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Abstract—The incredible success of the mobile App economy
has been attracting software developers hoping for new or
repeated success. Surviving in the fierce competitive App market
involves in part planning ahead of time for the success of
the App on the marketplace. Prior research has shown that
App success can be viewed through its proxy–popularity. An
important question, then, is what factors differentiates popular
from unpopular Apps? GitHub, a software project forge, and
Google Play store, an app market, are both crowdsourced, and
provide some publicly available data that can be used to cross-
link source code and app download popularity. In this study,
we examined how technical and social features of Open Source
Software Apps, mined from two crowdsourced websites, relate
to App popularity. We observed that both the technical and the
social factors play significant roles in explaining App popularity.
However, the combined factors have a low effect size in explaining
App popularity, as measured by average user rating on Google
Play. Interestingly on GitHub, we found that social factors have
a higher power in explaining the popularity compared to all the
technical factors we investigated.

Index Terms—Android Apps, GitHub, Google Play, Apps
Popularity, Social factors, Statistical Modeling

I. INTRODUCTION

In recent years, the mobile software development community
has exploded with mobile applications (hereafter referred as
apps) and has maintained an upward trajectory. As of the
first quarter of 2018, in the leading app markets, Google Play
and Apple App stores, users were able to choose from 2
million and 3.8 million apps, respectively.1 This translates
into a tremendous success for the app economy, e.g., in 2016,
gaming apps generated 50.4 billion U.S dollars in revenue
and projected to reach 105.2 billion U.S. dollars by 20211.
Unsurprisingly, Open Source developers are also flocking to
these markets, hoping to find success. For example, as of
September 2018, GitHub reported over 750K Open Source
repositories that relate to Android, totaling 37K contributors2.
Thus, for an Open Source app developer to survive in the fierce
competitive market, it is important to plan ahead of time for
the success of their apps on the marketplace. An important
question then would be: what factors differentiates successful
from unsuccessful open source apps?

Stewart and Ammeter [1] state that the popularity (i.e., extent
to which an Open Source project attracts end user attention

1http://www.statista.com/statistics/276623/
2https://github.com/search?q=Android

and developer effort/attention) is a potential indicator of the
project’s success. It can be argued that the planning should start
during the development process, before an app is released on
the marketplace, by minding the factors that the developers have
control over that associate with or even affect app popularity.
But which factors are appropriate to study as determinants of
app popularity? A number of recent studies have investigated
how app popularity relates to aspects of apps that developers
can control [1]–[10]. Most of those studies investigated how
technical aspects of the apps relate to App popularity.

Many apps on Google Play Store are Open Source, made
on social coding platforms like GitHub, where the social
interactions among developers and the ecosystem project
environments likely play a role in the apps life. To add to the
body of knowledge presented in previous studies, here we take
a holistic approach and investigate a comprehensive collection
of both technical and social measures, seeking to understand
how they associate with Open Source app popularity.

Many app store apps have their code and development
traces available on social coding websites. Studies have shown
that social aspects in software development influence on code
quality [11]–[13]. The quality of an app can have an impact
on its success or failure. For example, if an app on GitHub
has poor quality (i.e., hard to maintain code), it may have few
contributors joining and, in the long run, it might be abandoned
if the main contributor leaves. In our study, we combine social
and technical factors mined from an App marketplace (Google
Play store) and a developer social coding website (GitHub). We
operationalize app popularity along quantifiable dimensions:
user downloads and user average rating in Google Play as well
as active forks on GitHub. The number of the App’s active
forks, the number of App user downloads, and user average
ratings can be considered proxies of success [14], [15], which
readily map onto our intuitive notions of popularity.

The main contributions of this paper are as follows:
1) We present a holistic approach of investigating App popu-

larity by analyzing factors mined from two crowdsourced
websites and combining both technical and social factors.

2) We show that technical App attributes, e.g., level of
activity, are associated with App popularity on both
GitHub and the Google play store.

3) We find that Apps with more minor contributors are also
associated with increased popularity on both Google Play



and GitHub. We also show that apps with many major
contributors are associated with lower popularity on both
Google Play store and GitHub.

4) Relating to App’s popularity on GitHub, we found
that social factors have a higher power in explaining
popularity, compared to all the technical factors we
investigated. We discuss possible consequences of the
social aspect metrics for practice.

In the rest of the paper, we discuss related work in Section II,
the experimental setup in Section III-A, followed by the
results and discussion, implications, threats to validity and
the conclusion sections.

II. RELATED WORK

App popularity measures the extent to which developers and
end-users are involved in or use project artifacts. Meaningful
measures of App popularity can be important to App managers
or owners in assessing their artifact success. Several studies
have investigated what makes mobile Apps popular on the
marketplace; other studies have looked at popularity of projects
on social coding websites. Below we give an overview of
representatives of both.

A. Popularity of Apps on Google Play Store

Linares-Vásquez et al. [2] extracted data on Android APIs
from Apps on Google Play and mined the entire change
history from the APIs Git repositories. They discovered that
change- and fault-proneness of these underlying APIs negatively
impacted App success. Guerrouj et al. [3] extracted Android
APIs used by Android Apps and then captured the addition
and removal of those Android API elements between two
consecutive releases of the App. The authors discovered that
high App churn related to Android API methods used by the
Apps was associated to poor user rating on the Google Play
store. Lu et al. [5] extracted a taxonomy of 108 features from
Apps APK files and others from the Wandoujia–a Chinese
App store. The authors discovered a number of features that
relate to popularity of the Apps in terms of downloads and
user rating. Tian et al. [6] investigated factors extracted from
the Apps’ APK files and related factors from the Google play
store. The authors discovered that the size of an App, and the
target SDK version of an App, are the most influential factors
associated with the App rating on Google Play store. Martin et
al. record time-series information about popular Google Play
apps and investigate how release frequency can affect an app’s
performance, as measured by rating, popularity and number of
user reviews [16]. They label as “impactful releases” the ones
that caused a significant change on the App’s popularity, as
inferred by Causal Impact Analysis (a form of causal inference).
They report that more mentions of features and fewer mentions
of bug fixing increase the chance for a release to be impactful.
Mojica et al. investigated the impact of integrating many many
different ad libraries on an App’s rating on Google Plat store.
They found no evidence that the number of ad libraries in an
app is related to its possible rating in the app store. However,

they found that integrating certain ad libraries can negatively
impact an App’s rating.

B. App Popularity on Social Coding Websites

Weber and Luo attempt to differentiate popular and un-
popular Python projects on GitHub using machine learning
techniques [7]. They found that in-code features are more
important than author metadata features. Zho et al. study the
frequency of folders used by 140 thousands GitHub projects
and the results suggest that the use of standard folders (e.g., doc,
test, examples) may have an impact on project popularity [8].
Aggarwal et al. studied the effect of social interactions on
GitHub projects’ documentation [9]. They conclude that popular
projects tend to attract more documentation collaborators.
Borges et al. investigated the factors that influence popularity on
GitHub repositories and found out that the main factors include:
programming language, application domain and introduction
of new features [10]. Stewart and Ammeter carried out an
exploratory study of factors influencing the popularity of Open
Source Project [1] using 240 open source projects registered on
the freshmeat Website. They found that the more active a project
is in terms of posting new releases and making announcements,
the more attention it receives from the community. Borges and
Valente conducted a survey with 791 developers and found
out that developers star GitHub repositories due to three major
reasons (which frequently overlap): to show appreciation to
projects, to bookmark a project, and because they are using a
project.

Each of the above studies have investigated the factors that
relate App popularity by extracting their data from either
Google Play store or social coding website. We observed that
no study has tried to investigate App popularity by merging data
from two crowdsourced websites. Furthermore, Constantinou
and Mens [17] state that developing software is both a social
and technical activity. Social activities involve the interaction,
communication, and collaboration of multiple contributors to
the same project and across interdependent projects. Most
of the discussed studies mainly concentrate on investigating
popularity mainly using the technical factors. We have not
come across studies investigating popularity combing both
technical and social factors. In our study, we take a holistic
approach where we combine App factors mined both GitHub
and Google Play store as well as assess how the combination
of both technical and social factors relate to App popularity.

C. Popularity in other Social Networks

There are studies that report on popularity in social networks.
Chatzopoulou et al. [18] analyze popularity of YouTube videos
by looking at properties and patterns metrics, stating that
several popularity metrics are highly correlated. Zongyang
et al. [19] propose methods to predict the popularity of new
hashtags on Twitter. Their main focus was to identify and
evaluate the effectiveness of content and contextual features
derived from tweets annotated with candidate hashtags. They
demonstrated that contextual features were more effective than
content features.



TABLE I
COLLECTED METRICS THAT MAY AFFECT APP POPULARITY ON GITHUB AND THE GOOGLE PLAY STORE

Dimension Variable Name Explanation Rationale
App popularity
Github

TotalForks Total number of accumulated forks until
December 31, 2017

ActiveForks Active forks of an App (those that have
at least one commit since the fork date)

Dependent Variable

App popularity
Google Play
store

AverageRating Average rating of the five level stars
Dependent VariablesDownloads User downloads on Play store

TotalStars Total stars of the app Used as a control variable in the model of AverageRating

Code Authorship
Metrics
(Social
aspects)

majorDev Number of major code authors Open source projects’ ability to attract and retain vol-
unteer contributors is an important element of project
success [15]. MVA tells us to what extent the App has
shared ownership. Code authorship metrics have been
shown to have an association with software quality in
Android Apps [13]. Thus, we hypothesize that authorship
metrics will have a related effect on App popularity.

minorDev Number of minor code authors
totalDev Total number of code authors (Team

size)
MVA Most valuable author

Contributor
experience
(Social
aspects)

TotalReposMajDev Total number of repositories the major
contributors of the App have authored
with at least one commit.

Related previous studies [20]–[25] have shown that
contributor experience is an important factor for project
maintenance. We hypothesize that Apps with experienced
major developers have a high chance of being popular.TotalCommitsMajDev Total number of commits the major

contributors authored in the repositories
of variable TotalReposMajDev above.

TotalChangedLOCMajDev Total changed lines of code from com-
mits authored by the major contributors
across all repositories in which they are
active

Level of
activity
(Technical
aspects)

TotalCommmits Total number of commits in an App More important than the sheer number of developers
is their contribution to a project. The level of activity
of contributors in submitting code may be useful as an
indicator of project popularity [15].

TotalChangedLOC Total number of changed lines of code
of in an App

Tags Total number of Tags in an App (named
commits)

PullRequests Closed pull requests
Issues Closes Issues

App size
(Technical
aspects)

SLOC The size of the master branch of an App
on Github measured in source lines of
code

This variable is included as a control for levels of activity

App Time
(Technical
aspects)

FDateGH The date of the second commit of an
App on Github

FDateGH and LDateGH tell us the time frame of project
activity of Github, while GPDate tells us how recent
updates on Google Play were made.LDateGH The last commit date of an App on

Github
GPDate Update date of an App on Google Play
Weeks The number of weeks from the App’s

2nd commit to the last commit or
December 31, 2017 (the last day of
collecting App statistics on Github)

Indication of how long an App has been actively main-
tained on Github. We use this as a control in our models.

Inactivity The time interval in months between
the App’s last commit and December
31, 2017 (the last day of collecting App
statistics on Github)

More inactivity may indicate a lack of lasting interest in
the project.

III. STUDY DESIGN

In this paper, we set out to empirically investigate the factors
that relate to App popularity on both Google Play and GitHub.
In this section, we introduce our research questions, discuss
the variables used in the study and present our data extraction
approach. Furthermore, we describe our model construction
and model analysis approaches.

In Section II we presented a number of studies that have
investigated App popularity. In them, measures of popularity
on the social coding website GitHub include number of stars
and number of forks. The study of Borges et al. [10], which
is most directly related to this one, found the number of stars
and forks to be very highly correlated. Thus, we consider

ActiveForks3 as the measure of popularity on GitHub. Next,
we present our research questions.

On a social coding websites like GitHub, new developers
do not have to develop their repos from scratch; if there
is a related repo, they can fork the mainline repo for
free, make updates to it, and thereby start a new project.

3During our data collection, we found that some Apps had many total forks.
However, the number of active forks (i.e., those with at least a single commit
since the fork date) are few. As can be seen from Figure 1 there is a significant
difference in the distribution of TotalForks and ActiveForks. The
median for TotalForks is around 11 while the median for ActiveForks
is one. This implies that most forks of an App are not active after the fork
date. Similarly for repository stars, it is possible for one to star a repo when
they do not really mean it. However, unlike for forks, it is not possible to
discover active stars.



Fig. 1. Boxplots for TotalForks and ActiveForks. The sample size used in the
figure is our final data set of 814 Apps used in our analysis (Section III-B).

While making updates, they may discover bugs or new
features that they wish to contribute back to the mainline
repo through pull requests or reporting an issue and
hence improve on the mainline repo’s quality. A mainline
repo that is popular (i.e., forked many times) indicates
that developers beyond the mainline likely use its code,
and hence may increase its success through continued
development [26]. A mainline repo having fewer forks
may suggest that it has fewer developers maintaining it;
that could result in neglect or abandonment if the main
contributor(s) leaves the project. Knowing which features
of a project associate with more forks, and which with
fewer, can possibly help developers understand the reasons
for a project thriving versus withering. Thus, we wish to
investigate what factors are related to App popularity, i.e.,
number of forks, on GitHub.

1) RQ1. What are the factors that relate to the App’s number
of active forks on GitHub?
In the App marketplace, if an App is popular (i.e., has
many downloads or a high user rating), the users can
report bugs and suggest new features to the developers to
improve the App. Popularity of an App on the marketplace
can translate into possibly attracting more developers and
to higher monetary success, as Apps generate revenue in a
number of different ways, including: charging users small
amounts of money, in-app purchases, and ads. Apps that
are not popular are likelier to generate smaller returns on
investments and less likely to attract developers. As in
RQ1, we want to investigate factors that developers can
possibly control relating to app popularity.

2) RQ2. What are the factors that relate to the App’s number
of downloads and user star rating on Google Play?

By knowing factors that correlate with popularity, app
owners/managers/developers can monitor them and act if the
recorded metrics go in a direction that can be detrimental to
the popularity of the app.

A. Variables Used in the Study

In this section we discuss the different variables used in
our models. Table I lists each dimension, which variables fall
into these dimensions, a summary explanation, along with
grounded rationale behind our choices. We further describe
each dimension and the dependent and independent variables
as follows:

1) Dependent Variables:
App Popularity: aspects that measure how popular an App

is, e.g., the number of App downloads and average user ratings
reported on the Google Play store, total number of GitHub
forks, and number of active forks on GitHub.

2) Independent variables: In Table I column–Rationale
we discuss reasons why we chose these specific independent
variables below to estimate the App popularity.

Contributor experience–Social factors: aspects that mea-
sure the experience of the App developer, e.g., how many
repositories has the developer contributed to on GitHub? and
what is the size of these contributions?

Level of activity–technical factors: aspects that measure
contributions to the App, e.g., number commits, number of
tagged commits, and number changed lines of code.

App size–technical factors: aspects that measure an App’s
size, e.g. source lines of code.

App Contributors–social factors: aspects that represent
human effort in an App’s development, such as App team size,
number of major developers, number of minor developers, and
most valuable author (MVA).

Although a developer may not directly control the metrics
in Level of activity dimension, they can promote their app in
developers community if they want to boost these metrics. With
these carefully considered metrics and motivational background
in place, we are interested in two measures of popularity: user
App downloads and average rating on Google Play store and
active forks on GitHub.

B. Data Collection and Metric Extraction

The data used in the study was extracted from GitHub and
the Google Play store. We mined data from GitHub using
the GitHub Rest API v34 and data from Google play using
BeautifulSoup5. The method of linking between GitHub and
Google Play, along with metric extraction, is described as
follows:

1) Using the GitHub’s Rest API v3 we identified a total of
9,610 repositories with the following criteria: 1) contain
the word “Android app” in the repo name, description or
README.md file; 2) are not forks; 3) contain at least two
forks; 4) are written in any programming language; and

4https://developer.GitHub.com/v3/
5https://www.crummy.com/software/BeautifulSoup/



5) were created no later than 31-12-2017. We used the
criteria of having at least two forks to reduce the chance
of finding student assignments, which could pollute our
results [27].

2) To ensure that the repositories we identified are
indeed real Android apps, we searched for an
AndroidManifest.xml file in each repository and,
if it existed, we identified the package name indicated
in the file. We then looked for the App manually on
Google Play using the extracted package name. This step
filtered out more repositories from our list, since some
repositories may have no manifest file or might have no
corresponding app on Google Play. We obtained 1,103
repositories representing an actual Google Play app.

3) Next, we manually looked at the list of the 1,103 apps
to identify any apps sharing the package name, which
would mean they are linked to the same app on Google
Play. We removed 45 apps that have duplicate package
names, leaving 1,058 apps. We speculate that duplicate
package names are a result of repositories cloning other
apps’ source code and including it in their own.

4) From the remaining 1,058, we eliminated apps with less
than six commits in their lifetime, according to the median
number of commits in GitHub projects found by prior
work [28]. After this pre-processing step, we were left
with 919 apps in our data set.

5) For the remaining 919 repos, we collected GitHub
commits. A previous study related to ours [13] observed
that the size of first commit (i.e., changed lines of code)
for some Android projects was very large compared to
later commits. The authors reported that the large size
of the first commit could be as a result of projects that
began development elsewhere and later joined GitHub,
transferring their entire prior project in a single commit.
To this end, in collecting the commits, we start from the
second commit. For each commit, we collected meta-data
that included: author name, e-mail address, login name,
and changed lines of code.

6) Related studies [13], [26] observed that some contributors
of the applications used more than one account to make
their commits, which causes them appear as different
contributors. We employ the heuristics used by the
previous authors of name merging to remove possible
duplicate contributor information. We merged the details
of two contributors into one using the following heuristics,
in the order mentioned: 1) if they possess the same login
ID, 2) possess the same full names, and 3) possess the same
e-mail prefix (i.e., prior to the email domain name). Using
the mentioned heuristics, of the 919 apps, we merged 145
contributors who participated in 144 apps. It is possible
that two distinct individuals could have the same full name
in a project. However, since the apps are very small with
few contributors, the possibility of having more duplicate
developers is very likely compared to having two distinct
individuals.

7) For each of the 919 apps in the dataset, we labeled
each of the contributors in an App as a major or minor
developer based on their percentage of contributions (cf.
Section III-D for a detailed explanation of how we label
the major and minor contributors). One of the metrics to
extract is experience of the major developers in an App
(i.e., the total contributions of the major developers across
all repositories they commit to on GitHub). Mining the
repositories a developer has contributed to requires one to
have a developer’s GitHub login name. For this reason, we
eliminated all apps that had at least one major developer
with no login name; we do the same elimination across
minor developers. Out of the 919 apps, 101 apps were
deleted, leaving 814 apps in our data set.

8) For each of the 814 apps left in our dataset, we clone the
master branch from GitHub. We then counted the source
lines of code (SLOC—control variable) using the the tool
cloc6.

9) Finally, from our final dataset of 814 apps, we wrote
a Python script using BeautifulSoup7 that crawls the
Google Play store page for each App to extract store-
related features (GPDate, Downloads, TotalStars,
AverageRating, and App category).

C. Directly Extracted Metrics

Below we present the remaining extracted metrics listed in
Table I that do not require specialized computations, calculated
per App.

Weeks: the number of weeks since the second commit
until the last commit or until 31-12-2017.

PullRequests: the number of closed pull requests
that were up to 31-12-2017.

Issues: the number of closed issues that were created
up to 31-12-2017.

TotalForks: the total number of forks created up to
31-12-2017.

ActiveForks: the number of forks (subset of
TotalForks) that contain at least one commit after the fork
date up to 31-12-2017.

TotalReposMajDev: For each of the majorDev
(defined below), the sum of all repos that are listed in the
developers’ profile where the developer has made at least one
commit, up to 31-12-2017.

TotalCommitsMajDev: For each repo in
TotalReposMajDev, the sum of all commits authored by
the major developers up to 31-12-2017.

TotalChangedLOCMajDev: For each commit in
TotalCommitsMajDev, the sum of changed lines of code
(i.e., the total changed lines of code across all major developers’
repos on GitHub).

D. Computed Metrics

To define major (majorDev) and minor (minorDev)
developers, we employ the methodology described in [11], [13],

6https://GitHub.com/AlDanial/cloc
7https://www.crummy.com/software/BeautifulSoup/



[29]. We computed code authorship metric values following
the definition proposed by Bird et al. [11] and used by Rahman
and Devanbu [29], which consists of calculating the proportion
of contribution for each author. If Cb lines are changed on a
repository r in a time interval t, and there are a total number
of m distinct authors, and the number of lines contributed by
author a in the time interval t is Cb

t , then the contribution ratio
of a is rCa =

Cb
t

Cb .
We label the major (majorDev) and minor (minorDev)

developers in an App using the threshold implemented by
Businge et al. [13]. Here we briefly recapitulate the imple-
mentation method. We sort the developer contribution ratios in
descending order and thereafter we sum them up as illustrated
in Equation 1. sum0.8 is the summation of the ratios starting
with the largest ratio rC1 (highest ratio) to rCn , where rCn is the
first ratio where sum0.8 ≥ 0.8 and n ≤ m.

sum0.8 =

n∑
i=1

ri (1)

Using Equation 1, we label major authors if they have been
identified within sum0.8, and minor authors in the remaining
sum0.2; i.e., the threshold to separate the developers is 80%.

To compute the MVA (most valuable author) metric, we
consider the author with the highest ratio. For example, if an
application has two code authors having contribution ratios of
0.93 and 0.07, the MVA value will be 0.93. However, we note
that there are cases of low MVA metric for some projects.

E. Multiple Linear Regression Models and Tuning

In this section, we discuss how we build multiple linear
regression models to gain insight towards answering our RQs.
As studied by similar works [11], [13], [30]–[32], our main
goal for building App popularity models is not to predict
App popularity, but to understand the relationship between
our explanatory variables of interest and App popularity,
measured by number of forks and user downloads on the Google
Play store. In the regression models with dependent variables
ActiveForks, Downloads and AverageRating, along
with explanatory variables (predictors), one can observe which
variables have an effect on dependent variables, how large the
effect is, in what direction, and, e.g., how much of the variance
in the number of downloads is explained by our metrics. In
our models a number of control variables that include: SLOC
was used to control the effect of different App sizes, Weeks,
FDateGH and LDateGH were used to control the effect of
different apps first commit dates and last commit dates on
GitHub, respectively, and LDateGB was used to control the
effect of different Google Play update dates.

Before building the models, we made careful preparations
in order to have model results that can be trusted, and thus
useful for inference. First, we standardized the variables by
subtracting the the mean and dividing by the standard deviation.
This allowed our variables to be on the same relative scale
(which is important since we are building models across
different applications). We also utilized a log transform on

TABLE II
CATEGORY COUNTS FOR APPS STUDIED IN MODELS

Category # Apps % Apps Category # Apps % Apps
Tools 204 25.1 Video Players 15 1.8
Productivity 87 10.7 Personalization 15 1.8
Education 74 9.1 Lifestyle 15 1.8
Libraries and Demo 46 5.7 Games 13 1.6
Social 41 5.0 Photography 10 1.2
Communication 33 4.1 Shopping 10 1.2
Entertainment 33 4.1 Weather 10 1.2
Music and Audio 31 3.8 Sports 7 0.9
News and Magazines 25 3.1 Events 5 0.6
Maps and Navigation 25 3.1 Medical 4 0.5
Books and Reference 24 2.9 Comics 2 0.2
Business 22 2.7 House and Home 2 0.2
Travel and Local 20 2.5 Art and Design 2 0.2
Health and Fitness 20 2.5 Food and Drink 1 0.1
Finance 17 2.1 Auto and Vehicles 1 0.1

most explanatory variables to stabilize the variance and improve
model fit, when appropriate [33].

Second, we performed feature selection by first considering
which features may be theoretically important, guided by
rationale listed in Table I, and removing those which introduce
high levels of multicollinearity. Highly correlated explanatory
variables can cause issues for inference in a given model, as
multicollinearity can negatively affect standard error estimation
(i.e., incorrect p-values), and thus should be removed. We
achieved this by consulting correlation heatmaps and consid-
ering the Variance Inflation Factor (VIF) [34] using R. All
variables in the final models had VIFs of under 5, as guided
by standard rule of thumb [33], [35].

Third, because the interpretation of the models’ results can be
influenced by the presence of redundant variables, we checked
for redundant variables using the redun function in the rms R
package [36]. However, we found that none of the explanatory
variables that survived our correlation analysis were redundant.

Fourth, for the ordinary least squares (OLS) [34] regression
to be reliably interpreted, one must inspect the residuals of fitted
models. Non-normality of the residuals is often attributable to
the skewness of the variables. In our data set, variables that are
found to be skewed are log transformed to stabilize the variance
and improve the model fit, whenever appropriate [35]. Finally,
we took special care to make sure that the most important
modeling assumptions of OLS regression were met, namely: 1)
homoscedasticity [34] (by examining residual vs. fitted plots),
2) linear independence (mentioned above, by removing highly
correlated variables according to VIF), and 3) normality of
errors (by examining normal qq plots). In addition, we also
consult the Cook’s distance vs. leverage plots to identify any
potentially overly influential outliers to examine for validity.
This resulted in the removal of six points in our data set which
improved the model fit (based on R2 value) while having
minimal effect on the estimated model coefficients (i.e., no
variable coefficients changed signs or significance).

IV. STUDY RESULTS

In this section, we present and discuss the results of our
findings for RQ1 & RQ2.



TABLE III
DESCRIPTIVE STATISTICS OF FACTORS

Factor Mean Min 1st Median 3rd Max
Quartile Quartile

SLOC 16.6K 38 24.4K 5.2K 13K 831.3K
Weeks 101.7 2 34 78 142 446
Inactivity 30.4 0 7 20 44 195
PullRequests 29.6 0 0 2 12 33.3K
Issues 74.4 0 1 8 37.8 66.7K
TotalForks 59.0 1 4 11 29.8 5.2K
ActiveForks 5.3 0 0 1 3 862
Tags 10.4 0 0 2 10 267
TotalCommits 319.5 6 37 104.5 285.3 26.3K
TotalChangedLOC 224K 66 7.6K 25.8K 89.6K 13,514K
majorDev 1.3 1 1 1 1 9
minorDev 4.2 0 0 1 4 111
Totaldev 5.5 1 1 2 5 116
MVA 88.3 15.2 82.05 99.3 100 100
TotalReposMajDev 5.8 1 2 4 7 64
TotalCommitsMajDev 545.5 4 89 236.5 614.25 22K
TotalChangedLOCMajDev 562K 242 21K 58K 173870.3 23,227K
AverageRating 3.8 0 3.7 4.2 4.6 5
Downloads 13,346K 0 500 5K 50K 10,000,000K

TABLE IV
LINEAR MODEL COEFFICIENTS AND THE ANOVA FOR ACTIVEFORKS

Linear Model Analysis of Variance
Coefficients: Estimate t-value p-value Sum Sq F-value p-value
(Intercept) 55.060 1.951 0.051 .
SLOC 0.017 0.76 0.448 58.9 207.3 0.000 ***
FDateGH 0.000 -1.899 0.058 . 16.0 56.2 0.000 ***
TotalChangedLOC -0.016 -0.751 0.453 23.0 80.8 0.000 ***
majorDev -0.231 -2.945 0.003 ** 65.8 231.7 0.000 ***
minorDev 0.288 5.613 0.000 *** 329.5 1160.4 0.000 ***
TotalReposMajDev 0.181 4.15 0.000 *** 7.7 27.1 0.000 ***
TotalCommitsMajDev -0.033 -1.391 0.165 1.3 4.7 0.030 *
TotalChangedLOCMajDev -0.022 -1.103 0.270 0.6 2.1 0.146
AverageRating -0.009 -0.59 0.555 0.1 0.2 0.674
Downloads 0.019 2.371 0.018 * 2.5 8.9 0.003 **
Issues 0.142 8.817 0.000 *** 24.8 87.4 0.000 ***
Tags -0.023 -1.42 0.156 0.5 1.9 0.173
LDateGH 0.000 2.035 0.042 * 0.4 1.4 0.232
GPDate 0.000 -1.657 0.098 . 0.6 2.0 0.154
MinDev2 0.119 7.805 0.000 *** 17.3 60.9 0.000 ***
Residuals 221.5

Significance codes: 0.000 (***), 0.001 (**), 0.01 (*), 0.05 (.), >= 0.1 ()
Multiple R-squared: 0.7125, Adjusted R-squared: 0.707
Social factors highlighted

A. Descriptive Statistics

The first step in our analysis consisted of examining various
descriptive statistics of the variables described earlier. The apps
are written in 18 programming languages with the majority
being written in Java (716), Kotlin (37) and JavaScript (29).

Tables II & III present descriptive statistics of the variables
used in our models as well as other variables describing the
studied apps. One can draw a number of insights from these
descriptive statistics. Looking at Table II, we see that the studied
apps represent the wide variety of App categories available
on Google Play. In Table III, when comparing the values of
SLOC, TotalCommits and TotalChangedLOC, we see
an indication that the applications have gone through multiple
releases throughout their lifetime, which reduces the probability
that they are student class assignments rather than real products.
Looking at the values of Weeks and Inactivity, we also
observe that the applications have been in existence for a
number of months. Lastly, looking at the column values of Min,
1st Quartile, Median, 3rd Quartile and Max, we observe that
most of the variables have a heavily right skewed distribution.

B. OLS Model Results

RQ1. What factors contribute to App popularity on
GitHub?: In Table IV we present the results of the OLS
regression model for the dependent variable ActiveForks.
Explanatory variables are the coefficients presented in the first

column of the table. The model yields a multiple R-squared of
0.7125 and an adjusted R-squared of 0.707. This tells us that
the model captures 71.3% of the variance of the dependent
variable. The high value of 71.3% is not surprising since the
both the dependent and most of the independent variables
are extracted from one source–GitHub and possible that some
variables could be related.

Looking at the t-values, p-values, and Sum Sq in Table IV,
we see that the most influential covariates are Code au-
thorship metrics—social factors (highlighted)—minorDev
(***) (Sum Sq 329.5) and majorDev (**) (Sum Sq
65.8). Though other covariates such as the technical fac-
tors of TotalReposMajDev, Issues, Downloads, and
LDateGH show significant p-values in the regression, their
contribution in explaining the variance of the dependent
variable is minimal when we consider the Sum Sq in the
ANOVA analysis. To this end, we shall focus our discussion
on minorDev and majorDev.

C. RQ1–Discussion of Findings

Looking at the coefficient estimate of minorDev–social
factor, the positive sign indicates that apps on GitHub that have
high values of minor authors do have high values of active
forks. This finding is not surprising as it can be believed that an
App is owned by a small number of authors (i.e., contributors
with write access), while the majority of the other authors
contribute through the fork and pull request model. In the
fork and pull request model contributors fork a project, make
updates to the project privately (i.e., to an active fork), and
later propagate the changes to the main-line via pull request.

Looking at the value of majorDev, the negative sign
indicates that apps on GitHub with a high number of major
authors have a low number of active forks. A clue to the
possible reasons behind this observed behavior can be related
to the work of Bird et al. [11]—who studied the relationship
between bugs in software modules and code authorship – and
Businge et al. [13]—who studied the relationship between
bugs in small-sized Android applications and code authorship.
Both authors found that modules/applications with many major
contributors (i.e., more shared authorship; lower values of MVA)
are associated with more bugs. The reason behind this may be
related to the theory of “too many cooks spoil the broth” [11],
suggesting that as the number of developers increase, co-
ordination in development efforts becomes too complex to
accomplish. Because of the complexity in coordination, we
posit that a possible resulting problem could be that submitted
pull requests and/or issues could take more time to resolve.
This may demoralize new contributors interested in forking
and providing changes to these apps; hence, fewer active forks
are realized.

To validate our stated conjectures, we carried out the
following deeper investigation. From our data set of 814 apps,
we carefully selected projects using the following criteria: 1)
at least one PullRequests and at least one Issues; 2) at
least two total contributors (i.e., TotalDev>= 2)



TABLE V
LINEAR MODEL COEFFICIENTS AND THE ANOVA FOR THE METRICS OF DOWNLOADS AND AVERAGERATING

Downloads AverageRating
Linear Model Analysis of Variance Linear Model Analysis of Variance

Coefficients: Estimate p-value Sum Sq p-value Estimate p-value Sum Sq p-value
(Intercept) 1.33E+03 0 *** 6.88E-01 0.861
SLOC 2.59E-01 0.007 ** 215 0 *** 1.03E-01 0.031 * 20.45 0 ***
ActiveFork 2.88E-01 0.024 * 322 0 *** -1.30E-02 0.833 0.02 0.901
TotalChangedLOC -4.00E-01 0.00 *** 27 0.024 * 4.40E-02 0.335 0.84 0.427
Tags 6.35E-02 0.343 108 0 *** 1.30E-01 0.001 ** 14.92 0 ***
majorDev -8.75E-01 0.01 * 61 0.001 *** 2.80E-02 0.892 1.87 0.237
minorDev 3.59E-01 0.017 * 50 0.002 ** -1.11E-01 0.139 4.52 0.066 .
TotalReposMajDev -5.86E-01 0.002 ** 0 0.806 1.38E-01 0.147 0.05 0.853
TotalCommitsMajDev 2.84E-01 0.006 ** 98 0 *** -2.10E-02 0.676 7.93 0.015 *
TotalChangedLOCMajDev 2.83E-01 0.001 ** 44 0.004 ** -1.35E-01 0.001 ** 16.58 0 ***
Inactivity 7.56E-02 0.326 239 0 *** -6.50E-02 0.059 . 1.8 0.246
PullRequests -2.10E-02 0.794 49 0.002 ** -6.80E-02 0.152 5.48 0.043 *
FDateGH -6.64E-05 0 *** 959 0 *** 4.64E-02 0.756 1.02 0.325
LDateGH -1.10E-03 0 *** 3 0.457 0.00E+00 0.01 ** 2.69 0.157
GPDate 1.35E-03 0 *** 173 0 *** 0.00E+00 0.026 * 6.67 0.026 *
TotalStars 2.26E-01 0 *** 186.67 0 ***
Residuals 4176 1051.45

Significance codes: 0.000 (***), 0.001 (**), 0.01 (*), 0.05 (.), >= 0.1 ()
Downloads: Multiple R-squared: 0.3599, Adjusted R-squared: 0.3485
AverageRating: Multiple R-squared: 0.2046, Adjusted R-squared: 0.1905
Social factors highlighted

This filtered dataset consisted of 469 apps. For each
PullRequests/Issues in each of the apps, we computed
the number of days between PullRequests/Issues cre-
ation time and closing time. We then computed the total number
of days it took to close all the PullRequests/Issues in
each of the apps (days-to-close-PullRequests and days-to-close-
Issues, as well as the average number of days to closure (mean-
days-to-close-PullRequests and mean-days-to-close-Issues).

In our experiment, we wanted to ascertain the relationship
between mean-days-to-close-PullRequests/mean-days-to-close-
Issues and MVA (MVA metric shows us the level of code
authorship). We divided the values of MVA into two groups
whereby values of MVA >= 80% were labeled less-shared-
authorship and those that were < 80% labeled more-shared-
authorship. The choice of the threshold 80% is based on the
methodology discussed in Section III-D. We found that variable
mean-days-to-close-PullRequests had a mean of 13.6 average
days for the less-shared-authorship group and a mean of 27.6
average days for the more-shared-authorship group. This tells
us that the average days to close a pull request in the less-
shared-authorship group is less than the average days to close a
pull request in the more-shared-authorship group. To ascertain
if there was a statistically significant difference between the
groups, we then run a Mann-Whitney’s U test and calculate the
effect size of Mann-Whitney’s U test to evaluate the difference
between the groups [37]. We found a significant effect on the
groups with p-value < 0.003 and effect size (r) = 0.14 (small
size effect). We did not find the Mann-Whitney U test statistic
for mean-days-to-close-Issues statistically significant.

From the results and the findings of RQ1, it is worth to note
that the social factors of minorDev and majorDev have
more significant contributions while predicting App popularity
on GitHub compared to the rest of the technical factors.

RQ2. What factors contribute to an App’s popularity on
Google Play?: In Table V we present the results of the OLS
regression models for the dependent variables of Downloads
and AverageRating. Explanatory variables are presented

in the first column of the table, with estimated coefficients in
the second. The model yields a multiple R-squared of 0.3599
and an adjusted R-squared of 0.3485 for Downloads and
R-squared of 0.2046 and an adjusted R-squared of 0.1905
for AverageRating. This tells us that the proportion of
the variance in the dependent variable that is predictable
from the independent variable(s) is 36.0% and 20.5% for
Downloads and AverageRating, respectively. The low
values of R-squared are not surprising since the independent
varibales and the dependent variables are extracted from
different repositories—GitHub and Google Play, respectively.

As shown, for the Downloads model, variables
representing level of activity (TotalChangedLOC***),
App Popularity (ActiveFork***), Contributor experience
(TotalReposMajDev***, TotalCommitsMajDev**,
TotalChangedLOCMajDev***), App size (SLOC*),
App Time (FDateGH***, LDateGH**, GPDate***)
and Code authorship (majorDev* minorDev*) are
the most significant predictors of the dependent variable.
Looking at the ANOVA in Table V, Sum Sq (column
five), we observe significant contributors of the value
of the dependent variable (in order of importance) to
be FDateGH, ActiveForks, Inactivity, SLOC,
GPDate, Tags, TotalCommitsMajDev, majorDev,
minorDev, PullRequests, TotalChangedLOCMj and
TotalChangedLOC.

For the AverageRating model, variables representing
level of activity (Tags***), App size (SLOC*), Contribu-
tor experience (TotalChangedLOCMajDev**), App Time
(LDateGH** and GPDate*) are the most significant predic-
tors of the dependent variable. Looking at the ANOVA in Ta-
ble V, Sum Sq (column 11), we observe significant contributors
of the value of the dependent variable (in order of importance)
to be TotalChangedLOCMajDev***, SLOC***, Tags***,
TotalStars*** TotalCommitsMajDev*



D. RQ2–Discussion of Findings

In the results presented for RQ2 above, we note some
interesting observations. We discuss the variables that have both
coefficients with significant t-value as well as Sum Sq> 20. For
AverageRating, we observe that apart from TotalStars–
used as a control variable, the rest of the variables have low
values of Sum Sq. Below we discuss variables of interest
relating to App popularity on Google Play.

1) Technical factors: a) The positive coefficient of the metric
ActiveForks tells us that apps that are popular on GitHub,
are also popular on Google Play. A possible explanation for
this could be that popular apps on GitHub have contributors
who improve the quality and/or introduce interesting features
that continuously attract new users on Google Play. b) The
positive coefficient of the metric GPDate tells us that apps
newer updates on Google Play have more user downloads.
This could mean that users on Google Play prefer continuously
updated apps, perhaps due to fear that apps which are not
updated often may be obsolete. c) The negative coefficient of
the metric TotalChangedLOC tells us that apps on GitHub
with more churn have low values of user downloads on Google
Play. Our finding could be related to the findings of Nagappan
and Ball [38], who found that an increase in relative code
churn measures is accompanied by an increase in system defect
density. This could potentially mean that an App with high
churn is accompanied with post release faults that may cause
downloaded apps on users phones to fail or crash. This would
result in these users giving an App a bad rating and writing a
bad review, resulting in the App failing to attract new users.

2) Social factors: a) The positive coefficient
of the metrics TotalCommitsMajDev and
TotalChangedLOCMajDev tell us that the apps on
GitHub with experienced major contributors have more user
downloads on Google Play. This could mean that experienced
major contributors produce apps of high quality and/or
introduce interesting features; hence, the apps attract new
users on Google Play. b) The negative coefficient of the metric
majorDev tells us that apps on GitHub with many major
contributors (i.e., shared ownership) have low values of user
downloads on Google Play. The study of Businge et al. [13]
discovered that apps with shared authorship (i.e., many major
developers) were found to be more fault-prone. This could
imply that when users download apps with higher levels of
shared authorship on GitHub, they run into issues with said
apps, and report these issues on Google Play. Eventually, new
users may read these reviews, and choose not to download
the App as a result. c) The positive coefficient of the metric
minorDev tells us that apps on GitHub with a high number
of minor authors have high values of user downloads on
Google Play. This could mean that minor authors contribute
quality code and/or introduce interesting features; hence, the
App continuously attracts new users on Google Play.

Like in RQ1, we also decided to carry out further investi-
gation to verify the conjecture that apps with higher levels of
shared authorship (i.e., more major developers) are more buggy.

From our dataset of 814 apps, we carefully selected projects
using the following criteria: At least two total contributors (i.e.,
totalDev>= 8). The filtered dataset contained a total of
119 apps. We thereafter used the code quality analysis tool
SonarQube8 to extract bug reports from the source code of
the 119 apps. Of the 119 apps, SonarQube could not parse
source nine apps for some reason we could not establish. Unlike
in RQ1, in RQ2 we considered a few apps in our experiment
due to the semi-automated nature of SonarQube in parsing
the source code of the apps.

In our experiment, we wanted to ascertain the relationship
between the number of bugs and MVA (a metric that shows us
the level of shared code authorship). Like in RQ1, We divided
the values of MVA into two groups whereby values of MVA>=
80% were labeled less-shared-authorship and those that were
< 80% labeled more-shared-authorship. We found that the
variable “number of bugs” had a mean of 13.02 for the group
with MVA >= 80%, and a mean of 25.75 for the MVA < 80%
group, i.e., the average in the less-shared-authorship group is
less than the average bugs in the more-shared-authorship group.
Like in RQ1, to ascertain if there was a statistically significant
difference between the groups, we then run a Mann-Whitney’s
U test and calculate the effect size of Mann-Whitney’s U
test to evaluate the difference in the groups [37]. We found a
significant effect of on the groups with p-value < 0.027 and
effect size (r) = 0.21 (small size effect).

For the comparison of the social factors and the technical
factors in explaining App popularity on Google Play, we note
that although some of the technical factors are more important,
the social factors also do have a significant contribution.

V. IMPLICATIONS OF OVERALL RQ1 & RQ2 DISCUSSION

We note that in addition to the technical factors that have
previously been extensively studied, we have observed that
social factors do have a significant contribution in explaining
app popularity on both Google Play and GitHub. We make the
following recommendations in relation to the social factors of
majorDev and minorDev.

majorDev: We have discovered that apps on GitHub with
many major contributors are less popular on both Google Play
store and GitHub. The low popularity of Google Play store
could be attributed to the fact that we found that apps with many
major developers are associated with more bugs than those
with fewer major developers. The low popularity on GitHub
could be attributed to the fact that we found apps with many
major developers have a slow response time in resolving pull
requests. To this end, we recommend that Android applications
with lower levels of code authorship should be reviewed with
more scrutiny for both possible bugs and longer pull request
resolution response time. Android application project teams
on GitHub could make use of the MVA metric to scrutinize
applications with low values of MVA.

8https://www.sonarqube.org/



minorDev: We have also discovered that having more
minor contributors of an app is associated with the App’s
popularity on both GitHub and Google Play store, with a
compounding effect as the number increases (indicated by the
significant positive squared term). We encourage apps teams
on GitHub to accept and encourage contributions from the
community in order for their App to become popular on both
GitHub and Google Play store.

A. Discussion–In Comparison with Related Work

In Section II we discussed a number of studies that have
investigated App popularity. All the studies performed their
investigation using factors from only one crowdsourced website
(i.e., either GitHub or Google Play). Furthermore, the studies
mainly concentrated on App technical factors that could be
related to popularity. In this study, we took a holistic approach
where we combined factors from the two crowdsourced
websites to investigate App popularity as well as combining
both technical and social factors. We have observed that both
the technical and social factors do play a significant role in
explaining App popularity on the two crowdsourced websites.
We observe that the combined factors from GitHub and Google
Play have a low effect in explaining App popularity measured
by average user rating on Google Play. Interestingly on GitHub,
we have discovered that social factors have a higher power in
explaining the popularity compared to all the technical factors
we investigated. The data used in our study can be found
online9.

VI. THREATS TO VALIDITY AND VERIFIABILITY

Though we have sought to make sure that all of our data
was gathered and linked correctly and that our models are
statistically robust, we note some potential threats to validity.

First, as mentioned in Section III-B in the method of linking
GitHub and Google Play–Step 3, we performed a manual
inspection of the data. It is possible that we could have missed
a few cases that skipped our eyes unnoticed. To a lesser extent,
this could threaten our findings.

Second, one may question whether or not we have sufficient
number of projects (observations) in our data set compared
to the total number of apps on the Google Play store and
GitHub. As mentioned in Section III-A, we carefully selected
the apps used in our dataset, removing apps that could be
considered experimental or student projects. Thus, our dataset
can be considered representative for the notions of popularity
we have modeled.

Third, in collecting our popularity data of the apps on Google
Play we use the latest number of downloads and total number
of reviews since Google Play does not keep history of the
app data. It is possible that an app can have large swings in
popularity following a code change. That may threaten the
results of our findings.

Lastly, there is an internal validity threat related to the
tool (i.e., SonarQube) used to extract bug information, and

9https://sites.google.com/view/app-saner-2019

to compute size and complexity metrics. SonarQube is well
maintained and extensively used by practitioners. However, as
most static analysis tools, it is not 100% precise. It is possible
that some of the bugs considered in this study will never be
experienced either by developers or app users.

VII. CONCLUSION AND FUTURE WORK

In this study, we examined how the App’s combined factors
of technical and social factors, mined from two crowdsourced
websites, relate to App popularity. We have observed that both
the technical and social factors do play a significant role in
explaining App popularity on the two crowdsourced websites.
We observe that the combined factors have a low effect in
explaining App popularity measured by average user rating on
Google Play. Interestingly on GitHub, we have discovered that
social factors have a higher power in explaining the popularity
compared to all the technical factors we investigated.

For future studies, fusing heterogenous data sets, as we
did, can apparently allow for comprehensive study of factors
involved in popularity of apps. Naturally, one wanders if adding
more social web data, e.g., info on developers communication
about the projects, or prior links between them, can lead to
even higher resolution of determinant factors. Furthermore,
in the study we looked at only two crowdsourced websites
where extracted info. This work can be extended by looking
at other crowdsourced websites for example Travis-CI and
Stackoverflow which are rich sources of project data.
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