Serial Analysis of Gene Expression

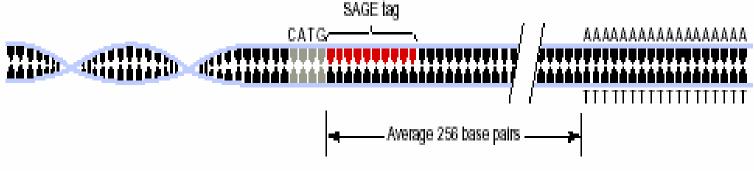
Cloning of Tissue-Specific Genes Using SAGE and a Novel Computational Substraction Approach. Genomic (2001)

Hung-Jui Shih

Outline of Presentation

- SAGE
- EST
- Article

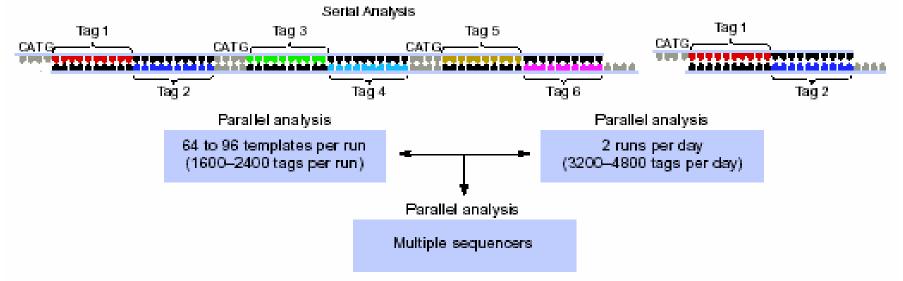
TPE algorithm
Results & Conclusion
Reference


- Developed in 1995 (Velculescu et al. Science 270 (5235) : 484-487)
- Allows the quantitative and simultaneous analysis of a large number of transcripts.
- Identify novel expressed genes.

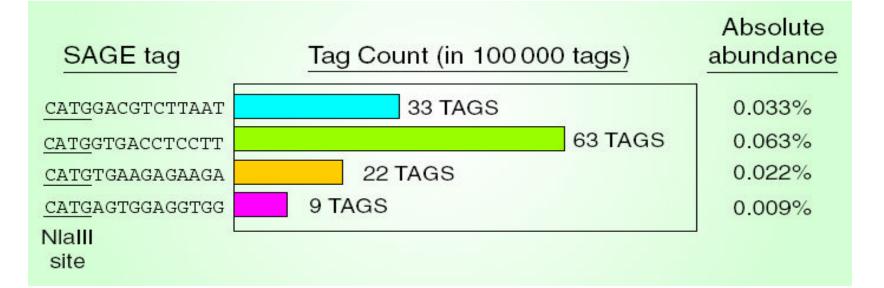
Principles of SAGE

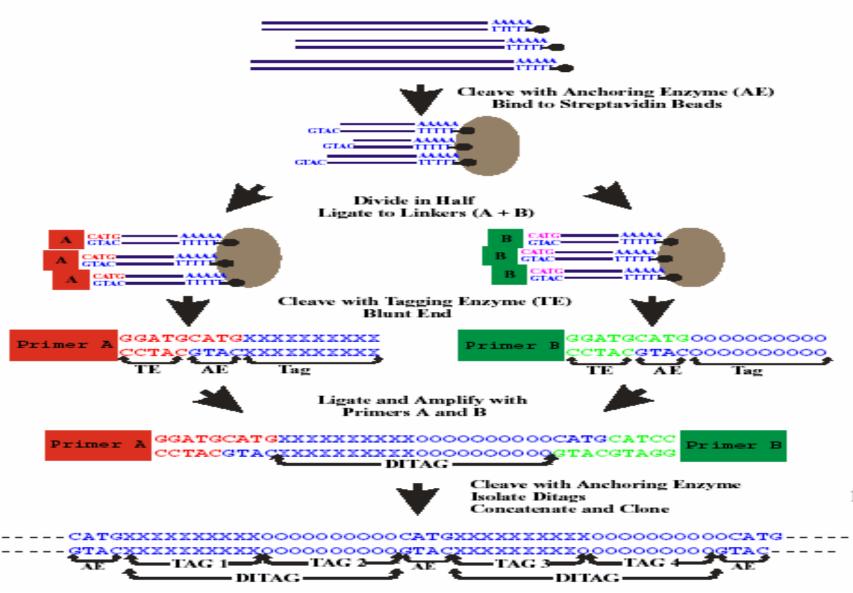
I. Short sequence tag contains sufficient information to uniquely identify a transcript

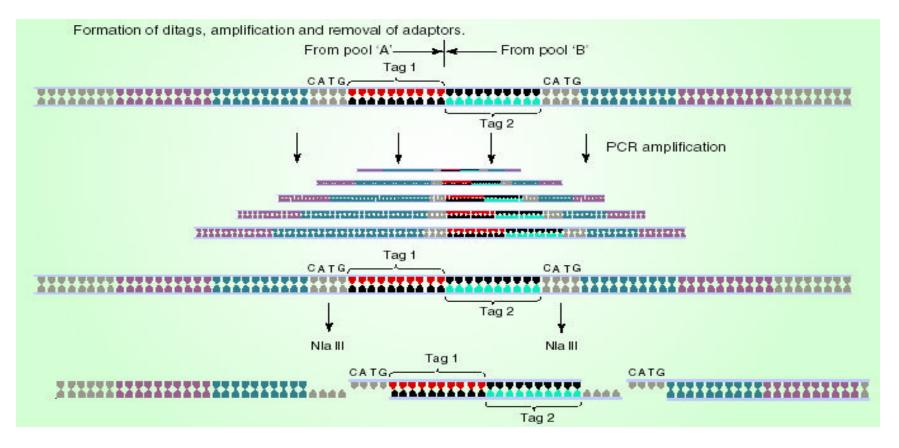
SAGE principle 1

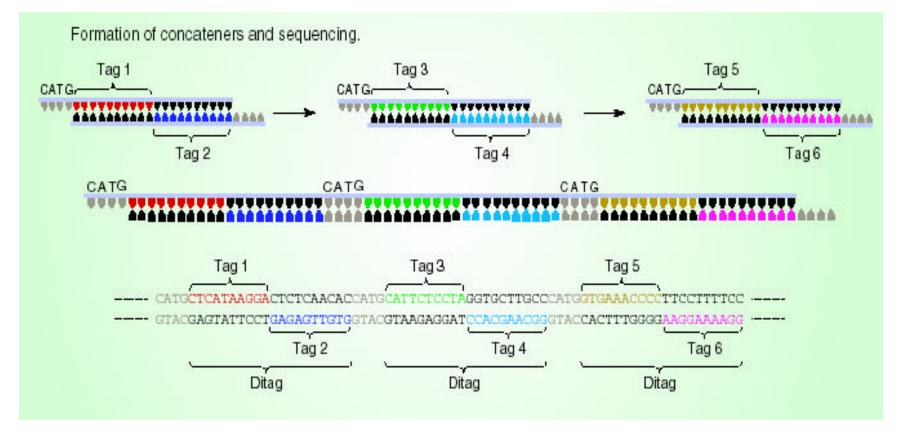

A short oligonucleotide sequence from a defined location within a transcript, a 'tag', encodes sufficient complexity to identify an expressed gene.

Principles of SAGE


- Sequence tags can be linked together to form long serial molecules that can be cloned and sequenced.
- (b) SAGE principle 2


A combination of serial and parallel analysis maximizes throughput.




Principles of SAGE

 3. Quantization of the number of times a particular tag observed provides the expression level of the corresponding transcript.

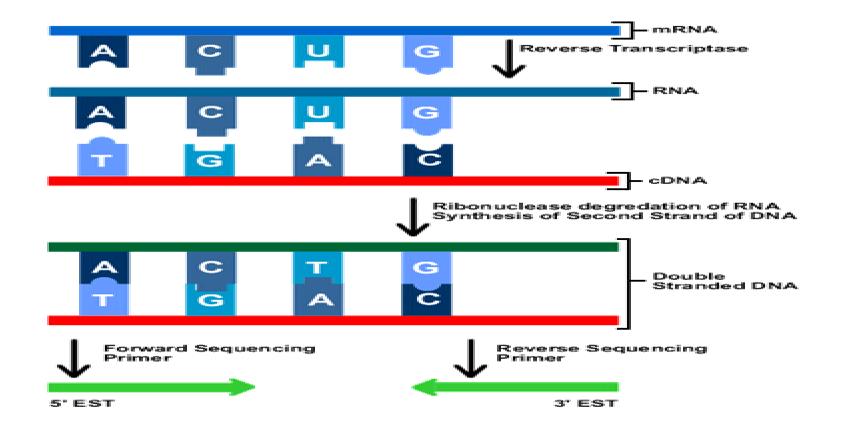
Function of SAGE Software

- Identifies enzyme sites with proper spacing
- Extracts tags
- Record tags in database
- Match tags to genome sequence

Advantages of SAGE

- Highly sensitive scaleable.
- Detects all genes including unknowns quantitative data.
- Avoids amplification bias.
- Immortalized data allows for multiple comparisons.
- Circumvented unwanted crosshybridization

New in SAGE


LongSAGE

- Characterizes a 21-base pair segment
- □ Saha S. et al. Using the transcriptome to annotate the genome (2002). 20(5), 508-512
- SAGE database
- I-SAGE[™] kit (Invitrogen)

Expressed Sequence Tag (EST)

- Developed in 1991. (Adams M. et al. Science 252:1651-1656)
- A small part of the active part of a gene, made from cDNA, 150-400 bps, a kind of STS (sequence tagged site).
- Can be used to fish the rest of the gene out of the chromosome, by matching base pairs with part of the gene.
- Can be radioactively labeled in order to locate it in a larger segment of DNA.

Expressed Sequence Tag (EST)

Practical Advantages of EST

- Sequences can be generated rapidly and inexpensively
- Only one sequencing experiment is needed per each cDNA generated
- Do not have to be checked for sequencing errors as mistakes.
- Do not prevent identification of the gene from which the EST was derived.

Challenge of EST

- Sequence is with errors including base insertion and deletion.
- Genes with lower expression are not easier to be picked which may have significant functions. It can be solved by...
 Normalization
 - □ With large amount of EST

Summary of Characteristics

SAGE

Highly sensitive, efficient, comparability, technically demanding and needs a sequenced genome

EST

Sequence rapidly, inexpensive and business valuable (ex: Merck-EST project, (1998) Bioinformatics 14(1):2-13).

Microarray

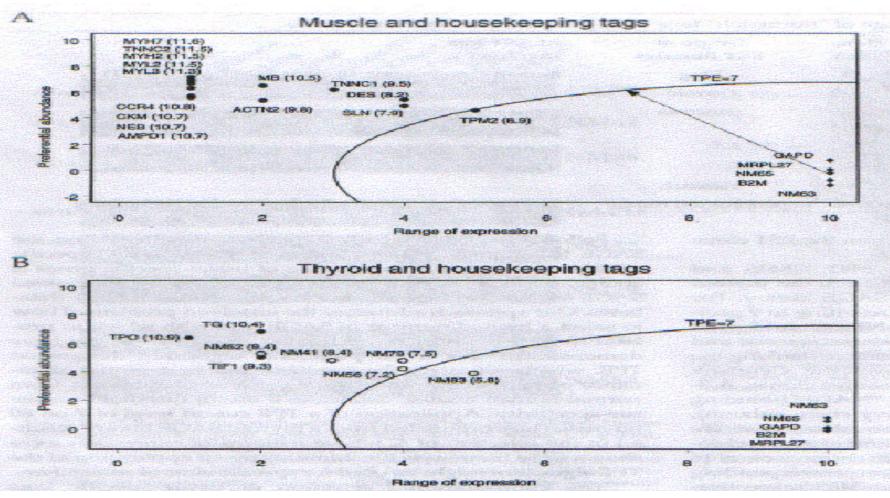
Large-Scale, sensitive, technically challenging, limited to known genes and expensive

Cloning of Tissue-Specific Genes

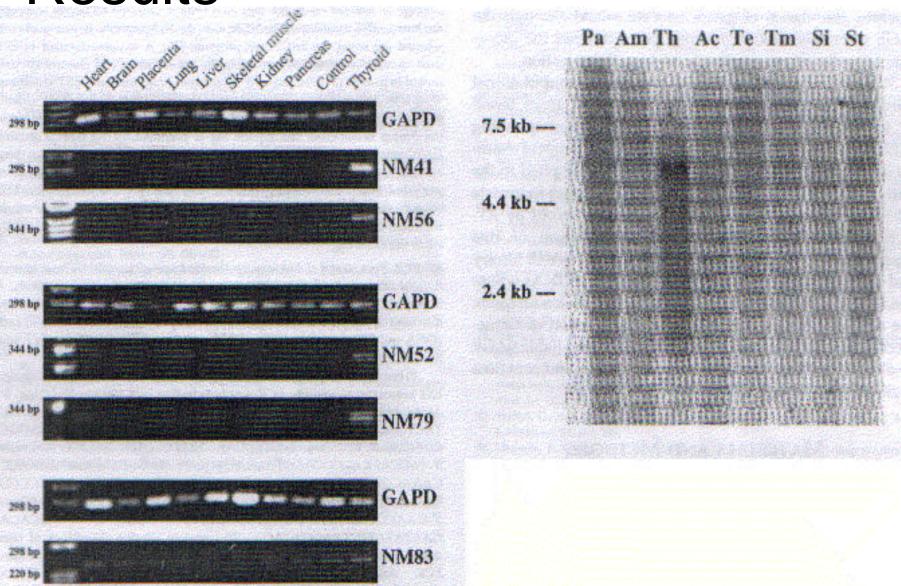
- Rational
 - Defect in expressed genes results in clinical phenotypes.
- Objective
 - Identify functionally specialized genes.
- Material & Method
 - □ No-match tags

 - □EST
 - TPE algorithm

Tissue Preferential Expression (TPE)


- Based on the number of tissues in which a tag is present (The range of expression) and its expression level in the tissue of interest compared with other tissues (The preferential abundance).
- Calculate and plot scores
- Achieved as the Euclidean distance.

The preferential abundance


- □ M: tag count in the tissue of interest
- N j: tag count in another tissue j
- Add 0.001 to each tag count: prevent division by 0 or taking the logarithm of 0

Tissue	d	Thyroid	Breast	Ovary	Vascular	Prostate	Cerebellum	Brain	Colon	Fibroblast	Muscle	TPE
Total no. of tags	762158	10994	49762ª	48925	111588ª	66687	30774	212699ª	100730ª	22301	107728ª	
Thyroid-specific genes	TPO	2400								-		10.89
	TG	21000	CO.A	1.4	10.5+	2012	32	1012	ROG-			10.36
	TITH	300		•	•	•		12		-		0.00
Ne-match tags TPE > 7	NM52	454						3		-		9.45
	NM41	454	40		-	-		24				8.36
	NM79	454	100 Ect	let le	Sing		ALL VAL	7	-	-	9	7.53
	NM56	454				14			89		9	7.19
Nc-match tags TPE ≤ 7	NM83	888		20			194	47	ale ale	-	19	5.80
	NM63	454	60	61	74	134	97	509	89	89	9	0.51
	NM65	454	180	122	103	119	389	272	29	134	92	0.30
Heusekeeping genes	GAED	2070	542	6295	2737	1799	1722	3020	694	313	9161	0.17
	B2M	1182	2753	8032	1825	1829	194	314	2563	1883	241	0.25
	MRPL2	454	1085	1941	1430	1229	162	211	108	2152	658	0.30

■TPE levels >= 7 are considered indicative for tissue specificity.

No-match tag	Tag sequence	EST clone (Acc. no.)	Origin of EST libraries	BLAST hits (Acc. no.)
41	ccagetgeet	AI37514	lung	human chromosome 16 clone 165E7 (AC007011)
52	ttgggatgta	AA632629	thyroid	
56	ctgttgtgtg	W60005	pancreas	mouse NADPH-dependent oxidase (MMU43384) pig NADFH-dependent oxidase (SSU02476) human NADPH-dependent oxidase (AF127763) human chromosome 15 clone (AC009700)
79	ggaatgeete	A'446209	stomach	
83	cagtgaaaaa	A:023948	parathyroid tumor	human chromosome 1p35 clone 462023 (HS462023

Conclusion

Computational substraction of SAGE tags by the proposed TPE algorithm is a rapid and reliable way to expedite the cloning of tissue-specific genes.

Reference

- Patino W. et al (2002) Serial Analysis of Gene Expression: Technical Consideration and Application to Cardiovascular Biology. Circ Res 91:565-569
- Velculescu, Zhang, Vogelstein & Kinzler. (1995) Serial Analysis of Gene Expression. Science 270 (5235) : 484-487
- Adams M. et al (1991) Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Science 252:1651-1656

www.sagenet.org