o 0 were scored, and that tools that discovered
MEME 6 1 2 2 1 other functional motifs were unduly penalized.
MEME3 14 0 5 8 1 The tool most affected by this is YME whose
QuickScore 20 2 4 14 0 seven measures each improved between 45%
SeSIMEME 0 0 0 0 o and 67% when the re:ﬂl data sets were removed.
MITRA o = 2 % 4 ?nterestmgiy, icre is one tof)l that did not
; improve by this removal: MotifSampler’s per-
potbanplo % s 2 o 3 formance was somewhat better on the data sets
Oligo/dyad-analysis 23 1 5 13 4 of type real than on the others. This aspect of
Weeder 17 3 3 10 1 MotifSampler can also be seen in Figure 1c for
YMF 7 0 2 4 1 the measure nCC.

aThe total number of data sets is given parenthetically in the column header.

Weeder’s success is due to judicious choices regarding when to predict
no motifin a data set: Weeder was run in a ‘cautious mode; where only
the strongest motifs were reported. A few small exceptions to Weeder’s
domination are shown in Figure 1b, where SeSIMCMC did somewhat
better on the fly data sets, and MEME3 and YMF somewhat better on
the mouse data sets.

What is most striking about Figure 1b is the fact that so many tools
perform much better on the yeast data sets than on other species. This
suggests that computational biologists have been more successful at
modeling binding sites in yeast than in metazoans. Little significance
should be read into the slightly negative #CC values in Figure 1b: these
areso close to zero that they should be interpreted simply as no correla-
tion between the known and predicted binding sites.

Although the shapes of the curves are very similar in Figure 1a and
Figure 1d, the scale is different. Nearly all tools performed better accord-

Table 3 Correlation coefficient (nCC) for all pairs of tools?

‘We have not discovered any simple feature,
such as type of motif search, that determines
the accuracy of these tools. Nor should we
expect such a simple conclusion: the tools are
based on algorithms and motif models that are varied and complex,and
predicting their performance on complex data is beyond our current
analytical ability.

Table 3 shows some very interesting complementary behaviors among
certain pairs of tools. For example, MotifSampler’s predictions comple-
ment well the predictions of MEME, oligo/dyad-analysis, ANN-Spec and
YME, improving their individual nCC scores by 64-92%. It is also infor-
mative to see that MEME’s predictions improve the individual nCC score
of MEMES3 by 53%. This gives somie idea of the improvement possible by
allowing a given tool to predict two motifs rather than just one.

Exploiting comparative sequence analysis, using tools not covered
in this assessment, provides a powerful adjunct to these methods. As
an example, a recent tool called PhyME that combines intraspecies
overrepresentation and interspecies conservation reported success™ in
predicting the binding sites for one of the most difficult human data

Quick SeSi
score Rl MCMC

QuickScore bﬂ 42 o (3»52
GLAM 0.060 0.068

068 0042 0083

SeSiMCMC 0.059

MITRA 00s1  oo72 [NEBEMM 0054 0082
Consensus 0.060 0.075 | 0053 0.042 0.077
Improbizer 0069 0083 0077  0.056 0.052
AlignACE 0084 0089 0090 0085 0.111

MotifSampler ~ 0.071 0.092 0.107 0.097 0.077 0.103

MEME3 0.089 0.094 0092 0.102 0.074 0.102
MEME 0.091 0.090 ©.100 ©0.102 0077 0.091
Qligo/dyad 0.073 0088 0111 0.088 0.082 0.082
ANN-Spec 0.085 0.091 0.111 0.094 0.090 0.100

YMF 0094 0095 0112 0101 0093 010
169 0.157

Weedar

MITRA Consen  Improb Align ACE

Motif Oligo/ ANN-
sampler MEME3 MEME dyad Spec YMF  Weeder

ooss 0072 o072 oo7+ [JEEEEM oos¢ 0061 0084
0066 0084 0088 0086 | 0082 0082 00S0 0113
0071 0091 0081 0083 [ 0058 0.103 0104 0092
0084 0097 0106 0.105 0070 0101 0103 0131
0079 0109 0084 0077 0074 0082 0081 0098
0089 0117 0096 0098 0083 0112 0091 0.117
0068 0097 0102 0091 008 0091 0115 0119
0.099 0068 0112 0119 0103 0127 0130 0134
0093 0124 0069 0106 0094 0120 0126 0114
0095 0120 0100 0073 0104 0123 0121 0121
0039 0136 0119 0112 0071 0.107 0.130
0085 0122 0114 0110 0089 0118 0.117
0146 0121 0129 0.092 0.084  0.137
0.156

aThe primary tool is listad in the row header and the secondary tool in the column header. The score shown for the same tool on both axes (that is, along the main diagonal) is the individual nCC

core from Fieure 1. Numerical values are

by color, ranging from dark blue (poorer predictions) to red (better predictions).
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Multi-site Motif

Table 3 + Dimer alignment

* Two-site: Dimer, dyad for MCM1 binding site
e e et
* Gapped Motif Acc. ... caan

..CCTA. . .AGGA,

* In general, a motif 1s an Ceer. e

. . . .CCTA. .. .GGAN

ordered set of binding s
sites rnce, RS
TACC. . ... AGGH
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Higher Order Motifs

* Nature of course 1s more complicated...

Module B Module A BP
_>
CY cB1 Ul R cB2 CG1 P oOTX Z cG2 SPGCF1 CcG3 CcG4
—r == — z — — 1
H ’ Y . = .
; d ! &
I H ' |
' ' 1 |
5 E i
; S !
hpcpre ot ° —————————— E. DC !
s @ i1 ,@:

* Combinatorial motifs: combinations of binding
sites to which an interacting group of TFs binds

* More realistic, but difficult to look for
* Sinha, 2002
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What 1s Nature Like?

Now that we are talking about realistic motifs,
what 1s 1t that we know about them from biology?

— Combinatorial motifs are sets of simple motifs
separated by a stretch of DNA

— Changing the order of the simple motifs within it
doesn’t kill transcription, but changes it

— Changing the distance between the simple motifs
usually kills transcription

— The distances between motifs are usually small (<20bp)

— The distance restriction 1s sometimes strict, and other
times not

— Randomly distributed simple motifs do not activate
transcription

ECS 234, Filkov



Dependence of Simple Motif Pairs on
Distance and Order Between Them

PTK Constrosts

pTK-87

PTEAET cH2 -

prE-8t SBE

pTK-81 BBE + xB
PTK-B1 SP25 xE+SHE
ETK-BT SP30 nB+SBE
PIH-61 5P42 kBaBHE

PrK-8] BPEA KBSBE

7 — -
PTI-81 SPI00 kB+SBE

Fielitive Luoiterase Aetivity (%)

Falit g101) B8 e 1)
§§ * i £ N
3 3 ur
i3 , _

e

7

1ER+ THFr:

Ohmori et al., 1997
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Finding Higher Order Motifs

Sinha (2002) reviews methods for finding
higher order motifs, and groups the
approaches based on their general
relationship to simple motif finders
— find simple motifs and discover patterns made
of these
— start with simple motifs and build higher order
ones

— find higher order motifs from scratch (e.g.
Marsan and Sagot, 2000)

ECS 234, Filkov



Models of Higher Order Motifs

The set model {M,,M,,....M, }

* Tuples with distance constraints
(M17M2’d12)

Hidden Markov Model
* Boolean Combinations

Usually two step approaches:
- Enumerate the motif models
- Determine significance (Monte Carlo experiments)

ECS 234, Filkov




Tricky Business

* All these models have a lot of parameters
(e.g. distances between motifs)

* They depend on the 1nitial choice of
parameters and/or an initial set of simple
motifs

* Using these tools 1s more of an art than
science so far

ECS 234, Filkov




Conclusions

PWMs do well for simple motifs

Combinatorial methods are probably doing

better

Should use all available tools to determine

strong s1m

Higher orc

vle motifs

er motifs:

— positive: .

— negative:

knowing your biochemistry helps
nobody knows the biochemistry fully!

ECS 234, Filkov
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