Boolean Network Models

2/5/03

History

- Kaufmann, 1970s
- Studied organization and dynamics properties of (N,k) Boolean Networks
- Found out that highly connected networks behave differently than lowly connected ones
- Similarity with biological systems: they are usually lowly connected
- We study Boolean Networks as a model that yields interesting complexity of organization and leave out the philosophical context

Boolean Networks

Boolean network: a graph G(V,E), annotated with a set of states X={ $x_i | i=1,...,n$ }, together with a set of Boolean functions B={ $b_i | i=1,...,k$ }, $b_i : \{0,1\} \rightarrow \{0,1\}$.

Gate: Each node, v_i , has associated to it a function , with inputs the states of the nodes connected to v_i .

Dynamics: The state of node v_i at time t is denoted as $x_i(t)$. Then, the state of that node at time t+1 is given by:

$$x_{i}(t + 1) = b_{i}(x_{i_{1}}, x_{i_{2}}, ..., x_{i_{k}})$$

where x_{ij} are the states of the nodes connected to v_i .

General Properties of BN:

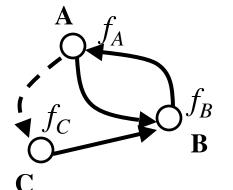
- Fixed Topology (doesn't change with time)
- Dynamic
- Synchronous
- Node States: Deterministic, discrete (binary)
- Gate Function: Boolean
- Flow: Information

What kind of properties do they exhibit?

Boolean Functions

- True, False: 1,0
- Boolean Variables: x can be true or false
- Logical Operators: and, or, not
- Boolean Functions: k input Boolean variables, connected by logical operators, 1 output Boolean value
- Total number, B, of Boolean functions of k variables: 2^{2k} (k =1, B=4; k=2, B=16; etc.)

Wiring Diagrams and Truth Tables



 $f_A(B) = B$ $f_B(A, C) = A \text{ and } C$ $f_C(A) = \text{not } A$

Boolean Network

 $\begin{array}{c|c}
A & B & C \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
A' & B' & C' \\
\hline \\ time t+1 \end{array}$

time t

Wiring Diagram

State	IN	PUT	١	OUTPUT		
	Α	В	С	A'	В'	C'
1	0	0	0	0	0	1
2	0	0	1	0	0	1
3	0	1	0	1	0	1
4	0	1	1	1	0	1
5	1	0	0	0	0	0
6	1	0	1	0	1	0
7	1	1	0	1	0	0
8	1	1	1	1	1	0

Truth Table

Reverse Engineering of BNs

- Fitting the data: given observations of the states of the BN, find the truth table
- In general, many networks will be found
- Available algorithms:
 - <u>Akutsu et al.</u>
 - Liang et al. (REVEAL)

Fitting the Data

- The black box model: m (input, output) pairs
- Each pair is the observations of the states of a system before and after a transitions
- The states are 0,1

Formal Problem

- An <u>example</u> is a pair of observations (I_j, O_j) .
- A node is <u>consistent with an example</u>, if there is a Boolean function such that $O_i = f(I_i)$
- A **BN** is <u>consistent with (I_j, O_j) </u> if all nodes are consistent with that example. Similarly, a **BN** is consistent with $EX = \{(I_1, O_1), \dots, (I_m, O_m)\}$ if it is consistent with each example
- <u>Problem</u>: Given EX, n the number of nodes in the network, and k (constant) the max indegree of a node, find a BN consistent with the data.

Algorithm (Akutsu et al, 1999)

The following algorithm is for the case of k=2, for illustration purposes. It can easily be extended to cases where k>2

- For each node v_i
 - For each pair of nodes v_k and v_h and
 - For each Boolean function f of 2 variables (16 poss.)
 - Check if $O_j(v_i) = f(I_j(v_k), I_j(v_h))$ holds for all j.

Analysis of the Algorithm

- Correctness: Exhaustive
- Time: Examine all Boolean functions of 2 inputs, for all node triplets, and all examples $O(2 \cdot 2^{2^2} \cdot n^3 \cdot m)$
- For k inputs (k in front is the 2 above, time to access the k input observations) $O(k \cdot 2^{2^k} \cdot n^{k+1} \cdot m)$
- This is polynomial in n, if k is constant.

Better Algorithms?

- If indegree is fixed to at most k,
 - the best known deterministic algorithms run in $O(mn^k)$ time
 - Randomized: $O(m^{w-2}n^k + mn^{k+w-3})$, where *w* is the exponent in matrix multiplication, currently w < 2.376 (Akutsu et al., 2000)
- If indegree is close to n, the problem is NPcomplete (Akutsu et al., 2000)

Data Requirement

- How many examples (I,O) do we need to reconstruct a Boolean Network?
- If indegree unbounded 2ⁿ
- If indegree<k, information theoretic aruments yield the following bounds:
 - Upper bound $O(2^{2k} \cdot (2k + \alpha) \cdot \log n)$
 - Lower bound $\Omega(2^k + K \log n)$
- Experiments show that the constant in front of the log n is somewhere in between, i.e. $k2^k$

Boolean Network Dynamics

Nodes, States, Transitions,...

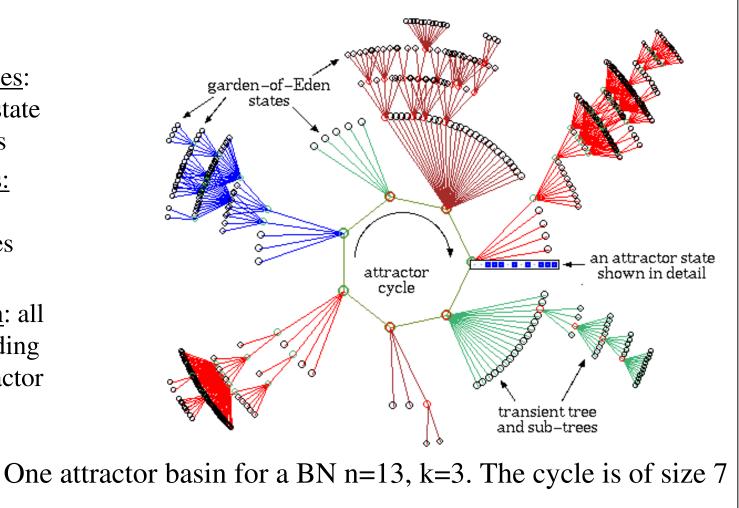
- States: Values of all variables at given time
- Values updated synchronously
- Input \rightarrow Output

State	INPUT			OUTPUT		
	A	В	С	A' B' C'		
1	0	0	0	0 0 1		
2	0	0	1	0 0 1		
3	0	1	0	1 0 1		
4	0	1	1	1 0 1		
5	1	0	0	0 0 0		
6	1	0	1	0 1 0		
7	1	1	0	1 0 0		
8	1	1	1	1 1 0		

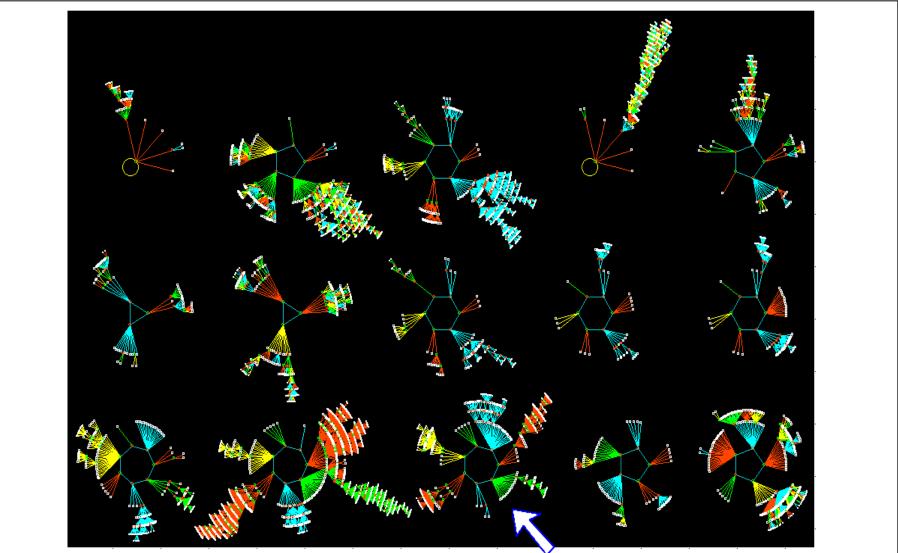
• Ex. $(100 \rightarrow 000 \rightarrow 001 \rightarrow 001 \dots)$

BN Dynamics

- <u>Trajectories</u>: series of state transitions
- <u>Attractors:</u> repeating trajectories
- <u>Basin of</u> <u>Attraction</u>: all states leading to an attractor



Wuensch, PSB 1998



Previous basin of attraction is one of 15 possible ones for n=13 and k=3. Total of 8192 states, and attractors with periods ranging from 1 to 7 (Pictures come from DDLab Galery, Wuensche, Santa Fe Institute)

Why Are BNs Good for Biology?

- Complex behavior (synergistic behavior)
 - Attractor steady states which can be interpreted as memory for the cell
 - Stability and reproducibility
 - Robustness
- The range of behaviors of the system is completely known and analyzable (for smaller networks) and is much smaller than the range of the individual variables
- Organizational properties:
 - high connectivity (k>5) yields chaotic behavior
 - Low connectivity (k=2) attractor number and median attractor length are O(Sqrt(n))
- Simple to implement and use

BN and Biology

Microarrays quantify transcription on a large scale.

The idea is to infer a regulation network based solely on transcription data.

Discretized gene expressions can be used as descriptors of the states of a BN. The wiring and the Boolean functions are reverse engineered from the microarray data.

BN and Biology, Cont'd.

From mRNA measures to a Regulation Network:

1 Continuous gene expression values are discretized as being 0 or 1 (on, off), (each microarray is a binary vector of the states of the genes);

2 Successive measurements (arrays) represent successive states of the network i.e. X(t)->X(t+1)->X(t+2)...

3 A BN is reverse engineered from the input/output pairs: (X(t), X(t+1)), (X(t+1), X(t+2)), etc.

Limitations

- BNs are Boolean! Very discrete
- Updates are synchronous
- Only small nets can be reverse engineered with current state-of-the-art algorithms

Summary

- BN are the simplest models that offer plausible real network complexity
- Can be reverse engineered from a small number of experiments O(log n) if the connectivity is bounded by a constant. 2^n experiments needed if connectivity is high
- Algorithms for reverse engineering are polynomial in the degree of connectivity

References

- Akutsu et al., *Identification of Genetic Networks From a Small Number of Gene Expression Patterns Under the Boolean Network Model*, Pacific Symposium on Biocomputing, 1999
- Akutsu et al., Algorithms for Identifying Boolean Networks and Related Biological Networks Based on Matrix Multiplication and Fingerprint Function, RECOMB 00, 2000
- Liang et al., *REVEAL, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures*, Pacific Symposium on Biocomputing, 1998
- Wuensche, *Genomic Regulation Modeled as a Network With Basins of Attraction*, Pacific Symposium on Biocomputing, 1998
- D'Haeseleer et al., Tutorial on Gene Expression, Data Analysis, and Modeling, PSB, 1999